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Abstract

Accurate knowledge of prior population exposure has critical ramifications for preparedness

plans for future SARS-CoV-2 epidemic waves and vaccine prioritization strategies. Serologi-

cal studies can be used to estimate levels of past exposure and thus position populations in

their epidemic timeline. To circumvent biases introduced by the decay in antibody titers over

time, methods for estimating population exposure should account for seroreversion, to

reflect that changes in seroprevalence measures over time are the net effect of increases

due to recent transmission and decreases due to antibody waning. Here, we present a new

method that combines multiple datasets (serology, mortality, and virus positivity ratios) to

estimate seroreversion time and infection fatality ratios (IFR) and simultaneously infer popu-

lation exposure levels. The results indicate that the average time to seroreversion is around

six months, IFR is 0.54% to 1.3%, and true exposure may be more than double the current

seroprevalence levels reported for several regions of England.

Author summary

It is particularly challenging to determine the true proportion of the population that has

been previously exposed to SARS-CoV-2. Serological surveys that measure how many

people have antibodies against the virus are a promising tool but results from such studies

need to be interpreted carefully. Several studies following individuals over time after

they’ve had a known infection were able to determine that antibodies are only measurable

up to 6–9 months, on average. The immediate implication is that serological studies will

inevitably under-estimate the number of people exposed, since some will have a lower

antibody count when the study is conducted and test negative. We propose a method that

takes this into account and informs the true level of exposure from triangulating serologi-

cal data with mortality and test positivity data.
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Introduction

The COVID-19 pandemic has inflicted devastating effects on global populations and econo-

mies [1]. Levels and styles of reporting epidemic progress vary considerably across countries

[2], with cases consistently being under-reported and case definitions changing considerably

over time. Therefore, the scientific and public health communities turned to serological sur-

veys as a means to position populations along their expected epidemic timeline and thus pro-

vide valuable insights into COVID-19 lethality [3,4]. Those prospects were frustrated by

apparent rapid declines in antibody levels following infection [5–7]. Population-wide antibody

prevalence measurements can significantly underestimate the level of underlying population

immunity, with obvious implications for intervention strategy design and vaccine impact

measurement.

Continued research efforts to determine the correlates for protective immunity against dis-

ease and infection have found that while antibody titers are poor indicators of sustained

immunity, cellular immunity can play a determinant role in limiting susceptibility to further

SARS-CoV-2 challenges in previously exposed individuals [8,9]. Unfortunately, performing T

cell assays at scale is technically challenging and expensive, which justified the decision to con-

duct a series of serology surveys (some of which are still underway) in many locations globally

to provide a better understanding of the extent of viral spread among populations [10].

In England, a nationwide survey sampling more than 100,000 adults was performed from

20 June to 13 July 2020. The results suggested that 13% and 6% of the population of London

and England, respectively, had been exposed to SARS-CoV-2, giving an estimated overall

infection fatality ratio (IFR) of 0.90% [11]. Although corrections were made for the sensitivity

and specificity of the test used to infer seroprevalence, declining antibody levels were not

accounted for. This is a limitation of the approach, potentially resulting in underestimates of

the true levels of population exposure [12] and an overestimate of the IFR.

We now have a much clearer picture of the time dynamics of humoral responses following

SARS-CoV-2 exposure, with antibody titers remaining detectable for approximately 6 months

[13,14]. Commonly used serological assays have a limit of antibody titer detection below

which a negative result is yielded. Hence, a negative result does not necessarily imply an

absence of antibodies, but rather that there is a dynamic process by which the production of

antigen-targeted antibodies diminishes once infection has been resolved, resulting in decaying

antibody titers over time. As antibody levels decrease below the limit of detection, serorever-

sion occurs.

We define the seroreversion rate as the inverse of the average time taken following serocon-

version for antibody levels to decline below the cut-off point for testing seropositive. In a longi-

tudinal follow-up study, antibodies remained detectable for at least 100 days [6]. In another

study [15], seroprevalence declined by 26% in approximately three months, which translates to

an average time to seroreversion of around 200 days. However, this was not a cohort study, so

newly admitted individuals could have seroconverted while others transitioned from positive

to negative between rounds, leading to an overestimation of the time to seroreversion.

Intuitively, if serology were a true measure of past exposure, we would expect a continually

increasing prevalence of seropositive individuals over time. However, data suggest this is not

the case [16], with most regions in England showing a peak in seroprevalence at the end of

May 2020. This suggests seroreversion plays a significant role in shaping the seroprevalence

curves in England and that the time since the first epidemic peak will influence the extent to

which subsequent seroprevalence measurements underestimate the underlying population

attack size (proportion of the population exposed). We argue that the number of people

infected over the course of the epidemic can be informed by data triangulation, i.e., by
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combining numbers of deceased and seropositive individuals over time. For this linkage to be

meaningful, we need to carefully consider the typical SARS-CoV-2 infection and recovery

timeline (Fig 1).

Most individuals, once infected, experience an incubation period of approximately 4.8 days

(95% confidence interval (CI): 4.5–5.8) [17], followed by the development of symptoms, which

include fever, dry cough, and fatigue, although some individuals will remain asymptomatic

throughout. Symptomatic individuals may receive a diagnostic PCR test at any time after

symptom onset; the time lag between symptom onset and date of test varies by country and

area, depending on local policies and testing capacity. Some individuals might, as their illness

progresses, require hospitalization, oxygen therapy, or even intensive care, eventually either

dying or recovering.

The day of symptom onset, as the first manifestation of infection, is a critical point for iden-

tifying when specific events occur relative to each other along the infection timeline. The mean

time from symptom onset to death is estimated to be 17.8 days (95% credible interval (CrI):

16.9–19.2 days) and to hospital discharge 24.7 days (22.9–28.1 days) [18]. The median serocon-

version time for IgG (long-lasting antibodies thought to be indicators of prior exposure) is esti-

mated to be 14 days post-symptom onset; the presence of antibodies is detectable in less than

40% of patients within 1 week of symptom onset, rapidly increasing to 79.8% (IgG) at day 15

post-onset [19]. We assume that onset of symptoms occurs at day 5 post-infection and that it

takes an average of 2 additional days for people to have a PCR test. Thus, we fix the time lag

between exposure and seroconversion, δ�, at 21 days; the time lag between a PCR test and

death, δP, at 14 days; and assume that seroconversion in individuals who survive occurs at

approximately the same time as death for those who do not (Fig 1).

Thus, we propose to use population-level dynamics (changes in mortality and seropreva-

lence over time) to estimate three key quantities: the seroreversion rate, the IFR, and the total

population exposure over time. We developed a Bayesian inference method to estimate said

quantities, based on official epidemiological reports and a time series of serology data from

blood donors in England, stratified by region [16] (see Materials and Methods for more

details). This dataset informed the national COVID-19 serological surveillance, and its data

collection was synchronous with the ‘REACT’ study [11]. The two serosurveys use different,

but comparable, antibody diagnostic tests [20]. While the ‘REACT’ study used the FORTRESS

lateral flow immunoassay (LFIA) test for IgG [11], the data analyzed here were generated

using the Euroimmun ELISA (IgG) assay [21]. The independent ‘REACT’ study acts as a vali-

dation dataset, lending credence to the seroprevalence values used. For example, seropreva-

lence in London was reported by ‘REACT’ to be 13.0% (95% CI: 12.3–13.6%)[11] for the

period 20 June to 13 July 2020. In comparison, the London blood-donor time series indicated

seroprevalence to be 13.3% (95% CI: 8.4–16%) [21] on 21 June 2020. Notably, the Abbott IgG

antibody testing assay showed the most striking decline in sensitivity over time compared with

Fig 1. Progression of exposed individuals through the various clinical (below the timeline) and diagnostic (above

the timeline) stages of infection and recovery. Stages marked in grey represent events that may happen, with a

probability consistent with the darkness of the shade of grey.

https://doi.org/10.1371/journal.pcbi.1009436.g001
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other serological assays [22,23], which limits comparisons across the two datasets as time

progresses.

We developed a method that combines daily mortality data with seroprevalence in England,

using a mechanistic mathematical model to infer the temporal trends of exposure and sero-

prevalence during the COVID-19 epidemic. We fit the mathematical model jointly to serologi-

cal survey data from seven regions in England (London, North West, North East (North East

and Yorkshire and the Humber regions), South East, South West, Midlands (East and West

Midlands combined), and East of England) using a statistical observation model (see the Mate-

rials and Methods section for more details on the input data sources, mechanistic model, and

fitting procedure). We considered that mortality is perfectly reported and proceeded to use

this anchoring variable to extrapolate the number of people infected 3-weeks prior. We

achieved this by estimating region-specific IFRs (defined as γi), which we initially assumed to

be time invariant, later relaxing this assumption. The identifiability of the IFR metric was

guaranteed by using the serological data described above as a second source of information on

exposure. From the moment of exposure, individuals seroconvert a fixed 21 days later and can

then serorevert at a rate, β, that is estimated as a global parameter. We thus have both mortality

and seropositivity prevalence informing SARS-CoV-2 exposure over time. Extending from the

baseline model thus described, we conducted sensitivity analyses on key assumptions to evalu-

ate the robustness of the results presented in the main paper. These sensitivity analyses explore

how estimates for IFRs and seroreversion rates depend on assumptions around the timelines

of infection/testing and the data sources used (see the sensitivity analysis subsection in the

Materials and Methods for more details).

Several other research groups have used mortality data to extrapolate exposure and as a

result provide estimates for IFR. Some IFR estimates have been published assuming serology

cross-sectional prevalence to be a true reflection of population exposure, while others used

infection numbers generated by mechanistic dynamic models fit to mortality data [24]. Most

recently, sophisticated statistical techniques, which take into account the time lag between

exposure and seroconversion, have been used to estimate the underlying population exposure

from seroprevalence measurements [25], with some also considering seroreversion [26–28].

Our method is very much aligned with the latter studies but is applied at a regional level while

using a dataset that has been validated by an independent, largely synchronous study [21] and

uses test positivity data to help inform time-varying transmission intensity.

Results

Results from the fixed IFR inference method show excellent agreement with serological data

(Fig 2). We found that, after seroconverting, infected individuals remain seropositive for about

176 days on average (95% CrI: 159–197 days) (Tables 1 and S1, S1 Fig). This relatively rapid

(approximately six months) seroreversion is similar to estimates from experimental studies

[13,14,23,29,30], and the choice of an exponential distribution for seroreversion seems to be

validated by long follow-up longitudinal studies showing antibody persistence up to 1 year

[23,30,31], with 59% (95% CrI: 50–68%) of seropositive individuals seroreverting after 52

weeks (S2 Fig). These seroreversion rates are also broadly consistent with the observation of

83% protection against reinfection within 6 months of disease in UK patients [32].

As a consequence of this rapid seroreversion, epidemic progression will result in an increas-

ing gap between measured serology prevalence levels and cumulative population exposure to

the virus. Ultimately, this may mean that more than twice as many people have been exposed

to the virus relative to the number of people who are seropositive (Fig 2), highlighting the

importance of our method in aiding interpretation of serological survey results and their use
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for informing policy decisions moving forward. Seroreversion is responsible for decreased

seropositivity over periods of continued transmission (as evidenced by mortality and case

data) and thus why we had to resort to mortality data to inform the true exposure of popula-

tions to SARS-CoV-2. This is made clear by comparing the shapes of the regional cumulative

death curves (S3 Fig) with those of the estimated cumulative total exposure (Fig 2).

We also estimated age-independent IFRs for the seven English regions (means ranging

from 0.49% to 1.18%; Table 1) that are in very good agreement with other estimates for

England [33]. The estimated IFRs were noticeably lower for London and higher for the North

East, South East and South West, indicating a clear signal for a lower probability of death per

infection in London. Given there are no significant disparities in treatment outcomes across

regions [34], we explored several demographic and epidemiological factors that could explain

the observed trend (S4 Fig). There is a strong positive correlation between the proportion of

the population over the age of 45 years (when disease and mortality risk start to increase

Fig 2. Time course of the SARS-CoV-2 pandemic up to 7 November 2020 for the seven regions in England in the constant IFR model. The solid orange

circles and black error bars in each regional panel represent the observed seroprevalence data and their credible intervals, respectively, after adjusting for the

sensitivity and specificity of the antibody test. The green and orange lines show the model predictions of median exposure and seroprevalence, respectively,

while the shaded areas correspond to the 95% CrI. The regional predicted exposure levels (expressed as the proportion of the population that has been infected)

as of 17 October 2020 are shown on the map of England. The map base layer was obtained from: https://opendata.arcgis.com/datasets/

8d3a9e6e7bd445e2bdcc26cdf007eac7_4.geojson.

https://doi.org/10.1371/journal.pcbi.1009436.g002

Table 1. Marginal median parameter estimates and 95% CrI for the constant IFR model. β is the rate of serorever-

sion and γ denotes the IFR. The estimated median time to seroreversion given by 1/β is 176 (95% CrI: 159–197 days).

Parameter Median (95% CrI)

β 0.0057 (0.0051–0.0063)

γLondon 0.0049 (0.0046–0.0063)

γNorthWest 0.0080 (0.0073–0.0087)

γNortEast 0.0103 (0.0095–0.0112)

γSouthWest 0.0094 (0.0087–0.0101)

γSouthEast 0.0118 (0.0109–0.0129)

γMidlands 0.0085 (0.0079–0.0091)

γEast 0.0083 (0.0077–0.0090)

https://doi.org/10.1371/journal.pcbi.1009436.t001
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significantly) and the estimated IFR. Interestingly, not only is the population in London youn-

ger but there is also a lower proportion of the population comprising elderly people living in

care homes, which may explain the proportionally lower contribution of care-home deaths to

the overall mortality in London. This covariate appears to explain more than 75% of the vari-

ance observed in estimated IFRs across regions (S4B Fig). Note that other mortality risk fac-

tors, such as diabetes and pulmonary and liver disease, seem to have no correlation with

estimated IFR at all (S6 Table).

An alternative formulation of our modelling approach allows IFR to vary over time accord-

ing to the stage of epidemic progression, i.e., allowing for IFR to potentially decrease as the

population gains immunity, shielding of vulnerable people is optimized and patient treatment

is improved. Unfortunately, it is extremely difficult to extrapolate the underlying risk of infec-

tion (a proxy for epidemic progression) from reported case data due to the volatility in testing

capacity. Hence, we propose that the optimal metric for epidemic progression is the cumula-

tive test positivity ratio. In the absence of severe sampling biases, the test positivity ratio is a

good indicator of changes in underlying population infection risk, as a larger proportion of

people will test positive if infection prevalence increases. In fact, it is clear from S5D Fig that

the test positivity ratio is a much better indicator of exposure than the case fatality ratio (CFR)

or the hospitalization fatality ratio (HFR), as it mirrors the shape of the mortality incidence

curve (S5B Fig). For the time-varying IFR, we took the normalized cumulative test positivity

ratio time-series and applied it as a scalar of the maximum IFR value estimated for each region

(more details can be found in the Materials and Methods section).

The results from the time-varying IFR model are consistent with the results from the con-

stant IFR model and in very good agreement with serological data (Fig 3). The mean serorever-

sion rate in this model was estimated to be 162 days (95% CrI: 148–186 days), a 5.5–6.9%

Fig 3. Time course of the SARS-CoV-2 pandemic up to 7 November 2020 for the seven regions in England in the time-varying IFR model. The orange solid

circles and black error bars in each regional panel represent the observed seroprevalence data and their credible intervals after adjusting for the sensitivity and

specificity of the antibody test. The green and orange lines show the median time-varying IFR model predictions for exposure and seroprevalence, respectively, while

the shaded areas correspond to the 95% CrI. The regional median predicted exposure levels (expressed as the proportion of the population that has been infected) as

of 17 October 2020 are shown on the map of England. The map base layer was obtained from: https://opendata.arcgis.com/datasets/

8d3a9e6e7bd445e2bdcc26cdf007eac7_4.geojson.

https://doi.org/10.1371/journal.pcbi.1009436.g003
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difference compared with the constant IFR model, meaning that the estimation for the serore-

version rate was robust to the assumption of the shape of the IFR. Critically, predictions for

cumulative exposure in the population are very robust to the assumption of the shape of IFR,

with both models forecasting the same levels of overall exposure (comparing Figs 2 and 3).

Estimates for the time-varying IFR model (S3 Table and S6 and S7 Figs) suggest a slight

decrease in IFR from March to November 2020 in several regions of England; this was most

significant in London.

The methodology for estimating the cumulative exposure in the population proposed in

this paper rests on several key assumptions that might be violated in practice, the first of which

is the assumption of fixed delays in the infection time history as depicted in Fig 1. This is

admittedly a simplification of delay-distribution approaches used elsewhere but, as determined

by our sensitivity analysis, has no significant implications for the estimates of IFR and serore-

version rates for either the constant IFR model or the time-varying IFR model (S8 and S9

Figs). Indeed, relaxing the fixed delays assumption would only result in a shift in predicted

exposure during the very early stages of the pandemic. Second, our methodology relies on

mortality data to infer the true shape of the cumulative exposure curve. The official English

government data dashboard provides two mortality datasets: ‘Deaths with COVID-19 on the

death certificate’ and ‘Deaths within 28 days of positive test’ by date of death [35]. We opted

for the former as the default source of mortality data used, because the latter dataset signifi-

cantly underestimates COVID-19-associated deaths at the beginning of the pandemic, at a

time when transmission was very high and PCR testing capacity was at its lowest (S10 Fig).

Note that once testing capacity reached the tens of thousands of tests per day, the two mortality

data streams report essentially the same figures. If we use ‘Deaths within 28 days of positive

test by date of death’ as a model input, we obtain a seroreversion rate that is 8.8–12.8% shorter,

along with 16–32% lower regional IFRs (S11 and S12 Figs). This is an expected consequence of

having the model fit to the same serology data, while assuming there were 17,000 fewer deaths

during the spring 2020 epidemic wave. More importantly, the cumulative exposure predictions

are extremely robust to the explored mortality inputs (S13 and S14 Figs).

Discussion

Given the current polarization of opinion around COVID-19 natural immunity, we realize

that our results are likely to be interpreted in one of two conflicting ways: (1) the rate of serore-

version is high, therefore achieving population (herd) immunity is unrealistic, or (2) exposure

in more affected geographical areas, such as London, is much higher than previously thought,

and population immunity has almost been reached, which explains the decrease in IFR over

time. We would like to dispel both interpretations and stress that our results do not directly

support either. Regarding (1), it is important to note that the rate of decline in neutralizing

antibodies, reflective of the effective immunity of the individual, is not the same as the rate of

decline in seroprevalence. Antibodies may visibly decline in individuals yet remain above the

detection threshold for antibody testing [6]. Conversely, if the threshold antibody titer above

which a person is considered immune is greater than the diagnostic test detection limit, indi-

viduals might test positive when in fact they are not effectively immune. The relationship

between the presence and magnitude of antibodies (and therefore seropositive status) and pro-

tective immunity is still unclear, with antibodies that provide functional immunity only now

being discovered [13]. Furthermore, T cell-mediated immunity is detectable in seronegative

individuals and is associated with protection against disease [8]. Therefore, the immunity pro-

file for COVID-19 goes beyond the presence of a detectable humoral response. We believe our

methodology to estimate total exposure levels in England offers valuable insights and a solid
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evaluation metric to inform future health policies (including vaccination) that aim to disrupt

transmission. With respect to (2), we must clarify that decreasing IFR trends can result from a

combination of population immunity, improvement in patient treatment, better shielding of

those at highest risk, and selection processes operating at the intersection of individual frailty

and population age structure. We can eliminate exposure levels as the main driver of this pro-

cess as there is no clear temporal signal for IFR for regions other than London. This is con-

firmed by data on age-dependent mortality rates at different stages of the epidemic, which

show that mortality rates in London have decreased substantially since the first spring wave,

much more so than in other regions (S15 Fig). As no significant disparities in treatment out-

comes across regions were found [34], an alternative interpretation of IFR trends in England is

that individuals who are more likely to die from infection (due to some underlying illness,

being in a care home, being over a certain age or any other risk factors) will do so earlier. This

means that as the epidemic progresses, selection (through infection) for a decrease in average

population frailty (a measure of death likelihood once infected) is taking place and, conse-

quently, a reduction in the ratio of deaths to infections. The lower estimated IFR for London

can be attributed to the city’s relatively younger population and lower rates of elderly persons

in care homes when compared with populations in the other regions of England (S4 Fig, top

right panel), indicating that if this selection process does exist it will be more pronounced in

younger populations with a smaller subset of very frail individuals.

We should mention some details that potentially limit the applicability of the methodology

presented here to other countries, especially low- and middle-income countries (LMICs). The

most pertinent detail is one of data quality. Whereas our assumption that COVID-19 deaths

are nearly perfectly reported in England is a plausible one, this is very unlikely to hold for

other countries across the globe [36]. To account for potential under-reporting, we could

include a constant or time-varying reporting ratio to transform reported deaths into ‘likely’

deaths. The direct consequence of using predicted deaths as a model input would be that any

IFR estimates would be very difficult to disentangle from the underlying reporting ratio. The

quality of the seroprevalence data itself is paramount, and the data collection protocol can

have a major influence on the obtained estimates, as evidenced by two concurrent seropreva-

lence studies conducted in Manaus, Brazil. Whereas one study reports a raw seroprevalence of

approximately 40% [37] using the Abbot test, the other reports an antibody positivity of

approximately 13% [38] using the WONDFO SARS-CoV-2 antibody test, with both measured

in May 2020. A significant difference is that the former study used blood donor samples,

whereas the latter relates to household surveys. Another issue that is likely to be relevant to

many LMICs is that the provision of a reliable level of uncertainty around the seroreversion

estimate relies on having several sequential seroprevalence measurements. In countries with a

very limited capacity for conducting serosurveys, we suggest using the posterior distribution

for seroreversion provided here as an informative prior and proceed to estimate infection fatal-

ity ratios and total exposure profiles. However, we should note that the thresholds of seroposi-

tive and seronegative assignment vary across assays, hindering the applicability of estimates

resulting from data generated with a specific assay to other settings where different assays

might be used.

In conclusion, we propose a new method to forecast the total exposure to SARS-CoV-2

from seroprevalence data that accounts for seroreversion and uses daily mortality and test pos-

itivity ratio data to aid inference. The associated estimate of time to seroreversion of 176 days

(95% CrI: 159–197 days) lies within realistic limits derived from independent sources

[13,14,23,29,30]. The total exposure in regions of England estimated using this method is more

than double the latest seroprevalence measurements. Implications for the impact of vaccina-

tion and other future interventions depend on the, as yet uncharacterized, relationships
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between exposure to the virus, seroprevalence, and population immunity. To assess vaccina-

tion population impact, one can consider the population at risk to be those individuals who

are seronegative, those with no past exposure (confirmed or predicted), or those with no T-cell

reactivity. Here, we offer an extra dimension to the evidence base for immediate decision-mak-

ing, as well as anticipating future information from the immunological research community

about the relationship between SARS-CoV-2 exposure and immunity.

Materials and methods

Data sources

We used publicly available epidemiological data to infer the underlying exposure to SARS--

CoV-2 over time, as described below:

Regional daily deaths. The observed daily mortality data for each of seven English regions

(London, North West, North East (contains both the North East and Yorkshire and the Hum-

ber regions), South East, South West, Midlands (East and West Midlands combined) and East

of England), from January 1 2020 to November 11 2020, relate to daily deaths with COVID-19

on the death certificate by date of death. This information was extracted from the UK govern-

ment’s official COVID-9 online dashboard [35] on March 8, 2021. The age dependent regional

death rate data used to compare spring and winter 2020 waves was extracted from the same

source.

Regional adjusted seroprevalence. Region-specific SARS-CoV-2 antibody seropreva-

lence measurements, adjusted for the sensitivity and specificity (82.5% and 99.1%, respectively)

of the Euroimmun antibody test, were retrieved from the national COVID-19 surveillance

reports produced by Public Health England [16].

Regional test-positivity ratios. Time series of region-specific PCR test-positivity ratios

were downloaded from the UK government’s official dashboard [35] on May 16, 2021

Regional population age structure and non-COVID epidemiological indices. Region-

specific population structures were obtained from the UK Office for National Statistics 2018

population survey [39]. Other demographic and epidemiological indicators such as number of

care home beds and incidence of diabetes, e.g., were extracted from the PHE online database

[40], using the search terms: “care home”; “diabetes”; “pulmonary disease”; “heart disease”.

Mechanistic model

We developed a mechanistic mathematical model that relates reported daily deaths from

COVID-19 to seropositive status by assuming all COVID-19 deaths are reported and estimat-

ing an IFR that is congruent with the observed seroprevalence data. For each region,

i = 1,. . .,7, corresponding to London, North West, North East, South East, South West, Mid-

lands and East of England respectively; we denote the IFR at time t by αi(t) and the number of

daily deaths by mi(t). While we formulate the model in terms of a general, time-dependent

IFR, we assume its default shape to be time invariant and later allow IFR to vary with the stage

of the epidemic.

Using the diagram in Fig 1 as a reference and given a number of observed deaths at time t,
mi(t), we can expect a number of infections 1

aiðt� d�Þ
mi t � d�ð Þ to have occurred d� days before.

Of these infected individuals, mi(t) will eventually die, while the remaining
1� aiðtÞ
aiðtÞ

mi tð Þ will

seroconvert from seronegative to seropositive. This assumes that seroconversion occurs, on

average, with the same delay from the moment of infection as death.
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Assuming that seropositive individuals convert to seronegative (serorevert) at a rate β, the

rate of change in the number of seropositive individuals in region i, Xi(t) is given by:

dXiðtÞ
dt
¼

1 � aiðtÞ
aiðtÞ

mi tð Þ � bXi tð Þ ð1Þ

Solving Eq (1), subject to the initial condition Xi(t0) = 0, where t is time since January 1,

2020, gives:

Xi tð Þ ¼ e� bt
R t
t0
ebw
ð1 � aiðwÞÞ
aiðwÞÞ

miðwÞdw ð2Þ

Discretizing Eq (2) with daily intervals (Δw = 1) gives:

Xi tð Þ ¼ e� bt
Pt

w¼t0

ð1 � aiðwÞÞ
aiðwÞ

ebwmiðwÞ
� �

ð3Þ

The model-predicted proportion of seropositive individuals in each population, xi(t), is cal-

culated by dividing Xi(t) (Eq (3)) by the respective region population size at time t,
Pi �

Pt
w¼t0

miðwÞ, where Pi is the reported population in region i before the COVID-19 out-

break [39]:

xi tð Þ ¼ e� bt½Pi �
Pt

w¼t0
miðwÞ�

� 1Pt
w¼t0

ð1 � aiðwÞÞ
aiðwÞ

ebwmiðwÞ
� �

ð4Þ

This is relatively straightforward when the serology data are already adjusted for test sensi-

tivity and specificity, as is the case with the datasets used here. For unadjusted antibody test

results, the proportion of the population that would test positive given the specificity (ksp) and

sensitivity (kse) can be calculated as:

ziðtÞ ¼ ksexiðtÞ þ ð1 � kspÞð1 � xiðtÞÞ:

As mentioned earlier, the method that we present here allows for the IFR, αi(t), to be (a)

constant or (b) vary over time with the stage of the epidemic:

a. For a constant IFR, we have:

aiðtÞ ¼ gi

b. For a time-varying IFR, we first define the epidemic stage, ES(t), as the normalized cumula-

tive positivity ratio:

ESi tð Þ ¼
ð
Pt

w¼t0
yiðw � dpÞÞ

ð
PT

w¼t0
yiðw � dpÞÞ

ð5Þ

where yi(t) is the confirmed case positivity ratio at time t in the proportion of individuals

testing positive for the virus, δp is the average time between testing positive and seroconver-

sion (see Fig 1) and T is the total number of days from t0 until the last date of positivity

data. In this work, we fixed δp = 7 days (see Fig 1 and the main text). We assume that the

IFR is a linear function of the normalized cumulative positivity ratio as follows:

aiðtÞ ¼ gið1 � ZiESiðtÞÞ ð6Þ

where ηi2[0,1] and γi2[0,1] are coefficients to be estimated. At the start of the epidemic,
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when the epidemic stage is 0 (see Eq (5)), then αi(t) = γi, whereas when the epidemic stage

is 1, αi(t) = γi−ηi×γi�γi.
In Eq (5), yi(t) is taken from the daily regional positivity ratios provided in the UK govern-

ment’s data dashboard [35].

Once the model is parameterized, we can estimate the total proportion of the population

that has been exposed, Ei, using the following formula:

Ei t � d�ð Þ ¼ ½Pi �
Pt

w¼t0
mðwÞ�� 1Pt

w¼t0

1 � aiðwÞ
aiðwÞ

mi wð Þ ð7Þ

where δ� is fixed to 21 days (Fig 1).

Observation model for statistical estimation of model parameters

We developed a Bayesian model to estimate the model parameters θ and present the posterior

predictive distribution of the seroprevalence (Eq (4)) and exposure (Eq (7)) over time. The

results are presented as the median of the posterior with the associated 95% credible intervals

(CrI). We assumed a negative binomial distribution [41] for the observed number of seroposi-

tive individuals in region i over time, Xobs
i ðtÞ:

Xobs
i ðtÞ ¼ xobsi ðtÞ � ðPi �

Pt
w¼t0

miðwÞÞ ð8Þ

where xobsi ðtÞ is the observed seroprevalence in region i over time. Then, the observational

model is specified for region i with observations at times ti1; ti2 . . . ; tini :

Xobs
i ðtÞ � NBðXiðtÞ; �Þ; t ¼ ti1; ti2 . . . ; tini ð9Þ

where NB(Xi(t),ϕ) is a negative binomial distribution, with mean Xi(t)–given by Eq (3)–and ϕ
is an overdispersion parameter. We set ϕ to 100 to capture additional uncertainty in data

points that would not be captured with a Poisson or binomial distribution. We assume unin-

formative beta priors for each of the parameters, according to the assumption made for how

the IFR is allowed to vary over time:

a. For a constant IFR, we have y ¼ ffgig
i¼7

i¼1
; bg and take priors:

gi � Betað1; 1Þ; b � Betað1; 1Þ ð10Þ

b. For a time-varying IFR, we have y ¼ ffgig
i¼7

i¼1
; fZig

i¼7

i¼1
; bg and take priors:

gi � Betað1; 1Þ; Zi � Betað1; 1Þ; b � Betað1; 1Þ ð11Þ

We use Bayesian inference (Hamiltonian Monte Carlo algorithm) in RStan [42] to fit the

model to seroprevalence data by running four chains of 20,000 iterations each (burn-in of

10,000). We use 2.5% and 97.5% percentiles from the resulting posterior distributions for 95%

CrI for the parameters. The Gelman–Rubin diagnostics (R̂) given in S1 and S2 Tables show

values of 1, indicating that there is no evidence of non-convergence for either model formula-

tion. Furthermore, the effective sample sizes (neff) in S1 and S2 Tables are all more than 10,000,

meaning that there are many samples in the posterior that can be considered independent

draws.
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Sensitivity analyses

The results in the main text explore two model formulations: one that assumes IFR is constant

over time and another that relaxes that assumption. These models share several underlying

assumptions, particularly relating to time delays between events in the life history of infection,

prior distributions, and data sources. To ascertain the robustness of our main results, we esti-

mated the relevant parameters using a series of different models as listed in S4 Table. Essen-

tially, we explore how our estimates change as we:

• assume different values for the delay between testing PCR positive and death, δp, and for the

delay between infection and death, δ�.

• use a different prior distribution for seroreversion rate.

• use a different set of mortality data. These are sourced from the same official database [35]

but obey different criteria. The main results were generated using a dataset of death certifi-

cates with COVID-19 named as the cause of death, but we also apply our method to the

‘Deaths within 28 days of a positive test’ dataset.

The parameter estimates for the different models considered are summarized in S5 Table.

Note that parameter δp does not appear in Eq (1) in the Materials and Methods section, thus, esti-

mates using the constant IFR model are only sensitive to changes in δ� (S8 Fig). Interestingly, the

time-varying IFR model is relatively insensitive to δp (S16 Fig) since changes in δp have a limited

impact on the shape of the Epidemic Stage (ES) curve and consequently IFR over time (S17 Fig).

Relationship between demographic and epidemiological factors and

estimated regional IFRs

Our estimates for regional IFRs were noticeably lower for London and higher for the North East,

South East and South West. Since treatment outcomes are identical across regions [34], we explored

which demographic and epidemiological factors could help interpret our results (S6 Table). Our

objective here was not to build the most accurate predictive regression model (as this is beyond the

scope of this paper), but rather to explore a multitude of covariates which might display a statisti-

cally significant correlation with the obtained IFR trends. We thus built several linear regression

models with a single covariate using regional estimates (Model 2 in S4 Table) for IFR as the depen-

dent variable, which are summarized in S6 Table. The independent variables explored were:

• Proportion of the population over a certain age breakpoint (40 to 75 years of age in 5-year

intervals). We only show the results for the two most significant age breakpoints, 45 and 60.

• Deaths in the community relative to deaths in care homes.

• Care home beds per 100 people over 75 years of age.

• Diabetes prevalence.

• Chronic liver disease mortality rate (per 100,000).

• Chronic obstructive pulmonary disease mortality rate (per 100,000).

Supporting information

S1 Fig. Marginal posterior distributions for parameters in the constant IFR model. The

vertical lines show the median distributions, and the grey shaded regions show the 95% CrI.

(TIFF)
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S2 Fig. Probability of seropositivity persistence after seroconversion. The green curve show

the probability curve from [26] and the orange curve gives the median probability curve for

Models 1, 2 and 3 in our study within the corresponding 95% credible intervals defined by the

shaded area. See S4 Table for details on each model’s assumptions.

(TIFF)

S3 Fig. Cumulative deaths in the seven regions of England.

(TIFF)

S4 Fig. Relationship between demographic and epidemiological factors and estimated

regional IFRs.

(TIFF)

S5 Fig. Relevant epidemiological metrics in England over the course of the pandemic. (A)

Daily COVID-19 cases and tests in England from Feb 5th 2020 to Nov 7th, 2020, alongside the

testing effort corrected case curve. Case correction was done by taking the number of daily

tests done on May 1st and extrapolating the number of daily cases that would be reported if

the testing effort had been constant over time, i.e., how many daily cases would be reported if

20,000 tests has been done every day. (B) Comparison of testing effort corrected case incidence

(blue), test positivity ratio (yellow) and daily deaths per 2 million people (purple). (C) Daily

reported incidence of cases, deaths and people tested up to July 1st, 2020. Note the different

scale for mortality data used on panels (B) and (C). In panel (C) we present the absolute num-

ber of deaths reported per day as a means of comparing its scale to the reported case data. In

panel (B) we modify the mortality incidence scale to more easily compared its shape over time

against that of the daily corrected cases and test positivity ratio curves. (D) Normalized case

fatality ratio (CFR), hospital fatality ratio (HFR) and PCR test positivity ratio (yellow, blue,

and green lines, respectively). We assumed fixed time lags of δp = 14 days between PCR testing

and death and δh = 12 days between PCR testing and hospitalization.

(TIFF)

S6 Fig. Marginal posterior distributions for parameters in the time-varying IFR model.

The vertical lines show the median distributions, and the grey shaded regions show the 95%

CrI.

(TIFF)

S7 Fig. Posterior predictive distribution of the time-varying IFR. The solid lines show the

medians and the shaded regions show the 95% CrI.

(TIFF)

S8 Fig. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 November

2020 for the seven regions in England for the constant IFR model, given δp as 2 weeks and

δ� as 2, 3 and 4 weeks. The orange solid circles and black error bars in each regional panel rep-

resent the observed seroprevalence data and their credible intervals after adjusting for the sen-

sitivity and specificity of the antibody test. The green, red and purple lines show the median

constant IFR model predictions for exposure assuming δ� as 2, 3 and 4 weeks, respectively,

while the shaded regions correspond to the 95% CrI. The green lines show the median con-

stant IFR model predictions for seroprevalence while the shaded regions correspond to the

95% CrI. See S4 Table for details on each model’s assumptions.

(TIFF)

S9 Fig. Comparison of time course of the SARS-CoV-2 pandemic up to 7 November 2020

for the seven regions in England for the time-varying IFR model, given δp as 2 weeks and
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δ� as 2, 3 and 4 weeks. The orange solid circles and black error bars in each regional panel rep-

resent the observed seroprevalence data and their credible intervals after adjusting for the sen-

sitivity and specificity of the antibody test. The lines in red, green, and blue tones show the

median constant IFR model predictions for exposure assuming δ� as 2, 3 and 4 weeks, respec-

tively, while the shaded regions correspond to their 95% CrI. The purple lines show the median

constant IFR model predictions for seroprevalence while the shaded regions correspond to the

95% CrI. See S4 Table for details on each model’s assumptions.

(TIFF)

S10 Fig. Daily deaths with COVID-19 on the death certificate (“certificate death”) and

deaths within 28 days of positive test by date of death (“28 days positive death”).

(TIFF)

S11 Fig. Comparison of marginal posterior distributions for estimated parameters in the

constant IFR model. The red regions show the posterior distributions for parameters using

deaths within 28 days of positive test as model inputs while the blue regions show the posterior

distributions of parameters using death certificate data as model inputs. See S4 Table for details

on each model’s assumptions.

(TIFF)

S12 Fig. Comparison of marginal posterior distributions for estimated parameters in the

time varying IFR model. The red regions show the posterior distributions for parameters

using deaths within 28 days of positive test as model inputs while the blue regions show the

posterior distributions of parameters using death certificate data as model inputs. See S4 Table

for details on each model’s assumptions.

(TIFF)

S13 Fig. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 November

2020 for the seven regions in England for the constant IFR model between using death

within 28 days of a positive COVID-19 test and death certificate data as model inputs. The

solid orange circles and black error bars in each regional panel represent the observed sero-

prevalence data and their credible intervals after adjusting for the sensitivity and specificity of

the antibody test. The green and pink lines show the median constant IFR model predictions

for exposure using death within 28 days of a positive test and death certificate data as model

inputs, respectively, while the shaded regions correspond to the 95% CrIs. The purple and

orange lines show the median constant IFR model predictions for seroprevalence using death

within 28 days of a positive and death certificate data as model inputs, respectively, while the

shaded regions correspond to the 95% CrIs. See S4 Table for details on each model’s assump-

tions.

(TIFF)

S14 Fig. Comparison of the time course of the SARS-CoV-2 pandemic up to 7 November

2020 for the seven regions in England for the time-varying IFR model between using death

within 28 days of a positive COVID-19 test and death certificate data as model inputs. The

solid orange circles and black error bars in each regional panel represent the observed sero-

prevalence data and their credible intervals after adjusting for the sensitivity and specificity of

the antibody test. The green and pink lines show the median constant IFR model predictions

for exposure using death within 28 days of a positive test and death certificate data as model

inputs, respectively, while the shaded regions correspond to the 95% CrIs. The purple and

orange lines show the median constant IFR model predictions for seroprevalence using death

within 28 days of a positive and death certificate data as model inputs, respectively, while the
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shaded regions correspond to the 95% CrIs. See S4 Table for details on each model’s assump-

tions.

(TIFF)

S15 Fig. Ratio between relative rates of deaths of people who died within 28 days of their

first positive test (per 100,000 population) in the winter wave of 2020 vs. the 2020 spring

wave. A ratio greater than 1 means that the age specific rate of death was greater in the winter

wave than in the preceding spring wave, and vice-versa.

(TIFF)

S16 Fig. Comparison of parameter posterior distributions for the time-varying IFR model

using δp as 7 days (Models 4, 5 and 6), 14 days (Models 7 and 8) and 21 days (Model 9). See

S4 Table for details on each model’s assumptions.

(TIFF)

S17 Fig. Comparison of IFR estimates for seven regions in England for time-varying IFR

model using δp as 7 days (Models 4, 5 and 6; see S4 Table for definitions of the different

Models), 14 days (Models 7 and 8) and 21 days (Model 9). See S4 Table for details on each

model’s assumptions.

(TIFF)

S1 Table. The effective sample size (neff) and the Gelman-–Rubin diagnostic (R̂) for the

eight model parameters in the default model (constant infection fatality ratio, IFR).

(DOCX)

S2 Table. The effective sample size (neff) and the Gelman-–Rubin diagnostic (R̂) for the 15

model parameters in the time-varying IFR model.

(DOCX)

S3 Table. Marginal median parameter estimates and 95% CrI for the time-varying IFR

model.

(DOCX)

S4 Table. Summary of sensitivity analyses performed for δp, δ�, death inputs and β prior

for both constant IFR and time varying IFR models. Figs 2 and 3 of the main text were gen-

erated using Models 2 and 7 respectively.

(DOCX)

S5 Table. Summary of parameter estimates (median and 95% credible intervals) for all

models explored (as defined in S4 Table).

(DOCX)

S6 Table Linear regression models exploring relationships between demographic and epi-

demiological factors and estimated regional IFRs Each row refers to a unique linear regres-

sion model and indicates which covariate was used, alongside the resulting slope and

intercept estimates (with accompanying 95% CIs) and p-value.

(DOCX)
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