

Pneumocystis Mating-Type Locus and Sexual Cycle during Infection

Philippe M. Hauser^a

^aInstitute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland

SUMMARY	1
INTRODUCTION	1
PNEUMOCYSTIS SEX-RELATED GENES	2
THE MATING-TYPE LOCUS OF PNEUMOCYSTIS	2
MODE OF SEXUAL REPRODUCTION OF PNEUMOCYSTIS SPECIES	8
MECHANISMS INVOLVED IN THE PRIMARY HOMOTHALLISM OF PNEUMOCYSTIS	
SPECIES	9
OCCURRENCE OF PNEUMOCYSTIS SEXUAL CYCLE	.11
OBLIGATE PNEUMOCYSTIS SEXUALITY WITHIN HOST LUNGS DURING PNEUMONIA	.11
POSSIBLE EVOLUTION OF PNEUMOCYSTIS SEXUALITY	
CONCLUSIONS	
ACKNOWLEDGMENTS	
REFERENCES	
AUTHOR BIOS	.15

SUMMARY Pneumocystis species colonize mammalian lungs and cause deadly pneumonia if the immune system of the host weakens. Each species presents a specificity for a single mammalian host species. Pneumocystis jirovecii infects humans and provokes pneumonia, which is among the most frequent invasive fungal infections. The lack of in vitro culture methods for these fungi complicates their study. Recently, high-throughput sequencing technologies followed by comparative genomics have allowed a better understanding of the mechanisms involved in the sexuality of Pneumocystis organisms. The structure of their mating-type locus corresponding to a fusion of two loci, Plus and Minus, and the concomitant expression of the three mating-type genes revealed that their mode of sexual reproduction is primarily homothallism. This mode is favored by microbial pathogens and involves a single self-compatible mating type that can enter into the sexual cycle on its own. Pneumocystis sexuality is obligatory within the host's lungs during pneumonia in adults, primary infection in children, and possibly colonization. This sexuality participates in cell proliferation, airborne transmission to new hosts, and probably antigenic variation, processes that are crucial to ensure the survival of the fungus. Thus, sexuality is central in the Pneumocystis life cycle. The obligate biotrophic parasitism with obligate sexuality of Pneumocystis is unique among fungi pathogenic to humans. Pneumocystis organisms are similar to the plant fungal obligate biotrophs that complete their entire life cycle within their hosts, including sex, and that are also difficult to grow in vitro.

KEYWORDS obligate parasite, obligate sexuality, *Pneumocystis*, Taphrinomycotina, opportunistic fungi, sexuality

INTRODUCTION

P neumocystis species are fungi that colonize the lungs of mammals (1). They belong to the subphylum Taphrinomycotina of the ascomycetes, which also includes plant pathogens and commensals. Each *Pneumocystis* species presents specificity for one mammalian host species, although the strictness of this characteristic remains to be understood (2, 3). Should the host's immune system weaken, *Pneumocystis* organisms turn into pathogens that

Citation Hauser PM. 2021. *Pneumocystis* mating-type locus and sexual cycle during infection. Microbiol Mol Biol Rev 85:e00009-21. https://doi.org/10.1128/MMBR.00009-21.

Copyright © 2021 American Society for Microbiology. All Rights Reserved.

Address correspondence to Philippe.Hauser@chuv.ch.

This review is dedicated to my dear wife Brigitte, who provides constant support throughout the years.

Published 16 June 2021

cause deadly pneumonia. That caused by the species infecting humans, *Pneumocystis jirovecii*, is among the most frequent invasive fungal infections (4), including in HIV-negative children (5). The lack of a long-term *in vitro* culture methods for these fungi complicates their study. Infections of rats and mice by *Pneumocystis carinii* and *Pneumocystis murina*, respectively, are used as models of the infection in humans. *Pneumocystis* organisms proliferate extracellularly within the lumen of the host's lungs' alveoli. They are biotrophic parasites that acquire nutrients from living host cells (6, 7). Whole-genome sequencing followed by comparative genomics showed that *Pneumocystis* species miss enzymes to carry out several biosynthetic pathways, revealing that they are obligate parasites scavenging essential compounds from their host (8–11).

Researchers believed first that the life cycle of *Pneumocystis* organisms might be devoid of a sexual phase. Nevertheless, microscopic observation of synaptonemal complexes within *P. carinii* cells revealed that meiosis occurs (12, 13). Indeed, these structures are involved in the alignment of the homologous chromosomes and mediate crossover between them. Characterization of several genes involved in sexuality subsequently confirmed the occurrence of sex during infection (14–18). Accordingly, the life cycles proposed for *Pneumocystis* organisms typically include both asexual and sexual phases (19–21); the most updated one is shown in Fig. 1 (22). The haploid trophic forms would multiply asexually by binary fission and possibly by endogeny and would be involved in mating, which initiates the sexual phase. The latter culminates by the production of asci containing each of eight haploid ascospores that ensure dissemination by the air route and participate into proliferation within the host lungs. Thus, sexuality proved to be central in the *Pneumocystis* life cycle. Other features of the cell cycle shown in Fig. 1 are commented on the following sections.

Early studies have assessed the occurrence of sex during the *Pneumocystis* cell cycle, but the process remained obscure. Recently, the mechanisms of *Pneumocystis* sexuality began to be unraveled thanks to whole-genome analyses, transcriptomics, and comparative genomics. In this article, I summarize the present knowledge of *Pneumocystis* sexuality and point to open questions.

PNEUMOCYSTIS SEX-RELATED GENES

Eighty-three putative sex-related genes have been identified in the genome of each Pneumocystis species (14-18, 23-25) (Table 1). Their detection mainly relies on their homology with genes involved in the well-characterized sexuality of the close relative Schizosaccharomyces pombe (26). These genes are potentially involved in all processes of fungal sexuality: i.e., mating signaling, cell-cell fusion, karyogamy, meiosis, and mating-type (MAT) locus silencing and switching (24, 25). However, extensive rewiring of the MAT pathways is common among fungi (27, 28), and therefore, the presence or absence of specific orthologs might be insignificant. For example, the gene mei3, which is required for entry into meiosis in S. pombe, is absent in Pneumocystis, which implies that the latter species uses another way to carry out this step. Nevertheless, the set of sex-related genes present in the Pneumocystis genome is consistent with the occurrence of the processes that are integral to sexuality (i.e., karyogamy and meiosis), whereas other sexual processes may not take place. Indeed, the genes tht1 and dmc1 have conserved function among fungi (16, 29) and thus are signatures of karyogamy and meiosis, respectively (Table 1). The structure of the Pneumocystis MAT locus, which is discussed in the following section, provides insights into this issue.

THE MATING-TYPE LOCUS OF PNEUMOCYSTIS

The 83 *Pneumocystis* sex-related genes include three putative *MAT* genes, the genes that govern fungal sexuality by controlling cellular mating-type identity and that are central to this process (Table 1). Taking *S. pombe* sexuality as a model (26) (Fig. 2A), the *Pneumocystis matMc* gene encodes the transcription factor with a high-mobility group DNA-binding domain responsible for the differentiation into the cellular mating type Minus (M). The *Pneumocystis matPi* gene encodes the transcription factor with a homeobox DNA-binding domain that functions with the cofactor *matMi*, which is the third

FIG 1 (A) Hypothetical life cycle of *Pneumocystis*. Violet dots represent nuclei. The question marks indicate events not supported or poorly supported by the data. Elongated ascospores that present a condensed cytoplasm are shown as blue spindle-shaped cells. No differences between the different *Pneumocystis* species were reported. (B) Structures like parentheses on *P. jirovecii* asci. The arrow points to this structure of a single ascus. It may correspond to the thickened ring observed in ascomycetes, in the center of which a rent is formed, allowing dehiscence (i.e., the release of the ascospores). Grocott's methenamine silver staining is shown. (Panels A and B are redrawn and reproduced from Fig. 1 and 2, respectively, of reference 22 under the terms of the Creative Commons Public Domain declaration [https://creativecommons.org/publicdomain/zero/1.0].)

Pneumocystis MAT gene identified. In *S. pombe, matPi* with *matMi* activates *mei3*, which derepresses meiosis in the zygote (Fig. 2A). In the absence of *mei3* in *Pneumocystis* species, the function of *matPi* with *matMi* remains to be understood. Neither an ortholog to the *S. pombe* transcription factor *matPc* responsible for differentiation into the mating type Plus (P) was identified in *Pneumocystis*, nor were any other types of *MAT* transcription factors (24, 30). Importantly, the identity of *Pneumocystis matMc* was confirmed experimentally by functional complementation restoring meiosis and sporulation of the *S. pombe matMc* mutant (30). These observations suggest that the three *MAT* genes identified are sufficient to trigger sexual mating and meiosis in *Pneumocystis* species, but that the mechanisms involved differ from those in *S. pombe*.

The three *MAT* genes identified are close to each other in the genome of each *Pneumocystis* species; they constitute the *MAT* locus (Fig. 3). An intergenic region of 100 to 300 bp separates *matMc* and *matMi* genes, which are divergently transcribed. The third *MAT* gene, *matPi*, is located approximately 8 kbp away, on the same strand as *matMc*. The upstream region of each *MAT* gene harbors a potential transcription promoter (30). The shared promoter region of *matMc* and *matMi* suggests a common regulation ensuring a tightly coordinated expression. Such an arrangement is a

	Gene name	Gene ID			S. pombe putative ortholog	e ortholog	
Role	(alternate)	P. jirovecii	P. carinii	P. murina	Gene ID	Function	Reference(s)
Mating-type locus	matMc matPi matMi	T551_02162 T551_02159 Supercontig 9: 23185-23497+	T552_02831 T552_02829 Supercontig 13: 81309-81521+ (24) or 81264- 81476+ (25)	PNEG_02275 PNEG_02373 Supercontig 13: 81097–81427+	SPBC1711.02 SPMTR.02 SPBC1711.01c	Expression of M-specific genes Expression of <i>mei3</i> , required for meiosis Expression of <i>mei3</i> , required for meiosis	22, 24, 25 24, 25 24, 25
Signal transmission	ste 12 (fab1) mam1 mam2 map3 (ste3)	T551_03275 T551_03503 T551_00015 T551_00015	T552_00248 T552_00261 T552_02343 T552_00176	PNEG_03088 PNEG_03100 PNEG_03148 PNEG_03013	SPBC3E7.01 SPBC25B2.02c SPAC11H11.04 SPAC3F10.10c	Secretion of pheromones Export of M-pheromone Response to P-pheromone Response to M-pheromone	24 24 23–25 15, 23–25
Signal transduction	ste11 cdc42 byr1	T551_02014 T551_02552 T551_02571	T552_02504 T552_03168 T552_03147	PNEG_02134 PNEG_01785 PNEG_01806	SPBC32C12.02 SPAC110.03 SPAC1D4.13	Expression of <i>MAT</i> genes Development of cell polarity Regulation of sexual differentiation and	14, 23, 24 24, 25 24
	byr2 (ste8) gap1	T551_00958 T551_02909	T552_01502 T552_04103	PNEG_00717 PNEG_00245	SPBC1D7.05 SPBC646.12c	conjugation Regulation of conjugation Regulation of cell morphogenesis during	24, 25 24
	gpa1 ral2 ras1 spk1 (ste20) spk1 (fus3) tim10 git1 (ste18) git5 (gpb1) ste4 ste6 rgs1 scd1 scd1 scd2 scd2	T551_00018 T551_01782 T551_03115 T551_03115 T551_02467 T551_02467 T551_00990 T551_00990 T551_01873 T551_01456 T551_01456 T551_01998 T551_01998	T552_02341 T552_03378 T552_03578 T552_03023 T552_03023 T552_01369 T552_01369 T552_01691 T552_01691 T552_03331 T552_03331 T552_01981	PNEG_03151 PNEG_03376 PNEG_03376 PNEG_03507 PNEG_03507 PNEG_03507 PNEG_0015 PNEG_01534 PNEG_01634 PNEG_01634 PNEG_01634 PNEG_033560 PNEG_01914	SPBC24C6.06 SPBC21.05c SPAC17H9.09c SPBC1604.14c SPAC31G5.09c SPAC31G5.09c SPAC215.04 SPBC215.04 SPBC215.04 SPAC1565.04c SPAC1565.04c SPAC1565.04c SPAC16E8.09 SPAC16E8.09 SPAC1718.07c SPBC1718.07c	Regulation of pheromone signaling Regulation of cheromone signaling Regulation of cheromone signaling Regulation of cell shape Regulation of cell shape Regulation of cell shape	24 24 24, 25 23–25 25 25 25 24, 25 24, 25 24, 25 24, 25
Signal regulation	map1 bob1 (pfd5) cdc2	T551_01436 T551_01168 T551_01094	T552_02410 T552_02444 T552_00498	PNEG_00576 PNEG_02075 PNEG_00359	SPAC11E3.06 SPBC215.02 SPBC11B10.09	Expression of P-specific genes Regulation of sexual differentiation Negative regulation of mitotic to meiotic cycle	24 24 24
Mating process	cwp1 (ram2) kex1 kex2 dpp2 iph1 rce1 ste24	T551_01863 T551_02518 T551_03487 T551_03591 T551_03540 T551_03640 T551_02384 T551_02359	T552_01846 T552_01067 T552_04260 Not detected T552_02967 T552_02990 T552_04168	PNEG_02057 PNEG_01420 PNEG_00129 Not detected PNEG_03454 PNEG_03476 PNEG_03341	SPAPB1A10.04c SPBC16G5.09 SPAC23E12.09c SPACUNK4.08 SPACUNK4.12c SPAC1687.02 SPAC3H1.05	Sexual pheromone maturation Sexual pheromone maturation Sexual pheromone maturation Sexual pheromone maturation Sexual pheromone maturation Sexual pheromone maturation	25 25 25 25 25 25

September 2021 Volume 85 Issue 3 e00009-21

Gene D S. pombe putative of 1551_03704 S. pombe putative of 1552_012807 S. pombe putative of 1552_012807								
defense P. Jiroveci P. carnii P. murina Gene ID opn (carn) 1551_02704 1552_0321 PNEG_01739 SPACT/56.04c opn (carn) 1551_03603 1552_00261 PNEG_01739 SPACT/56.04c opn (carn) 1551_03603 1552_00261 PNEG_00349 SPACT/56.04c opn (carn) 1551_03303 1552_00269 PNEG_00349 SPACT/56.04c off 1551_03303 1552_03304 5PACT066.012 SPACT066.012 off 1551_03305 1552_03304 1552_03304 SPACT066.012 off 1551_03305 1552_03304 1552_03304 SPACT066.012 off 1551_0306 1552_03304 1552_03304 SPACT066.012 off 1551_0306 1552_03344 PNEG_00567 SPACT064.14c off 1551_03062 1552_03344 PNEG_01339 SPACT04.13c off 1551_03063 1552_03344 PNEG_01339 SPACT04.13c off 1551_03063 1552_03344 PNEG_01339 SPACT04.14c <td< th=""><th></th><th>Gene name</th><th>Gene ID</th><th></th><th></th><th>S. pombe putative</th><th>e ortholog</th><th></th></td<>		Gene name	Gene ID			S. pombe putative	e ortholog	
cpb (am) T551_02704 T552_03212 PNEG_01739 SPACT76604c mand (are 4) T551_02303 T552_0026 PNEG_01304 SPACT766.04c mand (are 4) T551_03308 T552_00269 PNEG_03203 SPACT064.02c fus1 T551_03308 T552_02309 PNEG_03023 SPACT064.02c mand (are 4) T551_03308 T552_02302 PNEG_03023 SPACT064.02c mai1 T551_03308 T552_02302 PNEG_03032 SPACT064.01c mai1 T551_03056 T552_03361 PNEG_03043 SPACC66.012 bip (daz3) T551_03067 T552_03381 PNEG_03414 SPACC66.115 bip (daz3) T551_03070 T552_03381 PNEG_01234 SPACC86.115 bip (daz3) T551_03070 T552_03381 PNEG_01234 SPAC186.115 bip (daz3) T551_03070 T552_03381 PNEG_01329 SPAC186.115 bip (daz3) T551_03070 T552_03341 PNEG_01329 SPAC186.115 bip (daz3) T551_03070 T552_02324 PNEG_01329 S	Role	(alternate)	P. jirovecii	P. carinii	P. murina	Gene ID	Function	Reference(s)
mand (serid) 1551_02887 1552_01163 PNEG_00324 SPAC106612c pmd1 1551_03248 1552_00261 PNEG_03100 SPAC06402c frii 1551_0346 1552_00261 PNEG_0310 SPAC06402c frii 1551_0346 1552_00261 PNEG_0323 SPAC06402c frii 1551_03067 1552_0017 PNEG_0325 SPAC066303 frii 1551_03067 1552_0316 PNEG_0325 SPAC165(13 bipil (kar2) 1551_00166 1552_0316 PNEG_01239 SPAC166115 bipil (kar2) 1551_00166 1552_0316 PNEG_01239 SPAC1661135 bipil (kar2) 1551_00146 1552_0336 PNEG_01399 SPAC1661135 bipil (kar2) 1551_00146 1552_0336 PNEG_0139 SPAC64136 cad51 (hp51) 1551_00146 1552_0336 PNEG_0139 SPAC64136 cad7 hp21 155_00143 PNEG_0139 SPAC64136 cad7 hp21 155_00244 PNEG_01399 SPAC641316 cad7		cpp1 (ram1)	T551_02704	T552_03212	PNEG_01739	SPAC17G6.04c	Sexual pheromone maturation	25
pmdi T551_03503 T552_00261 PNEG_03100 SPCC663.03 fus1 T551_03460 T552_02249 PNEG_00567 SPA7G5.03 fur1 T551_03460 T552_02393 PNEG_00567 SPA7G5.03 fur1 T551_03047 T552_02393 PNEG_00567 SPA7G5.03 fur1 T551_01305 T552_02382 PNEG_00567 SPACG64.02 fur1 (kar5) T551_01305 T552_03387 PNEG_00567 SPACG64.02 furd3 (hm1) T551_03062 T552_03387 PNEG_01241 SPACG64.14 furd1 (kar2) T551_03062 T552_01433 PNEG_01241 SPACG64.14 furd1 (kar2) T551_03070 T552_032347 PNEG_01241 SPACG64.14 furd1 (kar2) T551_03070 T552_03243 PNEG_01233 SPACG64.14 furd1 (kar2) T551_03070 T552_03243 PNEG_01339 SPACG64.14 furd1 (kar2) T551_03070 T552_03243 PNEG_01339 SPACG64.14 furd1 (kar2) T551_03070 T552_03243 PNEG_01339 SPACG64.14 <		mam4 (ste14)	T551_02897	T552_01163	PNEG_00234	SPAC10F6.12c	Sexual pheromone maturation	25
fusi T551_0340 T552_0209 PNEG_02573 SPAC06402c pmil T551_03460 T552_0219 PNEG_00567 SPAC066912 ph11 T551_0306 T552_03161 PNEG_00567 SPAC066912 ph11 (kar5) T551_03065 T552_03161 PNEG_01219 SPAC65.03 ph11 (kar5) T551_03065 T552_03167 PNEG_01249 SPAC65.03 ph11 (kar5) T551_03065 T552_03167 PNEG_01249 SPAC65.03 ph01 T551_03065 T552_03167 PNEG_01249 SPAC6411.04 md7 T551_03063 T552_03387 PNEG_01249 SPAC6411.03 md7 T551_03024 T552_03387 PNEG_01339 SPAC141.03		pmd1	T551_03503	T552_00261	PNEG_03100	SPCC663.03	Sexual pheromone export	25
min T351_0346 T352_0209 PNEG_0257 SPAC659.12 tht1 (kar5) T551_03308 T552_03361 PNEG_03073 SPAC659.12 tht1 (kar5) T551_03062 T552_03361 PNEG_03073 SPAC650.12 tht1 (kar5) T551_03062 T552_03361 PNEG_03049 SPAC669.12 tht1 (kar5) T551_03062 T552_03361 PNEG_03049 SPAC669.12 tht1 (kar5) T551_03062 T552_0317 PNEG_01313 SPAC6611 tht2 T551_03062 T552_0337 PNEG_01313 SPAC664.13 tht2 T551_03062 T552_0337 PNEG_01313 SPAC641.13 tht2 T551_02082 T552_0337 PNEG_01313 SPAC641.13 tht2 T551_02083 T552_03347 PNEG_01313 SPAC13411.03 tht2 T551_02083 T552_03347 PNEG_01313 SPAC641.103 tht2 T551_02043 T552_03347 PNEG_01313 SPAC1341.103 tht2 T551_02043 T552_03247 PNEG_01313 SPAC141.132 tht	Coll-coll fusion	fuct	T551 02421	ΤΕΕΊ ΛΊΚΑΊ	DNIEC 07572		Cutonlasmic mombrand fusion	VC
mail (mar) 155_10330 155_20341 Nicc.0057 Space htrl (kar5) 1551_03047 155_203361 Nicc.00567 Space htrl (kar5) 1551_03047 1552_03361 Nicc.00567 Space htrl (kar5) 1551_03047 1552_03361 Nicc.00567 Space htrl 1551_0305 1552_03361 1552_03361 Nicc.00567 Space htrl 1551_03062 1552_03361 1552_03361 Nicc.00567 Space htrl 1551_03062 1552_03387 Nicc.00361 Space Space htrl 1551_03162 1552_03387 Nicc.0031 Space Space htrl 1551_00124 1552_03249 Nicc.0031 Space Space http 1551_00124 1552_03249 Nicc.0031 Space Space http 1551_00214 1552_02049 Nicc.0031 Space Space http 1551_00214 1552_02012 1552_020319 Nicc.0031 Spa		nun 1	T551 03460	T557 00000		SPAPTG5 02	Cytoplastiiic membrana fusion	47 7
dml (mar) (cfr1	T551 03208	T557 07/10			Cytoplastiic membrana fusion	17 VC
thrt (kar5) T551_03047 T552_03361 PNEG_0251 SPACI341.14c mal3 (birn1) T551_03065 T552_03345 PNEG_01219 SPACI365.15c bip1 (kar2) T551_03065 T552_03345 PNEG_01340 SPACI365.15c bip1 (kar2) T551_03065 T552_01043 PNEG_01443 SPACBE11.03c dmc1 T551_03070 T552_03377 T552_03377 PNEG_01443 SPACBE11.03c cd51 (hp51) T551_03070 T552_00437 PNEG_01443 SPACBE11.03c cd67 (hnd1) T551_02056 T552_00438 PNEG_01339 SPAC144.13c mc7 (mnd1) T551_02054 T552_00234 PNEG_01339 SPAC13A1.13c mc11 T551_02054 T552_00234 PNEG_01313 SPAC13A1.13c mc7 (mnd1) T551_02054 T552_02324 PNEG_01313 SPAC13A1.13c mc11 T551_02054 T552_02324 PNEG_02319 SPAC13A1.13c mc11 T551_02054 T552_02324 PNEG_02319 SPAC13A1.13c mc11 T551_02054 T552_02324 PNEG			06000-1001	61420-2001				+7
pkl1 (kar3) T551_01305 T552_02382 PNEG_02951 SPAC3A11.14c md3 (bim1) T551_03062 T552_00146 T552_00131 PNEG_01219 SPAC386.15 bip1 (kar2) T551_03062 T552_03136 T552_03136 SPAC341.14c md3 (bim1) T551_03062 T552_01043 PNEG_0143 SPAC384.14c md2 T551_03070 T552_03162 T552_03162 T552_03162 T552_03162 md2 T551_00124 T552_03162 T552_03162 T552_03162 T552_03162 meiz T551_00124 T552_03162 T552_03239 PNEG_01031 SPAC144.13c meiz T551_00124 T552_03234 PNEG_01031 SPAC144.13c meiz T551_00124 T552_03234 PNEG_01031 SPAC144.13c meiz T551_00248 T552_03244 PNEG_01031 SPAC144.13c meiz T551_00248 T552_03244 PNEG_01031 SPAC144.13c meiz T551_00248 T552_03244 PNEG_01031 SPAC141.03c meiz T551_00248	Karyogamy	tht1 (kar5)	T551_03047	T552_03361	PNEG_03392	SPAC13C5.03	Nuclear membrane fusion	25
mail (hmi) T551_00265 T552_0117 PNEG_01219 SPAC18G615 bip (kar2) T551_03062 T552_03346 PNEG_01219 SPAC3A12.15c dmc1 T551_03062 T552_03337 PNEG_0131 SPAC644.14c ad51 (hp51) T551_03070 T552_03337 PNEG_01031 SPAC644.14c ad7 (ad7) T551_03026 T552_03337 PNEG_01031 SPAC70703c ad7 (ad7) T551_03070 T552_03243 PNEG_01031 SPAC70703c ad7 (ad7) T551_02065 T552_0043 PNEG_01031 SPAC70703c ad7 (ad7) T551_02065 T552_03244 PNEG_00790 SPAC17A5.11 meu13 (h0p2) T551_020265 T552_02343 PNEG_01729 SPAC17A5.11 meu13 (h0p2) T551_020264 T552_02344 PNEG_01729 SPAC1A4.14c meu13 (h0p2) T551_020264 T552_02343 PNEG_01729 SPAC1A4.13c meu13 (h0p2) T551_020216 T552_02344 PNEG_01729 SPAC1A4.13c meu13 (h0p2) T551_020216 T552_02344 PNEG_01729)	pkl1 (kar3)	T551 01305	T552 02382	PNEG 02951	SPAC3A11.14c	Nuclear membrane fusion	25
bjt (kar2) T551_03062 T552_03345 PNEG_01345 SPAC23A12.15C dmc1 T551_00146 T552_01043 PNEG_0131 SPAC3A12.15C dmc1 T551_00146 T552_0143 PNEG_0131 SPAC8E11.03C rad51 (hp51) T551_03070 T552_02431 PNEG_01031 SPAC1745.11 rad51 (po11) T551_02965 T552_01429 PNEG_01031 SPAC1745.11 rev12 (po11) T551_02965 T552_02162 PNEG_01031 SPAC1745.11 ncp7 (mnd1) T551_02065 T552_02162 PNEG_01729 SPAC1745.11 ncp7 (mnd1) T551_02065 T552_02162 PNEG_01729 SPAC1745.11 ncp7 (mnd1) T551_02166 T552_02162 PNEG_01729 SPAC1745.11 nce T551_02166 T552_02162 PNEG_01729 SPAC1745.11 ncp7 (mnd1) T551_02166 T552_02162 PNEG_0114 SPAC1745.11 nce T551_02166 T552_02162 PNEG_0114 SPAC1745.11 nce T551_02166 T552_02162 PNEG_0114 SPAC134.116		mal3 (bim 1)	T551_00265	T552_00117	PNEG_01219	SPAC18G6.15	Nuclear membrane fusion	25
dmc1 T551_00146 T552_01043 PNEG_0143 SPAC8E11.03c rad51 (hp51) T551_03070 T552_03387 PNEG_01031 SPAC644.14c mei2 T551_03072 T552_00439 PNEG_01031 SPAC17A5.11 rad1 (pat1) T551_00286 T552_00439 PNEG_01031 SPAC17A5.11 srv1 (ste9) T551_00246 T552_00439 PNEG_01031 SPAC17A5.11 mcp7 (mnd1) T551_02438 T552_00332 PNEG_01729 SPAC17A5.11 mcp7 (mnd1) T551_02448 T552_02324 PNEG_01729 SPAC17A5.11 mcp7 (mnd1) T551_02448 T552_02404 PNEG_01729 SPAC17A5.11 mcp7 (mnd1) T551_02448 T552_02404 PNEG_01729 SPAC17A5.11 mcp7 (mnd1) T551_02448 T552_02404 PNEG_01729 SPAC17A5.11 mcp7 (mnd1) T551_02438 T552_02404 PNEG_01729 SPAC144.13C mcp1 (mr1) T551_02438 PNEG_01729 SPAC144.13C SPAC17A10.23 mcp2 (mp1 T551_02448 T552_02404 PNEG_01020		bip1 (kar2)	T551_03062	T552_03346	PNEG_03406	SPAC23A12.15c	Nuclear membrane fusion	25
ndia: (hp51) 753_1_00170 753_1_00120 753_1_00120 753_1_00121 754_04114. neiz (sre9) 753_1_00124 753_2_00483 PNEG_01031 5PAG(44.13c neiz rec12 (sp11) 753_1_00124 755_2_00483 PNEG_01039 SPAC(144.13c neiz rec12 (sp11) 7551_00124 7552_00483 PNEG_01729 SPAC(17A5.11 new13 (nop1) 7551_00124 7552_03234 PNEG_01729 SPAC(17A5.11 new13 (nop2) 7551_02163 7552_03234 PNEG_01729 SPAC(1716.02 new13 (nop1) 7551_02163 7552_02343 PNEG_01729 SPAC(1716.02 new13 (nop2) 7551_02164 7552_02344 PNEG_01729 SPAC(1716.02 new13 (noru) 7551_02148 7552_02145 PNEG_01203 SPAC(34.108 new13 (noru) 7551_02148 7552_02145 PNEG_01203 SPAC(34.108 new13 (noru) 7551_01244 7552_02145 PNEG_01203 SPAC(34.108 nm11 (noru) 7551_01244 7552_02145 PNEG_02135 SPAC(34.10	Maiocic	dmc1	T551 00146	T552 01043	DNFG_01443	SPACRE11 03C	Meiotic recombination	16 24 25
metal metal <th< td=""><td>CICOLDIN</td><td>uniter (Abacz)</td><td></td><td></td><td></td><td></td><td>Moiotic recomputation</td><td>10 10 15 (CZ / 12 / 10)</td></th<>	CICOLDIN	uniter (Abacz)					Moiotic recomputation	10 10 15 (CZ / 12 / 10)
minut filte filte <th< td=""><td></td><td>(i cdin) i cian</td><td>T551 03167</td><td>T552 03431</td><td></td><td></td><td>mercure su and my asion and exchange Commitment to maiocis</td><td>17 24</td></th<>		(i cdin) i cian	T551 03167	T552 03431			mercure su and my asion and exchange Commitment to maiocis	17 24
micy (are) micy (are) <thmic (are)<="" th=""> micy (are) micy (are</thmic>		ran1 (nat1)	T551_02087	T552 00650	DNEC_01031		Repression of several romination	74
Synth (medi) Tiss2_00448 Tiss2_00444 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 Tiss2_00443 <thtips2_0443< th=""> <thtip3_0444< th=""> <</thtip3_0444<></thtips2_0443<>		cuiri (puci)	TEE1 00270				Doculation of moiotic motochan	
mcp1 Tiss1_00124 Tiss2_00946 Tiss2_00334 PNEG_01333 SPAC13A11.03 mcp7 Tiss1_0263 Tiss2_0334 PNEG_01232 SPAC13A11.03 mcp1 Tiss1_0263 Tiss2_0334 PNEG_01329 SPAC13A11.03 meu13 (hop2) Tiss1_0263 Tiss2_0334 PNEG_01299 SPAC13A11.03 meu13 Tiss1_02164 Tiss2_03354 PNEG_03399 SPAC13A11.03 PNEG_0114 chp2 Tiss1_01264 Tiss2_02145 PNEG_03399 SPAC332.16 PNEG_0114 chp2 Tiss1_01264 Tiss2_02145 PNEG_0120 SPAC332.10 PNEG_0114 hp11 Hhir1) Tiss1_01264 Tiss2_02145 PNEG_0120 SPAC332.10 hp2 Tiss1_01264 Tiss2_0145 PNEG_0120 SPAC332.10 PNEG_01136 hp2 Tiss1_01264 Tiss2_02145 PNEG_0120 SPAC341.08 PNEG_01316 hp2 Tiss1_02344 PNEG_0120 SPAC344.18 PNEG_0130 PNEG_01316 hp2 Tiss1_02349 Tiss2_0349 PNE		(62)() 1 MIS	//c00_1cc1	TFF3 00040		2FAC144.13C	hegulation of metotic metaphiase	24 25
map (matr) 1551_02693 1552_02324 PNEG_01729 SPRC1718.02 hop1 7551_02168 7552_02162 PNEG_01729 SPRC178.02 meu13 (hop2) 7551_02168 7552_02162 PNEG_01729 SPRC178.02 rec8 7551_02166 7552_02162 PNEG_01729 SPRC178.02 rec8 7551_01564 7552_02161 PNEG_00522 SPRC3311.08 hip1 (hir1) 7551_01243 7552_02145 PNEG_01220 SPRC34.03 hip2 7551_01243 7552_02145 PNEG_01220 SPRC34.03 hip2 7551_01243 7552_02145 PNEG_022745 SPRC36.01 hip2 7551_02019 7552_02145 PNEG_02128 SPRC36.01 hip2 7551_02019 7552_021465 PNEG_02128 SPRC36.01 hip2 7551_02019 7552_02145 PNEG_022145 SPRC36.01 hip2 7551_02019 7552_02145 PNEG_022145 SPRC36.01 hip2 7551_02019 7552_02146 PNEG_022145 SPRC344.03 hip3		(110ds) Z132	Trr1_000124	Trr2 00500		SPACI/A5.11		20 75
Nopi 1551_0248 1552_03244 PMEL_01/29 5PBC1/180.2 neu13 (hop2) 1551_00216 1555_02162 PMEG_03219 5PAC1/180.2 rec8 1551_00216 1555_02162 PMEG_03219 5PAC1/180.2 rec8 1551_01243 1555_02164 1555_01264 1555_01264 1552_02145 PMEG_03219 5PAC10.14 rchp2 1551_01243 1555_01264 1555_01243 1555_01243 1557_01243 1557_01243 1557_01243 1557_01245 PMEG_01200 5PAC3A11.08 166 170.136 17552_02145 PMEG_01200 5PAC3A1034 17552_02145 PMEG_01201 5PAC3A403 17552_02145 PMEG_01200 5PAC3A403 166 170.136 17552_02145 PMEG_01200 5PAC3A403 166 170.136 17552_02145 PMEG_01200 5PAC3A403 166 17552_02145 PMEG_01200 5PAC3A403 17552_02145 PMEG_01200 5PAC3A403 17552_02145 17552_02145 PMEG_01200 5PAC3A403 17552_02145 17552_02145 17552_02145 17552_02145 17552_02145 17552_02		mcp/ (mnat)	C0620_1CC1	76520_2661	PNEG_02325	5PAC13A11.03	Kecompinase	<u>ر</u> ک ۲۵
meura (nopz) 1551_02448 1552_02404 PNEG_00582 SPACJ3219 SPACJ3215 rec8 T551_00216 T552_02404 PNEG_00582 SPBC1666.10 1 chp2 T551_00216 T552_02404 PNEG_00339 SPBC166.10 1 chp2 T551_01243 T552_02404 PNEG_01020 SPBC3711.08 1 hip1 (hir1) T551_01243 T552_02498 PNEG_01020 SPBC3710.13c 1 hr/t1 T551_01243 T552_02498 PNEG_01205 SPBC376.01 1 hr/t1 T551_02019 T552_02146 PNEG_01235 SPBC36.01 1 hr/t1 T551_02019 T552_02498 PNEG_01238 SPAC36.01 1 hr/t1 T551_02013 T552_02146 PNEG_01326 SPAC3403 1 hr/t1 T551_02013 T552_02148 PNEG_01326 SPAC3403 1 hr/t2 T551_02033 T552_02146 PNEG_01326 SPAC3403 1 hr/t2 T551_02033 T552_02136 PNEG_01326		hop1	1551_02693 TTT	1552_03234	PNEG_01/29	SPBC1/18.02	Meiotic chromosome synapsis	25
rec8 T551_00216 T552_02404 PNEG_00582 SPBC166.10 chp2 T551_003054 T552_00671 PNEG_01020 SPBC16C6.10 chp2 T551_01564 T552_00571 PNEG_01020 SPBC16C6.10 hip1 (hir1) T551_01564 T552_02514 PNEG_01020 SPBC3710.13c hpc2 T551_01486 T552_02145 PNEG_01233 SPBC37.08c hr/r T551_01486 T552_02145 PNEG_02733 SPBC37.08c hr/r T551_01486 T552_02145 PNEG_02733 SPBC37.08c hr/r T551_02073 T552_02146 PNEG_02733 SPAC354.03 hr/r T551_02073 T552_02146 PNEG_01300 SPAC354.03 hr/r T551_02073 T552_02146 PNEG_01300 SPAC354.03 hr/r T551_02073 T552_02146 PNEG_01300 SPAC17H9.20 hr/r T551_02033 T552_02148 PNEG_01305 SPAC18H1.07c pob3 T551_01736 T552_02148 PNEG_01305 SPAC18H1.07c prof		meu13 (hop2)	1551_02448	1552_02162	PNEG_03219	SPAC232.15	Meiotic chromosome pairing	25
chp2 T551_03054 T552_03354 PNEG_01020 SPBC1666.10 culd (pcu4) T551_01564 T552_00671 PNEG_01020 SPAC3A11.08 hip1 (hir1) T551_012364 T552_02145 PNEG_01020 SPAC3A11.08 hip2 (hir1) T551_01243 T552_02145 PNEG_01145 SPBC31F10.13c hrc2 T551_01486 T552_02145 PNEG_020797 SPBC34.03 PNEG_02797 hrp3 T551_02019 T552_02145 PNEG_02128 SPBC36.01 PNEG_03366 hrp3 T551_02073 T552_02028 PNEG_01300 SPAC366.01 PNEG_01300 pip1 (rbx1) T551_02073 T552_020283 PNEG_01300 SPAC34.03 PNEG_01300 pbb3 T551_02073 T552_020283 PNEG_01300 SPAC17H9.20 PNEG_01303 pbb3 T551_02039 T552_03469 PNEG_01288 SPAC17H9.20 PNEG_01303 pbb3 T551_02039 T552_03469 PNEG_01288 SPAC17H9.20 PNEG_01303 pbb3 T551_01323 T552_03349 PNEG_01288		rec8	T551_00216	T552_02404	PNEG_00582	SPBC29A10.14	Meiotic sister chromatid cohesion	25
cuid (pcu4) T551_01564 T552_00571 PNEG_01020 SPAC3A11.08 hip1 (hir1) T551_01243 T552_02514 PNEG_02145 SPBC31F10.13c hip2 T551_01243 T552_02145 PNEG_02797 SPBC347.08c hrk1 T551_01246 T552_02145 PNEG_02797 SPBC34.03 hrk1 T551_01200 T551_01286 T552_011661 PNEG_02797 SPAC34.03 hrp2 T551_02019 T552_02028 PNEG_01280 SPAC36.01 Intra mit1 T551_02033 T552_02028 PNEG_01300 SPAC36.01 Intra pip1 (rbx1) T551_02033 T552_02028 PNEG_01300 SPAC34.03 ISAC36.01 mit1 T551_02033 T552_02028 PNEG_01300 SPAC17H9.20 ISAC34.03 pbd1 (rbx1) T551_02033 T552_02348 PNEG_01303 SPAC17H9.20 Intra p5c6 T551_0234 T552_03483 PNEG_01628 SPAC17H9.20 Intra p5c6 T551_01736 T552_03483 PNEG_01628 SPAC17H9.20	MAT locus silencing	chp2	T551_03054	T552_03354	PNEG_03399	SPBC16C6.10	Heterochromatin assembly	24
hir1) T551_01243 T552_02514 PNEG_02145 SPBC31F10.13c T551_02364 T552_02145 PNEG_03236 SPBC347.08c 1 T551_02364 T552_02145 PNEG_03236 SPBC347.08c 1 T551_02019 T552_02148 PNEG_01228 SPAC354.03 1 T551_02019 T552_02028 PNEG_01267 SPB2545.10 1 T551_02073 T552_02028 PNEG_01300 SPAC354.03 1 T551_02033 T552_02028 PNEG_01300 SPAC344.18c 1 T551_02039 T552_03469 PNEG_01300 SPAC314.18c 1 Ubc2) T551_02039 T552_03148 PNEG_01333 SPBC609.05 Ubc2) T551_00331 T552_03148 PNEG_01628 SPAC17199.20 Ubc2) T551_00331 T552_023148 PNEG_013055 SPAC171107c Ubc2) T551_00331 T552_023148 PNEG_01628 SPAC171107c T551_00331 T552_023148 PNEG_01628 SPAC1717017c 1 T551_00331 T552_023)	cul4 (pcu4)	T551 01564	T552 00671	PNEG 01020	SPAC3A11.08	Heterochromatin assembly	24
T551_02364 T552_02145 PNEG_03236 SPBC947.08c T551_01486 T552_01661 PNEG_02797 SPAC23C4.03 T T551_02019 T552_02498 PNEG_02797 SPAC3366.01 T T551_02019 T552_02028 PNEG_0128 SPAC366.01 T T551_02073 T552_02028 PNEG_01300 SPAC365.01 T T551_02033 T552_03469 PNEG_01300 SPAC23H4.18c T T551_0333 T552_03469 PNEG_01333 SPBC609.05 T T551_01736 T552_03148 PNEG_01333 SPBC609.05 T T551_01736 T552_03148 PNEG_01628 SPAC17H9.20 T Ubc2) T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 T551_01736 T552_021465 PNEG_01628 SPAC17H9.20 T T551_00331 T552_023148 PNEG_01628 SPAC1701c T T551_00473 T552_023148 PNEG_01975 SPBC6613.12c T T551_00473 T552_02980 PNEG_01941		hip1 (hir1)	T551_01243		PNEG_02145	SPBC31F10.13c	Heterochromatin assembly	24
T551_01486 T552_01661 PNEG_02797 SPAC23C4.03 I T551_02019 T552_02498 PNEG_02128 SPAC36.01 I T551_02073 T552_0228 PNEG_01867 SPB35G2.10 I T551_02033 T552_03469 PNEG_01300 SPAC36.01 I T551_02033 T552_03469 PNEG_01300 SPAC23H4.18c I T551_0333 T552_01102 PNEG_01333 SPBC609.05 I T551_0339 T552_01102 PNEG_01383 SPBC609.05 I T551_0331 T552_0102 PNEG_01383 SPAC17H9.20 I T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 I T551_00331 T552_02811 PNEG_01628 SPAC17H9.20 I T551_00473 T552_02811 PNEG_01267 SPAC17.01c I T551_00473 T552_02811 PNEG_01975 SPB19A11.06 I T551_00470 T552_02966 PNEG_01977 SPB109A11.06 I T551_00446 T552_02965 PNEG_01967		hpc2	T551_02364	T552_02145	PNEG_03236	SPBC947.08c	Heterochromatin assembly	24
T551_02019 T552_02498 PNEG_02128 SPAC3G6.01 T551_02073 T552_02028 PNEG_01867 SPB735G2.10 T551_02073 T552_03469 PNEG_01367 SPB735G2.10 T551_02033 T552_03469 PNEG_01300 SPAC23H4.18c T551_0334 T552_03469 PNEG_01300 SPAC23H4.18c T551_0339 T552_01102 PNEG_01383 SPBC609.05 T8C T551_0339 T552_01102 PNEG_01383 SPBC609.05 T8C T551_01736 T552_01813 PNEG_01628 SPAC17H9.20 T8C T551_01736 T552_02811 PNEG_01628 SPAC17F.01c T8C T551_00331 T552_02811 PNEG_01941 SPCC613.12c T551_01972 T551_00473 T552_02980 PNEG_01941 SPCC613.12c T551_00470 T551_00470 T551_00470 T552_02985 PNEG_01972 SPBT0471.066 T551_00470 T551_00470 T552_02980 PNEG_01977 SPEC613.12c T551_00470 SPEC613.12c T551_00470 T552_02980 P		hrk1	T551_01486	T552_01661	PNEG_02797	SPAC23C4.03	Heterochromatin assembly	24
T551_02073 T552_02028 PNEG_01867 SPBP35G2.10 I tbx1) T551_00033 T552_03469 PNEG_01300 SPAC23H4.18c I T551_00033 T552_03469 PNEG_01300 SPAC23H4.18c I I T551_0339 T552_01102 PNEG_01303 SPBC609.05 I		hrp3	T551_02019	T552_02498	PNEG_02128	SPAC3G6.01	Heterochromatin assembly	24
<i>tbx1</i>) T551_00033 T552_03469 PNEG_01300 SPAC23H4.18c I T551_03410 T552_01102 PNEG_01383 SPBC609.05 I T551_0340 T551_0102 PNEG_01383 SPBC609.05 I T551_02039 T552_00863 PNEG_01628 SPAC17H9.20 I <i>ubc2</i>) T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 I T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 I I T551_01736 T552_02811 PNEG_01805 SPAC1701c I		mit1	T551_02073	T552_02028	PNEG_01867	SPBP35G2.10	Heterochromatin assembly	24
T551_03410 T552_01102 PNEG_01383 SPBC609.05 I ubc2) T551_02039 T552_00863 PNEG_01628 SPAC17H9.20 I T551_02039 T552_00863 PNEG_01628 SPAC17H9.20 I T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 I T551_01736 T552_02893 PNEG_01628 SPAC17F0.1C I T551_01736 T552_02811 PNEG_01805 SPAC177.01C I T551_00331 T552_02811 PNEG_01941 SPCC613.12C I T551_01972 T552_01956 PNEG_01941 SPCC613.12C I T551_0148 T552_02980 PNEG_01941 SPCC613.12C I T551_0148 T552_02980 PNEG_01977 SPBP19A11.06 I T551_00450 T552_01000 PNEG_01486 SPB16165.03C I T551_00460 T552_01000 PNEG_01486 SPB2G65.06 I T551_00410 T552_02022 PNEG_01486 SPBC36.05C I T551_00611 T552_0272 <td></td> <td>pip1 (rbx1)</td> <td>T551_00033</td> <td>T552_03469</td> <td>PNEG_01300</td> <td>SPAC23H4.18c</td> <td>Heterochromatin assembly</td> <td>24</td>		pip1 (rbx1)	T551_00033	T552_03469	PNEG_01300	SPAC23H4.18c	Heterochromatin assembly	24
T551_02039 T552_00863 PNEG_01628 SPAC17H9.20 ubc2) T551_01736 T552_02893 PNEG_01628 SPAC17H9.20 1551_01736 T552_02893 PNEG_01628 SPAC18B11.07c 1 7551_02570 T552_02811 PNEG_01338 SPAC187.01c 1 7551_02331 T552_02811 PNEG_01805 SPAC187.01c 1 7551_01972 T552_02811 PNEG_01941 SPCC613.12c 1 7551_01972 T552_01956 PNEG_01941 SPCC613.12c 1 7551_0148 T552_00980 PNEG_01971 SPCC613.12c 1 7551_00473 T552_02966 PNEG_01977 SPBP19A11.06 1 7551_00460 T552_01000 PNEG_01486 SPB716F5.03c 1 7551_0046 T551_00104 PNEG_01482 SPB36.065c 1 7551_00611 T552_02792 PNEG_01482 SPB36.05c 1		pob3	T551_03410	T552_01102	PNEG_01383	SPBC609.05	Heterochromatin assembly	24
(ubc2) T551_01736 T552_02893 PNEG_02338 SPAC18B11.07c 1 T551_02570 T552_03148 PNEG_01805 SPAC177.01c 1 T551_02371 T552_03148 PNEG_01805 SPAC1F7.01c 1 T551_00331 T552_02811 PNEG_01805 SPAC1F7.01c 1 T551_00331 T552_02811 PNEG_01941 SPCC613.12c 1 T551_01972 T552_01956 PNEG_01941 SPCC613.12c 1 T551_00473 T552_00980 PNEG_01507 SPBP19A11.06 1 T551_00473 T552_01000 PNEG_01486 SPBC365.06 1 T551_00446 T552_01000 PNEG_01486 SPBC365.06 1 (hos2) T551_00611 T552_0292 PNEG_01482 SPBC36.05c 1 (hos2) T551_00611 T552_02792 PNEG_02422 SPAC369.07c 1		psc3	T551_02039	T552_00863	PNEG_01628	SPAC17H9.20	Heterochromatin assembly	24, 25
T551_02570 T552_03148 PNEG_01805 SPAC1F7.01c I T551_00331 T552_02811 PNEG_01805 SPAC1F7.01c I T551_00331 T552_02811 PNEG_02256 SPBC428.08c I T551_01972 T552_01956 PNEG_01941 SPCC613.12c I T551_01473 T552_00980 PNEG_01507 SPBP19A11.06 I T551_01148 T552_029465 PNEG_01507 SPBC365.06 I T551_00450 T552_01000 PNEG_01486 SPBC365.06 I T551_00416 T552_01004 PNEG_01486 SPBC365.06 I T551_00416 T552_01004 PNEG_01482 SPBC36.05c I T551_00611 T552_02792 PNEG_01482 SPBC36.05c I		rhp6 (ubc2)	T551_01736	T552_02893	PNEG_02338	SPAC18B11.07c	Heterochromatin assembly	24
T551_00331 T552_02811 PNEG_02256 SPBC428.08c I T551_01972 T552_01956 PNEG_01941 SPCC613.12c I T551_01972 T552_01956 PNEG_01941 SPCC613.12c I T551_01473 T552_00980 PNEG_01507 SPBP19A11.06 I T551_01148 T552_02465 PNEG_01295 SPBC365.06 I T551_00450 T552_01000 PNEG_01486 SPB716F5.03c I T551_00446 T552_01004 PNEG_01482 SPBC36.05c I (hos2) T551_00611 T552_02792 PNEG_01482 SPBC36.05c I		spt6	T551_02570	T552_03148	PNEG_01805	SPAC1F7.01c	Heterochromatin assembly	24
T551_01972 T552_01956 PNEG_01941 SPCC613.12c I T551_00473 T552_00980 PNEG_01507 SPBP19A11.06 I T551_00148 T552_00980 PNEG_01507 SPBP19A11.06 I T551_01148 T552_02465 PNEG_02095 SPBC365.06 I T551_00450 T552_01000 PNEG_01486 SPBP16F5.03c I (hos2) T551_00611 T552_02022 PNEG_01482 SPBC36.05c I		clr4	T551_00331	T552_02811	PNEG_02256	SPBC428.08c	Histone methyltransferase	24
T551_00473 T552_00980 PNEG_01507 SPBP19A11.06 I T551_01148 T552_02465 PNEG_02095 SPBC365.06 I T551_00450 T552_01000 PNEG_01486 SPBP16F5.03c I T551_00446 T552_01004 PNEG_01482 SPBC36.05c I (hos2) T551_00611 T552_02022 PNEG_01482 SPBC36.05c I		raf1	T551_01972	T552_01956	PNEG_01941	SPCC613.12c	Histone methyltransferase	
T551_01148 T552_02465 PNEG_02095 SPBC365.06 I T551_00450 T552_01000 PNEG_01486 SPBP16F5.03c I T551_00446 T552_01004 PNEG_01482 SPBC36.05c I (hos2) T551_00611 T552_02792 PNEG_02222 SPAC3G9.07c I		lid2	T551_00473	T552_00980	PNEG_01507	SPBP19A11.06	Histone demethylase	24
T551_00450 T552_01000 PNEG_01486 SPBP16F5.03c T T551_00446 T552_01004 PNEG_01482 SPBC36.05c T 1 (hos2) T551_00611 T552_02792 PNEG_02422 SPAC3G9.07c T		pmt3	T551_01148	T552_02465	PNEG_02095	SPBC365.06	Histone demethylase	24
T551_00446 T552_01004 PNEG_01482 SPBC36.05c 1 1 (hos2) T551 00611 T552 02792 PNEG 02422 SPAC3G9.07c 1		tra1	T551_00450	T552_01000	PNEG_01486	SPBP16F5.03c	Histone acetyltransferase	24
T551 00611 T552 02792 PNEG 02422 SPAC3G9:07c 1		clr6	T551_00446	T552_01004	PNEG_01482	SPBC36.05c	Histone deacetylase	24
		phd1 (hos2)	T551_00611	T552_02792	PNEG_02422	SPAC3G9.07c	Histone deacetylase	24

September 2021 Volume 85 Issue 3 e00009-21

mmbr.asm.org 5

	Gene name	Gene ID			S. pombe putative ortholog	e ortholog	
Role	(alternate)	P. jirovecii	P. carinii	P. murina	Gene ID	Function	Reference(s)
MAT locus switching	hsk1	T551_01602	T552_02102	PNEG_03279	SPBC776.12c	Imprinting	24
	swi3	T551_01272	T552_02542	PNEG_02174	SPBC30D10.04	Imprinting, conversion	24
	msh2	T551_02326	T552_02183	PNEG_03198	SPBC19G7.01c	Conversion	24, 25
	rad16 (rad1)	T551_00218	T552_02406	PNEG_00580	SPCC970.01	Conversion	24, 25
	swi1	T551_01097	T552_00501	PNEG_00356	SPBC216.06c	Conversion	24
	swi10	T551_02136	T552_01836	PNEG_01115	SPBC4F6.15c	Conversion	24
	swi5	T551_02707	T552_03209	PNEG_01744	SPBC409.03	Switching	24
	rad22	T551_01250	T552_02521	PNEG_02152	SPAC30D11.10	Switching	24, 25

FIG 2 Schematic sexual cycles of *Schizosaccharomyces pombe* (A) and *Pneumocystis* species (B). The genes involved in the regulation of steps are indicated. The circles filled in violet represent the nuclei. M, minus *MAT* locus; P, plus *MAT* locus; N, number of chromosomes of a haploid set. (A) Secondary homothallism of *S. pombe* involving mating-type switch and heterothallic mating by cell-cell fusion. The haploid and diploid mitotic cycles by fission are not shown. P/M, active P and M *MAT* loci on different chromosomes. (B) Hypothetical primary homothallism of *Pneumocystis* species. The question marks indicate events that are not demonstrated. The occurrence or not of homothallic mating by cell-cell fusion remains to be determined. The involvement of the genes mentioned is presumed but not established. The genes *matPc* and *mei3* are absent in *Pneumocystis* species (see the text). The haploid mitotic cycles shown in Fig. 1 are not shown (asexual cycle and endogeny). P-M, fused P and M *MAT* loci on the same chromosome.

hallmark of most active genes that could structure chromatin and nascent mRNAs for subsequent regulation, providing fine-tuned expression (31–33). The arrangement with divergent transcription is frequent among fungal *MAT* loci, including in the ascomycetous models *Saccharomyces cerevisiae* and *S. pombe* (Fig. 3), as well as in basidio-mycetes (34). The common regulation of *matMc* and *matMi* is likely to be ensured by the *Pneumocystis* ortholog to the *S. pombe* transcription factor Ste11. In *S. pombe*, this regulation relies on the single recognition motif TTTCTTTGTT, which is present close to the middle of the intergenic region (26, 35). In *Pneumocystis*, the recognition motif, or part of it, could be the CCTTG sequence that resembles it, which is conserved in *P. jirovecii* and *P. carinii* at the same location. The latter hypothesis is also based on the observation that this motif is duplicated in about 50% of the *P. jirovecii* isolates, which suggests its importance (24). In *P. murina*, the motif CCTGT or CCGTT might be involved. Consistent with its potential important role, *ste11* is expressed during pneumonia in rats as the second most abundant transcript (23). The latter observation is

Hauser

FIG 3 Schematic representation of *MAT* loci present in the subphylum Taphrinomycotina. *MAT* genes are shown in violet, other relevant genes in yellow, and the centromere-homologous sequence *cenH* in blue. The chromosomes carrying the genes are shown as black lines. The drawings are roughly to scale. The primary homothallic species *Pneumocystis* and *Taphrina deformans* each harbor a single *MAT* locus that includes three genes. The secondary homothallic species *S. pombe* harbors three *MAT* loci (or cassettes), each including two genes. The two *MAT* loci flanking *cenH* are silenced, whereas the third locus is active (here, for example, the M mating type). The *cis*-acting sequence motifs H1, H2, and H3, involved in mating-type switching and flanking each *MAT* locus, are shown in dark gray. The *MAT* locus is located on supercontigs (scaffolds) 9, 13, and 13, respectively, of the *P. jirovecii, P. carinii*, and *P. murina* genome assemblies (25). (Each scaffold presumably corresponds to one chromosome.)

also compatible with Ste11 participating in conjunction with MatMc in the activation of the M-specific genes, as observed in *S. pombe*.

Two genes are generally conserved close to the *MAT* locus among ascomycetes: *sla2* and *apn2* or *dic1* (36, 37). The *Pneumocystis MAT* locus harbors only *sla2*, between *matPi* and *matMc*, together with the *hsp104* gene (Fig. 3). The *Pneumocystis MAT* locus presents only a limited synteny with that of the other members of the Taphrinomycotina subphylum: i.e., only one gene in common with the close relative *Taphrina deformans* (*yox1*) and none in common with *S. pombe* (24) (Fig. 3). The *MAT* loci of the two latter relatives do not harbor the *sla2* gene and present only one gene conserved (*rga7*). This lack of synteny suggests important evolutionary distances among members of the subphylum Taphrinomycotina. The gene *sla2* encodes the adaptor linking actin to clathrin involved in endocytosis and the cytoskeleton. As in *S. pombe*, it might be essential under most conditions in *Pneumocystis MAT* locus. Such a phenomenon is also postulated for the gene *let1*, which is present between the *S. pombe* active and silent *MAT* loci (26, 38) (Fig. 3).

The structure and content of the *Pneumocystis MAT* locus suggest a specific mode of sexual reproduction, which is discussed in the following section.

MODE OF SEXUAL REPRODUCTION OF PNEUMOCYSTIS SPECIES

The presence of genes involved in the differentiation of both P and M mating types (P and M genes) in the Pneumocystis MAT locus is incompatible with heterothallism because this mode of sexual reproduction implies that the P and M genes are in different genomes (39). Secondary homothallism is also unlikely because this mode involves more than one MAT locus: i.e., two or three, with one active and the other(s) silenced. Moreover, the latter mode requires genetic elements for switching the active MAT locus and silencing the others that are absent in Pneumocystis genomes (cis-acting sequence motifs of H, proximity to telomere or centromere-like repeats) (24, 30) (Fig. 3). Homothallism resulting from unidirectional mating-type switching (40) is also unlikely because (i) it requires indirect or direct repeats for the deletion and reconstitution of one MAT locus, and (ii) it implies a mixture of different MAT loci in each cell population, which is not observed in Pneumocystis. The presence of both M and P genes in the Pneumocystis MAT locus is consistent with a fusion of two MAT loci, M and P, that were present in an ancestor, followed by the loss of one MAT gene (matPc). Such a scenario has previously been proposed to account for fused MAT loci of other fungi (41). These observations suggest that the sexual mode of reproduction of Pneumocystis species is primary homothallism, the mode that involves a single self-compatible mating type that can engage on its own into the sexual phase.

The hypothesis of primary homothallism is supported by the presence of the same *MAT* locus in all *P. jirovecii* DNA samples (30). It is further supported by the finding that

	PCR result for:					
		MAT transcrip	otion factors		Pheromone rec	eptors
cDNA source	β-Tubulin [♭]	matMc	matMi	matPi	mam2	map3
P. jirovecii patient no.:						
1	+	+	+	+	+	+
2	-	_	_	-	-	_
3	+	-	+	-	+	—
4	+	+	+	+	+	+
5	+	+	+	+	+	+
6	+	-	-	+	+	—
7	+	+	+	+	+	+
8	+	_	_	+	-	_
9	-	_	_	-	-	_
11	+	+	+	+	_	+
P. murina	+	+	+	+	+	+

TABLE 2 Results from reverse transcriptase PCR amplification of *Pneumocystis* transcripts from bronchoalveolar lavage fluid samples from 10 patients with *Pneumocystis* pneumonia and from infected mouse lungs^a

^{*a*+, positive PCR result; –, negative PCR result. (Adapted from reference 47.)}

^bAmplification of the β -tubulin transcripts was used as a control (30). It assessed adequate reverse transcriptase PCR by the absence of the intron in these PCR products. This control suggested that the negative PCR results obtained in these experiments are due to RNA degradation. The latter may have occurred during the uncontrolled period between collection of the samples from the patients and their arrival in our laboratory.

all three *MAT* genes are expressed concomitantly during pneumonia in both humans and mice (Table 2). Such coexpression is expected because expression of both P and M genes is generally required for successful initiation of the sexual cycle in primary homothallic species (39). This finding is particularly relevant in mice because infections are thought to be caused by a single *P. murina* strain, strongly suggesting expression from the same *MAT* locus. On the other hand, infections in humans are most often, if not always, polyclonal (42), which leaves the possibility that the coinfecting *P. jirovecii* strains may differ in the expression of their *MAT* genes. It must be stressed that, although primary homothallism of *Pneumocystis* appears almost certain, one cannot totally exclude a new mode of sexual reproduction involving previously unknown mechanisms. Indeed, fungi present a myriad of different mechanisms to trigger sexuality (39), and new ones could be discovered in the future. The definitive ascertainment of the mode of sexual reproduction of *Pneumocystis* organisms may require their culturing *in vitro*.

Primary homothallism is also observed in other human-pathogenic fungi: e.g., *Candida albicans* (43) and *Cryptococcus neoformans* (44). Moreover, sexual systems resembling homothallism are probably used by human-pathogenic protozoans: i.e., *Toxoplasma*, *Giardia*, *Trypanosoma*, and *Leishmania* (45). This suggests that this mode of sexual reproduction is advantageous for microbial pathogens. The reason hypothesized is that it alleviates the need to find a compatible mating partner in the restricted niches of the host body, while still providing the benefits of sex (increase in genetic diversity and virulence and elimination of deleterious mutations) (45, 46).

The mechanisms involved in primary homothallism in fungi are poorly known compared to those of secondary homothallism and heterothallism. In addition, they probably vary considerably according to the fungal species and rewiring of the pathways. The mechanisms of sexuality in action in *Pneumocystis* species are discussed in the following section.

MECHANISMS INVOLVED IN THE PRIMARY HOMOTHALLISM OF *PNEUMOCYSTIS* SPECIES

The absence of the transcription factor *matPc*, responsible in *S. pombe* for the differentiation into the cellular mating type P, suggests that *Pneumocystis* species are unisexual, involving a single mating type, M, as observed in other fungi (*C. albicans* and *C. neoformans*) (43, 44). However, analysis of the pheromone receptors suggested that the *P. jirovecii* trophic forms are of both mating types at the same time (47). Indeed, the genes *mam2* and *map3*,

FIG 4 Indirect immunofluorescence microscopic analysis of Mam2 and Map3 pheromone receptors on *P. jirovecii* cells from a bronchoalveolar lavage fluid sample of a patient with *Pneumocystis* pneumonia. Shown is costaining with anti-Mam2 and anti-Map3 (pheromone receptors M and P, respectively). The presumed trophic cells in the small white squares are shown enlarged in the insets at the left or right bottom corners of the images, and a single spherical cell corresponding to an ascus within the cluster is indicated by the white arrows. A fluorescein isothiocyanate (FITC) filter (green) was used to visualize Mam2 staining (Alexa Fluor 488), and a tetramethyl rhodamine isocyanate (TRTC) filter (red) was used to visualize Map3 staining (Alexa Fluor 594). Bar, 25 μ m. (Reproduced from reference 47.)

encoding, respectively, the receptors M and P, are present in every *Pneumocystis* genome (24, 25) and are both expressed during pneumonia in rats, mice, and humans (24, 25, 47) (Table 1). The *P. murina* infection is again particularly relevant because it strongly suggests that both receptors are expressed from the same genome, and not from different coinfecting strains. Immunostaining revealed that *P. jirovecii* trophic forms expose at their surface both receptors M and P at the same time (Fig. 4). Consequently, they could excrete both pheromones M and P, but this could not be investigated so far because the encoding genes could not be identified due to their significant divergence (24, 25). In *S. pombe*, the transcription factor Map1 forms a heterodimer with MatPc, which is responsible for the activation of the P-specific genes (26). An ortholog of *map1* is present in *Pneumocystis* and could be involved in the differentiation into the mating type P despite the absence of *matPc*.

The receptors M and P present at the cell surface of *Pneumocystis* trophic cells could be involved in the recognition of the mating partners. Being identical, these cells might mate randomly by cell-cell fusion within host's lung alveoli. However, this is not necessarily the case because cell-cell fusion can be replaced by nucleus duplication in homothallism, and the pheromone receptor systems play other roles in some primary homothallic fungi (48-50). For example, the close relative T. deformans does not rely on cell-cell fusion despite the fact that it harbors one pheromone receptor (24). Electron microscopy studies have presented few images of two Pneumocystis trophic cells with connected cytoplasmic membranes that could correspond to cell-cell fusion events (22). Moreover, plasmogamy during mating and cytokinesis during mitosis cannot be distinguished morphologically. Similarly, the connected nuclear membranes observed on some images may correspond to karyogamy or karyokinesis. Indeed, Pneumocystis might have a closed mitosis with the nuclear membrane present throughout the cell cycle as in most fungi, rather than an open one as in many basidiomycetes. Pneumocystis harbors potential orthologs of the S. pombe genes fus1 and prm1 (24). (Note that prm1 is also present in P. jirovecii [our unpublished data].) These genes are essential to cell-cell fusion during mating in S. pombe (51). However, they are also present in T. deformans (24). Thus, the occurrence of cell-cell fusion during Pneumocystis sexuality remains an open question.

Heteroplasmy of mitochondria has been reported in *Pneumocystis* based on the presence of more alleles of the mitochondrial markers than of the nuclear ones (42). Although it cannot be excluded that it results from a higher frequency of mutations in

these organelles, this heteroplasmy might result from biparental inheritance of mitochondria that could be generated by cell-cell fusion during sexuality. This would fit that no studies reported cells other than the trophic cells and asci that could participate in anisogamy (22), one of the phenomena that can lead to uniparental inheritance of mitochondria. It is possible that the *Pneumocystis* mitochondrial heteroplasmy reflects frequent cell-cell fusions, which would be coherent with sexuality being necessary and possibly the preponderant mechanism of proliferation (22). This would imply a system of homoplasmy control weaker than that generally present in fungi (39), although persistent heteroplasmy in fungi has been reported (52).

Splicing variants corresponding to intron retention have been observed among the transcripts of the pheromone receptors (47, 53). These variants might be involved in the regulation of expression and associated with specific stages of the cell cycle. The timing of expression of the *Pneumocystis* sex genes is discussed in the following section.

OCCURRENCE OF PNEUMOCYSTIS SEXUAL CYCLE

The sexual cycle of many fungi, including S. cerevisiae and S. pombe, is triggered by deprivation of essential nutrients, such as a fermentable carbon source or nitrogen, or by stress (26, 54). As far as Pneumocystis is concerned, expression of MAT and other sex-related genes has been observed during pneumonia in humans, mice, and rats (15, 23, 25, 30, 47) (Table 2). It is plausible that Pneumocystis sexuality occurs when the host alveoli are filled with fungal cells (i.e., when pneumonia is overt), because this stage may correspond to an exhaustion of the nutriments as well as marked stress (23). This hypothesis would be consistent with the activation of sexuality upon treatment of P. murina with echinocandins, inhibiting growth and provoking stress (55). The sensitivity of the trophic forms to echinocandins might result from a link between asexual and sexual cycles through regulatory factors or from the presence of small amounts of 1,3- β glucan in their wall (22). However, sexuality may also take place in the lungs of colonized individuals as they are a source of P. jirovecii in a cluster of nosocomial cases (56), which implies airborne transmission by asci (Fig. 1A). The alveoli might not be filled in the latter situation because of the lower fungal load present in colonized humans (56). Thus, one cannot exclude that Pneumocystis sexuality is constitutively induced during growth—possibly by the stress resulting from the action of the host immune system. This hypothesis would fit that this sexuality might be the preponderant mechanism of proliferation. It would also be consistent with the fact that Pneumocystis sexuality proved to be obligatory within host lungs, a characteristic that is discussed in the following section.

OBLIGATE *PNEUMOCYSTIS* SEXUALITY WITHIN HOST LUNGS DURING PNEUMONIA

Two facts strongly suggest that *Pneumocystis* sexuality is obligatory within host lungs during pneumonia: the *MAT* and sex-related genes are concomitantly expressed, and asci are always present. Asci are observed in all pneumonia, so that their staining has been used for decades to diagnose the disease (Fig. 1B). Only a few infections with a reduced proportion of asci have been reported, and only under particular conditions: an athymic host (57), immunity reconstitution (58), and prophylaxis breakthrough (59). Asci are also observed in all primary infections that occur during the first 2 years of life (60, 61). Obligate sexuality is consistent with (i) asci and/or ascospores being the airborne infectious particles responsible for transmission between hosts because this ensures survival (62, 63) and (ii) its necessity for proliferation by the release of ascospores within the host lungs (22). On the other hand, the data gathered so far suggest that the asexual phase of proliferation by mitosis and possibly endogeny might be facultative (22) (Fig. 1A). It could be activated under certain peculiar conditions or at early stages of the infection and might be capable of latency, ensuring survival upon growth inhibition (62).

The obligate nature of *Pneumocystis* sexuality may also ensure the antigenic variation of these fungi, a system crucial for colonization and thus survival. Indeed, these pathogens dedicate about 8% of their genomes to a subtelomeric superfamily of genes encoding six families

of major surface glycoproteins (25, 64–67). The antigenic variation relies on recombinations creating continuously new mosaic genes, as well as on mutually exclusive expression of a single gene out of approximately 80 genes of the family encoding the most abundant glycoprotein at the cell surface (family I, also named A1). Recombinations among each of the six families and the exchange of the expressed gene of family I probably occur when all subtelomeres are close to each other: i.e., when they are clustered as a "bouquet" at the nuclear membrane during the meiotic prophase (68). Thus, antigenic variation probably requires sexuality to occur.

Although multicellular organisms cannot be compared easily with microbes, it is striking that mammals and plants, but only few fungi, share obligate sexuality during their life cycles (39). *Pneumocystis* is similar to the plant fungal obligate biotrophs that complete their entire life cycles within their hosts, including sex (6). Thus, *Pneumocystis* is an animal parasite resembling plant parasites that, consistently, has nutritional requirements observed in both these types of parasites (7, 10). Moreover, the reluctance of *Pneumocystis* organisms to sustain axenic growth *in vitro* is consistent with that of the fungal obligate biotrophs infecting plants (6). The *Pneumocystis* lifestyle differs from that of other human fungal pathogens that are necrotrophs obtaining nutriments from killed host cells with a facultative sexuality (*Candida, Aspergillus*, and dermatophytes).

The relationship between *Pneumocystis* organisms and their hosts fits the concept of "compatibility" used in the fungal plant pathogen field (6, 23). The latter consists of a relationship between an adapted biotrophic fungal pathogen and a susceptible host where there is complementation, but which may eventually lead to the development of the disease. Each *Pneumocystis* genome is only approximately 8 Mbp, which is among the smallest and most compact fungal genomes (69, 70). This compaction results not only from the loss of essential pathways but also from the presence of a single copy of the ribosomal DNA. Genome compaction is also observed in fungal pathogens adapted to host waxy surface of plants or fruits (69, 71). Like the surface of plants, the epithelial cells' surface in mammalian lungs may constitute an extreme environment that imposes restrictions on the parasites, such as nutrient limitation.

The obligate sexuality of *Pneumocystis* organisms probably has a great importance in their evolution. The selection of the homothallic mode for this sexuality during evolution is discussed in the following section.

POSSIBLE EVOLUTION OF PNEUMOCYSTIS SEXUALITY

The ancestral mode of sexual reproduction of fungi remains to be determined: homo-versus heterothallism (39). Primary homothallism has often been found to result from recombination events between heterothallic partners (39, 72). This possibility is compatible with the structure of the Pneumocystis MAT locus because it includes both P and M genes. The species T. deformans is putatively the closest known relative of Pneumocystis (9, 10, 25) and harbors a MAT locus similar to that of Pneumocystis (24) (Fig. 3). Thus, a heterothallic ancestor may have generated these two primary homothallic genera. On the other hand, this ancestor would have also evolved into the secondary homothallic relative S. pombe by subsequent acquisition of a supplementary MAT locus as well as the switching and silencing mechanisms (72). This putative scenario suggests that the acquisition of obligate biotrophy on mammals (Pneumocystis) or plants (Taphrina) involved the selection of primary homothallic strains about 100 million years ago (73). This would be consistent with the belief that primary homothallism is advantageous for microbial pathogens. At least for Pneumocystis, acquisition of primary homothallism would have ensured maintenance of sex, which is essential for its survival. This evolutionary hypothesis could be challenged by the characterization of the MAT locus and the mode of sexual reproduction of other related fungi.

CONCLUSIONS

Pneumocystis is unique among fungi pathogenic to humans. It differs by its obligate and biotrophic parasitism, its transmissibility between host individuals, and its obligate

sexuality within the host's lungs. The latter appears essential because it would ensure proliferation, dissemination, and possibly antigenic variation, processes that are all required for the survival of the fungus. Figure 2B shows the hypothetical sexual cycle of *Pneumocystis* that can be derived from the observations made so far. Importantly, whether or not cell-cell fusion occurs remains to be determined. The understanding of the mechanisms of this sexuality and its implications for *Pneumocystis* genetic diversity and evolution deserves further study.

ACKNOWLEDGMENTS

P.H.M.'s research is presently funded by the Swiss National Science Foundation (grant 310030_192802). The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

I warmly thank Sophie Richard for the invaluable and outstanding technical expertise she brought to our research during many years. I am indebted to Marco Pagni of the Swiss Bioinformatics Institute for review and improvements of the manuscript and for our long-standing and extremely fruitful collaboration. I also very much thank João Almeida of the UCIBIO (Applied Molecular Biosciences Unit, Universidade Nova de Lisboa) for precious analyses and inputs into our research on *Pneumocystis* sexuality. I also thank the reviewers for their constructive comments.

I have no conflicts of interest to declare.

REFERENCES

- Gigliotti F, Limper AH, Wright T. 2014. *Pneumocystis*. Cold Spring Harb Perspect Med 4:a019828. https://doi.org/10.1101/cshperspect.a019828.
- Latinne A, Bezé F, Delhaes L, Pottier M, Gantois N, Nguyen J, Blasdell K, Dei-Cas E, Morand S, Chabé M. 2018. Genetic diversity and evolution of *Pneumocystis* fungi infecting wild Southeast Asian murid rodents. Parasitology 145:885–900. https://doi.org/10.1017/S0031182017001883.
- Babb-Biernacki SJ, Esselstyn JA, Doyle VP. 2020. Rethinking host range in *Pneumocystis*. PLoS Pathog 16:e1008824. https://doi.org/10.1371/journal .ppat.1008824.
- Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White T. 2012. Hidden killers: human fungal infections. Sci Transl Med 4:165rv13. https:// doi.org/10.1126/scitranslmed.3004404.
- Pneumonia Etiology Research for Child Health (PERCH) Study Group. 2019. Causes of severe pneumonia requiring hospital admission in children without HIV infection from Africa and Asia: the PERCH multi-country case-control study. Lancet 394:757–779. https://doi.org/10.1016/S0140 -6736(19)30721-4.
- Cushion MT, Stringer JR. 2010. Stealth and opportunism: alternative lifestyles of species in the fungal genus *Pneumocystis*. Annu Rev Microbiol 64:431–452. https://doi.org/10.1146/annurev.micro.112408.134335.
- Hauser PM. 2014. Genomic insights into the fungal pathogens of the genus *Pneumocystis*: obligate biotrophs of humans and other mammals. PLoS Pathog 10:e1004425. https://doi.org/10.1371/journal.ppat.1004425.
- Hauser PM, Burdet FX, Cissé OH, Keller L, Taffé P, Sanglard D, Pagni M. 2010. Comparative genomics suggests that the fungal pathogen *Pneumocystis* is an obligate parasite scavenging amino acids from its host's lungs. PLoS One 5:e15152. https://doi.org/10.1371/journal.pone.0015152.
- Cissé OH, Pagni M, Hauser PM. 2012. De novo assembly of the Pneumocystis jirovecii genome from a single bronchoalveolar lavage fluid specimen from a patient. mBio 4:e00428-12. https://doi.org/10.1128/mBio.00428-12.
- Cissé OH, Pagni M, Hauser PM. 2014. Comparative genomics suggests that the human pathogenic fungus *Pneumocystis jirovecii* acquired obligate biotrophy through gene loss. Genome Biol Evol 6:1938–1948. https://doi.org/ 10.1093/gbe/evu155.
- Porollo A, Sesterhenn TM, Collins MS, Welge JA, Cushion MT. 2014. Comparative genomics of *Pneumocystis* species suggests the absence of genes for myo-inositol synthesis and reliance on inositol transport and metabolism. mBio 5:e01834-14. https://doi.org/10.1128/mBio.01834-14.
- Matsumoto Y, Yoshida Y. 1984. Sporogony in *Pneumocystis carinii*: synaptonemal complexes and meiotic nuclear divisions observed in precysts. J Protozool 31:420–428. https://doi.org/10.1111/j.1550-7408.1984.tb02989.x.
- Peters SE, English K, Rana A, Akter S, Malik S, Warburton NC, Duckett JG. 2001. Synaptonemal complexes in the pre-cyst of *Pneumocystis carinii*. J Eukaryot Microbiol https://doi.org/10.1111/j.1550-7408.2001.tb00485.x.

- Vohra PK, Puri V, Kottom TJ, Limper AH, Thomas CF, Jr. 2003. *Pneumocystis carinii* STE11, an HMG-box protein, is phosphorylated by the mitogen activated protein kinase PCM. Gene 312:173–179. https://doi.org/10.1016/s0378-1119(03)00614-0.
- Vohra PK, Park JG, Sanyal B, Thomas CF. 2004. Expression analysis of PCSTE3, a putative pheromone receptor from the lung pathogenic fungus *Pneumocystis carinii*. Biochem Biophys Res Commun 319:193–199. https://doi.org/10.1016/j.bbrc.2004.04.154.
- Kutty G, Achaz G, Maldarelli F, Varma A, Shroff R, Becker S, Fantoni G, Kovacs JA. 2010. Characterization of the meiosis-specific recombinase Dmc1 of *Pneumocystis*. J Infect Dis 202:1920–1929. https://doi.org/10 .1086/657414.
- Burgess JW, Kottom TJ, Limper AH. 2008. *Pneumocystis carinii* exhibits a conserved meiotic control pathway. Infect Immun 76:417–425. https:// doi.org/10.1128/IAI.00986-07.
- Kutty G, Kovacs JA. 2007. Identification and characterization of *rad51* of *Pneumocystis*. Gene 389:204–211. https://doi.org/10.1016/j.gene.2006.11 .011.
- Cushion MT, Ruffolo JJ, Walzer PD. 1988. Analysis of the developmental stages of *Pneumocystis carinii*, in vitro. Lab Invest 58:324–331.
- Yoshida Y. 1989. Ultrastructural studies of *Pneumocystis carinii*. J Protozool 36:53–60. https://doi.org/10.1111/j.1550-7408.1989.tb02696.x.
- Aliouat-Denis CM, Martinez A, Aliouat EM, Pottier M, Gantois N, Dei-Cas E. 2009. The *Pneumocystis* life cycle. Mem Inst Oswaldo Cruz 104:419–426. https://doi.org/10.1590/s0074-02762009000300004.
- Hauser PM, Cushion MT. 2018. Is sex necessary for the proliferation and transmission of *Pneumocystis*? PLoS Pathog 14:e1007409. https://doi.org/ 10.1371/journal.ppat.1007409.
- Cushion MT, Smulian AG, Slaven BE, Sesterhenn T, Arnold J, Staben C, Porollo A, Adamczak R, Meller J. 2007. Transcriptome of *Pneumocystis carinii* during fulminate infection: carbohydrate metabolism and the concept of a compatible parasite. PLoS One 2:e423. https://doi.org/10.1371/ journal.pone.0000423.
- Almeida JM, Cissé OH, Fonseca Á, Pagni M, Hauser PM. 2015. Comparative genomics suggests primary homothallism of *Pneumocystis* species. mBio 6:e02250-14. https://doi.org/10.1128/mBio.02250-14.
- 25. Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, Abouelleil A, Bishop L, Davey E, Deng R, Deng X, Fan L, Fantoni G, Fitzgerald M, Gogineni E, Goldberg JM, Handley G, Hu X, Huber C, Jiao X, Jones K, Levin JZ, Liu Y, Macdonald P, Melnikov A, Sassi M, Sherman BT, Song X, Sykes S, Tran B, Waish L, Xia Y, Yang J, Young S, Zeng Q, Zheng X, Stephens R, Nusbaum C, Birren BW, Azadi P, Lempicki RA, Cuomo CA, Kovacs JA. 2016. Genome analysis of three *Pneumocystis* species reveals adaptation

mechanisms to life exclusively in mammalian hosts. Nat Commun 7:10740. https://doi.org/10.1038/ncomms10740.

- Nielsen O, Egel R. 2007. The mat genes of Schizosaccharomyces pombe: expression, homothallic switch, and silencing, p 143–157. In Heitman J, Kronstad JW, Taylor JW, Casselton LA (ed), Sex in fungi: molecular determination and evolutionary implications. ASM Press, Washington, DC.
- Reedy JL, Floyd AM, Heitman J. 2009. Mechanistic plasticity of sexual reproduction and meiosis in the *Candida* pathogenic species complex. Curr Biol 19:891–899. https://doi.org/10.1016/j.cub.2009.04.058.
- Sherwood RK, Scaduto CM, Torres SE, Bennett RJ. 2014. Convergent evolution of a fused sexual cycle promotes the haploid lifestyle. Nature 506:387–390. https://doi.org/10.1038/nature12891.
- Fu C, Heitman J. 2017. *PRM1* and *KAR5* function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the *Cryptococcus* pathogenic species complex. PLoS Genet 13:e1007113. https://doi.org/10 .1371/journal.pgen.1007113.
- Richard S, Almeida JM, Cissé OH, Luraschi A, Nielsen O, Pagni M, Hauser PM. 2018. Functional and expression analyses of the *Pneumocystis MAT* genes suggest obligate sexuality through primary homothallism within host lungs. mBio 9:e02201-17. https://doi.org/10.1128/mBio.02201-17.
- Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB, Flynn RA, Young RA, Sharp PA. 2008. Divergent transcription from active promoters. Science 322:1849–1851. https://doi.org/10.1126/science.1162253.
- Seila AC, Core LJ, Lis JT, Sharp PA. 2009. Divergent transcription: a new feature of active promoters. Cell Cycle 8:2557–2564. https://doi.org/10 .4161/cc.8.16.9305.
- 33. Lepoivre C, Belhocine M, Bergon A, Griffon A, Yammine M, Vanhille L, Zacarias-Cabeza J, Garibal MA, Koch F, Maqbool MA, Fenouil R, Loriod B, Holota H, Gut M, Gut I, Imbert J, Andrau JC, Puthier D, Spicuglia S. 2013. Divergent transcription is associated with promoters of transcriptional regulators. BMC Genomics 14:914. https://doi.org/10.1186/1471-2164-14 -914.
- Coelho MA, Bakkeren G, Sun S, Hood ME, Giraud T. 2017. Fungal sex: the basidiomycota. Microbiol Spectr 5. https://doi.org/10.1128/microbiolspec .FUNK-0046-2016.
- Kelly M, Burke J, Smith M, Klar A, Beach D. 1988. Four mating-type genes control sexual differentiation in the fission yeast. EMBO J 7:1537–1547. https://doi.org/10.1002/j.1460-2075.1988.tb02973.x.
- Hanson SJ, Wolfe KH. 2017. An evolutionary perspective on yeast matingtype switching. Genetics 206:9–32. https://doi.org/10.1534/genetics.117 .202036.
- Wolfe KH, Butler G. 2017. Evolution of mating in the Saccharomycotina. Annu Rev Microbiol 71:197–214. https://doi.org/10.1146/annurev-micro -090816-093403.
- Michael H, Schmidt H, Fleck O, Gutz H, Liedtke C, Lorentz A, Ostermann K. 1994. The mating-type region of *Schizosaccharomyces pombe* contains an essential gene encoding a protein homologous to human modulators of HIV transactivation. Gene 145:205–210. https://doi.org/10.1016/0378 -1119(94)90006-x.
- Ni M, Feretzaki M, Sun S, Wang X, Heitman J. 2011. Sex in fungi. Annu Rev Genet 45:405–430. https://doi.org/10.1146/annurev-genet-110410-132536.
- 40. Yun SH, Kim HK, Lee T, Turgeon BG. 2017. Self-fertility in *Chromocrea spinulosa* is a consequence of direct repeat-mediated loss of *MAT1-2*, subsequent imbalance of nuclei differing in mating type, and recognition between unlike nuclei in a common cytoplasm. PLoS Genet 13:e1006981. https://doi.org/10.1371/journal.pgen.1006981.
- 41. Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S, Munro CA, Rheinbay E, Grabherr M, Forche A, Reedy JL, Agrafioti I, Arnaud MB, Bates S, Brown AJ, Brunke S, Costanzo MC, Fitzpatrick DA, de Groot PW, Harris D, Hoyer LL, Hube B, Klis FM, Kodira C, Lennard N, Logue ME, Martin R, Neiman AM, Nikolaou E, Quail MA, Quinn J, Santos MC, Schmitzberger FF, Sherlock G, Shah P, Silverstein KA, Skrzypek MS, Soll D, Staggs R, Stansfield I, Stumpf MP, Sudbery PE, Srikantha T, Zeng Q, Berman J, Berriman M, Heitman J, Gow NA, Lorenz MC, Birren BW, Kellis M, Cuomo CA. 2009. Evolution of pathogenicity and sexual reproduction in eight *Candida* genomes. Nature 459:657–662. https://doi.org/10.1038/nature08064.
- Alanio A, Gits-Muselli M, Mercier-Delarue S, Dromer F, Bretagne S. 2016. Diversity of *Pneumocystis jirovecii* during infection revealed by ultradeep pyrosequencing. Front Microbiol 7:733. https://doi.org/10.3389/fmicb .2016.00733.
- Alby K, Schaefer D, Bennett RJ. 2009. Homothallic and heterothallic mating in the opportunistic pathogen *Candida albicans*. Nature 460:890–893. https://doi.org/10.1038/nature08252.

- Lin X, Hull CM, Heitman J. 2005. Sexual reproduction between partners of the same mating type in *Cryptococcus neoformans*. Nature 434:1017–1021. https://doi.org/10.1038/nature03448.
- Heitman J. 2010. Evolution of eukaryotic microbial pathogens via covert sexual reproduction. Cell Host Microbe 8:86–99. https://doi.org/10.1016/j .chom.2010.06.011.
- 46. Roach KC, Heitman J. 2014. Unisexual reproduction reverses Muller's ratchet. Genetics 198:1059–1069. https://doi.org/10.1534/genetics.114 .170472.
- Luraschi A, Richard S, Almeida J, Pagni M, Cushion MT, Hauser PM. 2019. Expression and immunostaining analyses suggest that *Pneumocystis* primary homothallism involves trophic cells displaying both plus and minus pheromone receptors. mBio 10:e01145-19. https://doi.org/10.1128/mBio .01145-19.
- David-Palma M, Sampaio JP, Gonçalves P. 2016. Genetic dissection of sexual reproduction in a primary homothallic basidiomycete. PLoS Genet 12: e1006110. https://doi.org/10.1371/journal.pgen.1006110.
- Mayrhofer S, Weber JM, Pöggeler S. 2006. Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete *Sordaria macrospora*. Genetics 172:1521–1533. https://doi .org/10.1534/genetics.105.047381.
- Nygren K, Strandberg R, Gioti A, Karlsson M, Johannesson H. 2012. Deciphering the relationship between mating system and the molecular evolution of the pheromone and receptor genes in *Neurospora*. Mol Biol Evol 29:3827–3842. https://doi.org/10.1093/molbev/mss193.
- Merlini L, Dudin O, Martin SG. 2013. Mate and fuse: how yeast cells do it. Open Biol 3:30008. https://doi.org/10.1098/rsob.130008.
- 52. Barr CM, Neiman M, Taylor DR. 2005. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol 168:39–50. https://doi.org/10.1111/j.1469-8137.2005.01492.x.
- Smulian AG, Sesterhenn T, Tanaka R, Cushion MT. 2001. The ste3 pheromone receptor gene of *Pneumocystis carinii* is surrounded by a cluster of signal transduction genes. Genetics 157:991–1002. https://doi.org/10 .1093/genetics/157.3.991.
- Jungbluth M, Mösch H-U, Taxis C. 2012. Acetate regulation of spore formation is under the control of the Ras/cyclic AMP/protein kinase A pathway and carbon dioxide in *Saccharomyces cerevisiae*. Eukaryot Cell 11:1021–1032. https://doi.org/10.1128/EC.05240-11.
- 55. Cushion MT, Ashbaugh A, Hendrix K, Linke MJ, Tisdale N, Sayson SG, Porollo A. 2018. Gene expression of *Pneumocystis murina* after treatment with anidulafungin results in strong signals for sexual reproduction, cell wall integrity, and cell cycle arrest, indicating a requirement for ascus formation for proliferation. Antimicrob Agents Chemother 62:e02513-17. https://doi.org/10.1128/AAC.02513-17.
- 56. Le Gal S, Damiani C, Rouillé A, Grall A, Tréguer L, Virmaux M, Moalic E, Quinio D, Moal MC, Berthou C, Saliou P, Le Meur Y, Totet A, Nevez G. 2012. A cluster of *Pneumocystis* infections among renal transplant recipients: molecular evidence of colonized patients as potential infectious sources of *Pneumocystis jirovecii*. Clin Infect Dis 54:e62–e71. https://doi .org/10.1093/cid/cir996.
- Matsumoto Y, Frenkel JK, Aikawa M, Yoshida Y. 1989. Proliferation of *Pneumocystis* trophozoites in human lymph nodes and in nude mice lungs. J Protozool 36:33S–34S. https://doi.org/10.1111/j.1550-7408.1989 .tb02682.x.
- Sukura A. 1995. Trophozoite-to-cyst ratio increases during recovery from *Pneumocystis carinii* pneumonia in rats. APMIS 103:300–306. https://doi .org/10.1111/j.1699-0463.1995.tb01110.x.
- 59. Tamburrini E, Mencarini P, Visconti E, De Luca A, Zolfo M, Siracusano A, Ortona E, Murri R, Antinori A. 1996. Imbalance between *Pneumocystis carinii* cysts and trophozoites in bronchoalveolar lavage fluid from patients with pneumocystosis receiving prophylaxis. J Med Microbiol 45:146–148. https://doi.org/10.1099/00222615-45-2-146.
- 60. Vargas SL, Ponce CA, Gallo M, Pérez F, Astorga JF, Bustamante R, Chabé M, Durand-Joly I, Iturra P, Miller RF, Aliouat EM, Dei-Cas E. 2013. Near-universal prevalence of *Pneumocystis* and associated increase in mucus in the lungs of infants with sudden unexpected death. Clin Infect Dis 56:171–179. https://doi.org/10.1093/cid/cis870.
- Ponce CA, Bustamante RI, Gallo M, Vargas SL. 2014. Diagnosis of the primary infection by *Pneumocystis* in autopsy specimens from two infants using lung impression smears (touch preps). Med Mycol Case Rep 5:28–31. https://doi.org/10.1016/j.mmcr.2014.06.001.
- 62. Cushion MT, Linke MJ, Ashbaugh A, Sesterhenn T, Collins MS, Lynch K, Brubaker R, Walzer PD. 2010. Echinocandin treatment of *Pneumocystis* pneumonia in rodent models depletes cysts leaving trophic burdens that

cannot transmit the infection. PLoS One 5:e8524. https://doi.org/10.1371/ journal.pone.0008524.

- Martinez A, Halliez MC, Aliouat EM, Chabé M, Standaert-Vitse A, Fréalle E, Gantois N, Pottier M, Pinon A, Dei-Cas E, Aliouat-Denis CM. 2013. Growth and airborne transmission of cell-sorted life cycle stages of *Pneumocystis carinii*. PLoS One 8:e79958. https://doi.org/10.1371/journal.pone.0079958.
- 64. Keely SP, Stringer JR. 2009. Complexity of the MSG gene family of *Pneumocystis carinii*. BMC Genomics 10:367. https://doi.org/10.1186/1471-2164-10-367.
- Schmid-Siegert E, Richard S, Luraschi A, Mühlethaler K, Pagni M, Hauser PM. 2017. Mechanisms of surface antigenic variation in the human pathogenic fungus *Pneumocystis jirovecii*. mBio 8:e01470-17. https://doi.org/10 .1128/mBio.01470-17.
- 66. Ma L, Chen Z, Huang DW, Cissé OH, Rothenburger JL, Latinne A, Bishop L, Blair R, Brenchley JM, Chabé M, Deng X, Hirsch V, Keesler R, Kutty G, Liu Y, Margolis D, Morand S, Pahar B, Peng L, Van Rompay KKA, Song X, Song J, Sukura A, Thapar S, Wang H, Weissenbacher-Lang C, Xu J, Lee CH, Jardine C, Lempicki RA, Cushion MT, Cuomo CA, Kovacs JA. 2020. Diversity and complexity of the large surface protein family in the compacted genomes of multiple *Pneumocystis* species. mBio 11:e02878-19. https://doi.org/10 .1128/mBio.02878-19.
- 67. Schmid-Siegert E, Richard S, Luraschi A, Mühlethaler K, Pagni M, Hauser PM. 2020. Expression pattern of the *Pneumocystis jirovecii* major surface

glycoprotein superfamily in patients with pneumonia. J Infect Dis 223:310–318. https://doi.org/10.1093/infdis/jiaa342.

- Barry JD, Ginger ML, Burton P, McCulloch R. 2003. Why are parasite contingency genes often associated with telomeres? Int J Parasitol 33:29–45. https://doi.org/10.1016/s0020-7519(02)00247-3.
- 69. Wang B, Liang X, Gleason ML, Hsiang T, Zhang R, Sun G. 2020. A chromosome-scale assembly of the smallest Dothideomycete genome reveals a unique genome compaction mechanism in filamentous fungi. BMC Genomics 21:321. https://doi.org/10.1186/s12864-020-6732-8.
- 70. Cushion MT. 2004. Comparative genomics of *Pneumocystis carinii* with other protists: implications for life style. J Eukaryot Microbiol 51:30–37. https://doi.org/10.1111/j.1550-7408.2004.tb00158.x.
- Wang B, Liang X, Gleason ML, Zhang R, Sun G. 2017. Genome sequence of the ectophytic fungus *Ramichloridium luteum* reveals unique evolutionary adaptations to plant surface niche. BMC Genomics 18:729. https://doi .org/10.1186/s12864-017-4118-3.
- 72. Inderbitzin P, Turgeon BG. 2015. Pondering mating: *Pneumocystis jirovecii*, the human lung pathogen, selfs without mating type switching, in contrast to its close relative *Schizosaccharomyces pombe*. mBio 6:e00583-15. https://doi.org/10.1128/mBio.00583-15.
- 73. Cissé OH, Hauser PM. 2018. Genomics and evolution of *Pneumocystis* species. Infect Genet Evol 65:308–320. https://doi.org/10.1016/j.meegid.2018 .08.015.

Philippe M. Hauser obtained his academic degrees in Biology from the University of Lausanne, Switzerland. For his Ph.D., he studied Gram-positive bacteria. Then he did a postdoctoral training at the University of Oxford, United Kingdom, during which he studied bacterial sporulation. Since 1996, he has been the leader of a research group studying *Pneumocystis* infection in humans at the Centre Hospitalier Universitaire Vaudois in Lausanne. He has investigated aspects of the

molecular epidemiology, drug resistance, and genomics of *Pneumocystis*. Presently, his research focuses on the sexuality and the antigenic variation of the fungus.