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Abstract

Plants have evolved numerous molecular strategies to cope with perturbations in environmental temperature, and 
to adjust growth and physiology to limit the negative effects of extreme temperature. One of the strategies involves 
alternative splicing of primary transcripts to encode alternative protein products or transcript variants destined for 
degradation by nonsense-mediated decay. Here, we review how changes in environmental temperature—cold, heat, 
and moderate alterations in temperature—affect alternative splicing in plants, including crops. We present examples 
of the mode of action of various temperature-induced splice variants and discuss how these alternative splicing 
events enable favourable plant responses to altered temperatures. Finally, we point out unanswered questions that 
should be addressed to fully utilize the endogenous mechanisms in plants to adjust their growth to environmental 
temperature. We also indicate how this knowledge might be used to enhance crop productivity in the future.
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Introduction

In natural environments, plants are repeatedly or continu-
ously exposed to a wide range of temperatures. Temperature 
is a key factor affecting plant growth and development. 
Apart from the daily fluctuations in ambient temperature 
(which additionally changes throughout the lifetime of a 
plant), plants are often exposed to ‘unpredictable’ extreme 
temperatures, such as unusual cold or heat, during different 
times of the year. The current rise in average global tem-
perature has a huge impact on plant growth and agricultural 
production, often leading to a decline in crop yield. Due to 

thermal stresses, every degree Celsius rise in temperature 
above current temperature may potentially decrease yield by 
3–7% for major crops like wheat, rice, and maize (Zhao et al. 
2017). Thus, from an agronomic point of view, it is essential 
to unravel how plants perceive and respond to fluctuations 
in temperature. As plants are sessile organisms they cannot 
relocate to escape a stress. Instead, to avoid or minimize 
the detrimental effects of stressful conditions such as high 
or low temperature, plants rely on mechanisms established 
during evolution to effectively respond and ensure survival 
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and reproductive growth. One such mechanism is alterna-
tive splicing (AS) of precursor mRNA (pre-mRNA) in re-
sponse to environmental perturbations including changes 
in temperature (Filichkin et  al., 2015a; Shang et  al., 2017; 
Laloum et al., 2018). Recent studies suggest that alternative 
pre-mRNA splicing may serve as a ‘molecular thermometer’ 
in the temperature-controlled adaptation of plants, allowing 
them to appropriately adjust transcript abundance (Capovilla 
et al., 2015). AS is a common phenomenon in many organ-
isms. For example, primary transcripts of 60% of the genes 
in Drosophila melanogaster undergo AS (Graveley et al., 2011), 
and in humans, primary transcripts of more than 95% of 
genes are affected by differential splicing (Pan et al., 2008). 
In Arabidopsis, the increased utilization of next-generation 
sequencing technologies in recent years has shown that up 
to 70% of the plant multi-exon genes generate more than 
a single transcript by AS, and that previous technical ap-
proaches such as microarray-based analyses had underesti-
mated the proportion of AS-affected genes (Calixto et  al., 
2018; Li et al., 2020a).

Although temperature regulates diverse biological processes 
in plants and triggers AS events, the molecular mechanisms 
controlling temperature-dependent AS are still poorly under-
stood. Here, we review the current knowledge about the effects 
of environmental temperature (low, high, and intermediate) 
on AS in plants. First, we briefly describe the mechanism of 
splicing regulation. We then highlight examples of how AS en-
ables favourable plant responses to altered temperatures. Finally, 
we point out currently unsolved questions to be addressed, and 
outline how this knowledge might be used to enhance crop 
productivity in the future.

The mechanism of alternative splicing

Constitutive splicing of pre-mRNA is controlled by a large 
ribonucleoprotein complex, called the spliceosome, which 
leads to the removal of non-coding introns to join the flanking 
exons and, thereby, assembles one mature transcript (Deckert 
et  al., 2006; Moore and Proudfoot, 2009; Kornblihtt et  al., 
2013). The spliceosome core components are supported by the 
serine/arginine-rich (SR) proteins and heterogeneous nuclear 
ribonucleoproteins that are responsible for splice site selec-
tion by binding to cis-regulatory elements located in exons 
or introns, thus activating or repressing the splicing process 
(Reddy, 2007; Kornblihtt et  al., 2013). Selection of alterna-
tive splice sites in a single type of pre-mRNA leads to AS, and 
thereby to the production of multiple mature mRNA isoforms 
(Reddy, 2007). Five basic types of AS are observed in plants 
depending on the selection of splice sites at the same pre-
mRNA. Elimination of splice site selection generates intron 
retention (IR), exon skipping, or mutual exclusion of exons, 
while the selection of distinct splice sites result in the gener-
ation of alternative 5′ or 3′ splice sites (Fig. 1A) (Reddy et al., 

2013; Posé et al., 2013). In this way, the same single pre-mRNA 
may undergo different AS events resulting in the formation 
of two or more mature transcripts encoding different protein 
isoforms, and these may functionally differ from one another 
(Nilsen and Graveley, 2010).

AS has the potential to change the number of protein vari-
ants (and, hence, their biochemical properties) encoded by a 
given genome. It can lead to the production of proteins with or 
without functional domains, thereby resulting in protein vari-
ants with a loss or gain of function, or to proteins with changed 
biochemical or cellular properties that may affect subcellular 
localization, stability, and function. In plants, a large number of 
transcripts of genes are alternatively spliced during stressful and 
non-stressful changes in the environment. Experimental evi-
dence shows that those changes in response to environmental 
stresses can be beneficial for plants, allowing them to rapidly 
adjust the transcript abundance of essential genes including 
key regulators involved in stress response, thereby promoting 
stress tolerance (Fig. 1B). In plants, approximately 40% of all 
AS events in response to changes in temperature are due to 
IR, making it the most common type of AS (Fig. 1B). IR was 
found to be the predominant AS event in plants exposed to 
cold, moderate temperature changes, and heat stress, while the 
occurrence of other AS events varies between different tem-
perature conditions.

Three modes of action of AS transcripts have been re-
ported in plants in response to temperature variations (Fig. 
2). The first is peptide interference by the formation of small 
interfering peptides (siPEPs). In this case, the alternatively 
spliced mRNA is translated into a truncated protein, the siPEP, 
which forms a non-functional heterodimer with an otherwise 
functional protein, which may be a transcription factor (TF) 

Fig. 1. Alternative splicing (AS) events in plants. (A) Types of splicing 
events (see also Verhage et al., (2017)). (B) Percentage of different 
AS events reported to date in response to cold, changes in ambient 
temperature, and heat in plants. Data were extracted from PubMed 
Central, December 2020 (https://pubmed.ncbi.nlm.nih.gov/). A3SS, 
alternative 3′ splice site selection; A5SS, alternative 5′ splice site selection; 
ES, exon skipping; IR, intron retention; MXE, mutual exclusion of exons.

https://pubmed.ncbi.nlm.nih.gov/
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(Seo et al., 2011a; Staudt and Wenkel, 2011). The siPEPs have 
dimerization domains but lack other functional domains, such 
as DNA-binding and/or transcription regulation domains 
(Yun et al., 2008; Seo et al., 2011a). siPEPs can, therefore, act 
as competitive inhibitors of the targeted TFs (Seo et al., 2011a; 
Staudt and Wenkel 2011). In contrast to RNA interference 
(RNAi) mediated by small interfering RNAs (siRNAs), or 
micro-RNAs (miRNAs) that interact with mRNAs to block 
their translation or induce their cellular degradation, peptide 
interference functions at the protein level (Ramachandran and 
Chen 2008; Staudt and Wenkel 2011; Naqvi et al., 2012). 

The second mode of action is nonsense-mediated decay 
(NMD) in which alternatively spliced transcripts are degraded. 
Many AS events, in particular IR, lead to the introduction 

of a premature translation termination codon (PTC) in the 
spliced transcript, thereby limiting the amount of transcript 
encoding functional protein. Splice variants containing a PTC 
are often targeted for degradation by NMD (Kurihara et al., 
2009; Rebbapragada and Lykke-Andersen 2009; Palusa and 
Reddy 2010). IR thus represents a molecular mechanism to 
down-regulate the functional output of a gene that is already 
actively transcribed, thereby bypassing the need for regulating 
its transcription, which may be a slower response. In the case 
of Arabidopsis it has been predicted that about 13% of the 
intron-containing genes are targeted by NMD (Kalyna et al., 
2012), while in humans up to one-third of the transcripts 
generated by AS are degraded by NMD (García-Moreno and 
Romão, 2020). 

Fig. 2. Role of temperature-induced alternative splicing (AS) and mode of action of different splice variants. (A) Regulation of down-stream target genes 
when the transcription factor (TF) transcript undergoes constitutive splicing to form a functional protein. A functional homodimer of the TF is formed that 
binds to the promoters of target genes to activate or repress their expression. (B) Temperature-induced AS can lead to three types of TF regulation. (i) 
Peptide interference by the formation of small interfering peptides (siPEPs). The alternatively spliced mRNA leads to a truncated protein that functions as 
an siPEP by forming a non-functional heterodimer with the functional protein; this inhibits the TF from binding to the promoters of target genes to affect 
their expression. (ii) Nonsense-mediated decay (NMD) of alternatively spliced transcripts. Many splice variants that contain premature termination codons 
(PTCs) are targeted for degradation by NMD, thereby altering the transcript levels available for translation to form the functional TF protein. (iii) Activation 
of the TF. AS leads to the formation of a truncated protein that has the ability to bind to the promoter of its own gene and modify its expression. Red lines 
represent constitutive splicing and orange lines represent temperature-induced AS.
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The third mode of action is activation of a TF. In this scenario, 
which has been reported for heat shock transcription factor A2 
(HSFA2) in Arabidopsis, AS leads to the formation of a truncated, 
and C-terminally modified, TF protein with an extra leucine-
rich motif. The modified TF has the capacity to bind to its own 
promoter to activate HSFA2 transcription (Liu et al., 2013).

Alternative splicing in response to low 
temperature

Cold is one of the major abiotic stresses affecting growth 
and development in higher plants, leading to reduced crop 
yields (Xin and Browse, 2000). Plants differ in their toler-
ance to chilling (0–15 °C) and freezing (<0 °C) temperatures. 

Many important tropical and subtropical crop plants like rice, 
corn, and tomato are sensitive to chilling stress whereas tem-
perate crops like wheat, barley, and rye are better adapted to 
survive freezing temperatures (Chinnusamy et al., 2007; Zhu 
et al., 2007). In higher plants, low temperature (4–15 °C) has 
a huge impact on splicing regulation (Fig. 3) (Calixto et al., 
2018; Chechanovsky et  al., 2019; Li et  al., 2020a, b). AS in 
response to cold appears to occur very rapidly (in the range 
of minutes), and small shifts in the cold temperature range 
result in changes in the number of transcripts undergoing 
AS (Calixto et al., 2018; Gallegos, 2018). It is estimated that 
approximately 33% of the cold-responsive transcripts are al-
ternatively spliced (Calixto et al., 2019). Here, we summarize 
recent findings that describe how low temperature induces 
AS in different plants.

Fig. 3. Temperature-induced alternative splicing (AS) under different temperature conditions resulting in the plant’s adaptation. Overview of the genes 
undergoing AS under diverse temperature regimes like cold (around 4–15 °C), changes in ambient temperature (16–27 °C), and heat stress (28–45 °C), 
and the resulting physiological responses. AS in response to changes in temperature (including extreme temperatures) has been shown to play an 
important role in improving plant performance and stress tolerance. As an example, AS of the flowering time genes FLM and MAF2 in response to a 
change in ambient temperature regulates the transition to flowering and reproductive growth in plants. A higher ambient temperature (27 °C) induces 
flowering while a lower temperature (16 °C) represses flowering. Dashed lines indicate indirect responses. The red arrows indicate up-regulation (upward 
arrow) or down-regulation (downward arrow). IR, intron retention; MXI, mutually exclusive incorporation; NMD, non-sense mediated decay; siPEPs, small 
interfering peptides.
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In general, the response to cold is regulated by the CBF–COR 
hierarchical network with C-REPEAT/DEHYDRATION-
RESPONSIVE ELEMENT BINDING FACTORS (CBF/
DREBs) and their downstream targets, COLD-REGULATED 
(COR) genes, as the central components (Badawi et al., 2007; 
Mao and Chen 2012). The transcripts of DREB genes undergo 
AS in response to cold whereby the changes in temperature 
regulate the abundance of particular isoforms. For example, 
the wheat WDREB2 gene, a homologue of the Arabidopsis 
DREB2A and DREB2B genes, undergoes AS by exon skip-
ping to produce three splice variants at 4  °C (Egawa et  al., 
2006). Similarly, the rice DREB2-type gene OsDREB2B is al-
ternatively spliced into two active variants, OsDREB2B1 and 
OsDREB2B2, at low temperatures (Matsukura et  al., 2010). 
In addition to DREBs, the COR genes undergo AS in re-
sponse to cold. In durum wheat (Triticum durum), the tran-
scripts of two early COR (e-COR) genes putatively encoding 
a ribokinase and a C3H2C3 RING-finger protein are alterna-
tively spliced to retain a subset of introns in the mature mRNA 
during the cold period (Mastrangelo et al., 2005). In the tea 
plant (Camellia sinensis), the CsCOR gene was also found to 
undergo AS to form a truncated protein at low temperature; 
however, whether this shortened protein has a biological func-
tion has not been reported (Li et al., 2020b).

It is interesting to note that AS affects not only tran-
scripts of genes that regulate the cold response in plants, 
but also a range of genes involved in plant growth and de-
velopment including the circadian clock. In Arabidopsis, 
the expression of isoforms of many clock components, e.g. 
LATE ELONGATED HYPOCOTYL (LHY), PSEUDO-
RESPONSE REGULATOR 3 (PRR3), PRR5, PRR7, PRR9, 
and TIMING OF CAB (TOC1), is controlled by AS by IR 
(Filichkin et  al., 2015b). Similarly, cold-dependent IR of 
CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) leads to 
the formation of the two isoforms CCA1α and CCA1β. Here, 
the retention of the fourth intron produces the CCA1β isoform 
that forms a non-functional heterodimer with CCA1α and in-
hibits CCA1α’s activity. In this way, CCA1β acts as a siPEP. AS 
of the CCA1 transcript is suppressed by cold, which releases 
CCA1α repression and allows it to be fully functional in regu-
lating freezing tolerance in Arabidopsis (Park et al., 2012; Seo 
et al., 2012). In Medicago truncatula, cold induction results in the 
formation of four alternatively spliced variants of MtJMJC5, 
which encodes a JmjC domain-containing protein, a circadian 
clock component (Shen et  al., 2016). Also, in a commercial 
sugarcane variety (Saccharum hybrid, SP80-3280), the tempera-
ture- and organ-dependent AS of five clock genes, ScLHY, 
ScPRR37, ScPRR73, ScPRR95, and ScTOC1, was observed 
(Dantas et al., 2019). These findings suggest a strong correlation 
between temperature and AS events in circadian clock genes.

In addition to the already mentioned AS events in clock 
genes, transcripts of genes involved in flowering time regu-
lation are alternatively spliced in response to prolonged cold 

exposure (Guan et  al., 2013; Wang et  al., 2019). The main 
mechanism of vernalization-mediated flowering requires re-
pression of the transcription of FLOWERING LOCUS C 
(FLC), a MADS-box TF that acts as a negative regulator of 
flowering (Sheldon et al., 2000). The cold-dependent silencing 
of FLC is controlled by the long non-coding anti-sense RNA 
COLD INDUCED LONG ANTISENSE INTRAGENIC 
RNA (COOLAIR) produced from the FLC locus (Swiezewski 
et al., 2009; Sun et al., 2013). The temperature-dependent AS 
of COOLAIR subsequently regulates the expression of FLC 
through co-transcriptional coupling mechanisms (Swiezewski 
et al., 2009; Hornyik et al., 2010; Marquardt et al., 2014), pro-
viding plants with the ability to measure temperature and to 
integrate this external information to regulate flowering time.

Furthermore, links between AS, the response to cold 
stress, and plant metabolism were reported. In particular, in 
C. sinensis, a large number of AS events occurs in transcripts 
associated with sugar metabolism and antioxidant pathways, 
such as SUCROSE SYNTHASE (CsSUS), RAFFINOSE 
SYNTHASE (CsRS), and PEROXIDASE (CsPOD) (Li 
et al., 2020b). These pathways contribute to establishing cold 
tolerance by protecting membrane structures, reducing oxi-
dative damage through the induction of reactive oxygen 
species (ROS)-degrading enzymes, and the accumulation 
of sugars that can have a protective function at high con-
centration (Uemura and Steponkus, 2003; Sun et  al., 2010; 
Rai et al., 2013). Similarly, in Arabidopsis, the primary tran-
script of INDETERMINATE DOMAIN 14 (IDD14), a 
regulator of starch metabolism, undergoes AS by IR to form 
the functional IDD14α isoform and the truncated form 
IDD14β (Seo et  al., 2011b). IDD14α and IDD14β form a 
heterodimer that displays reduced binding capacity to the 
promoter of the QUA-QUINE STARCH (QQS) gene that 
regulates starch accumulation. Overexpression of IDD14α 
leads to retarded growth, similar to QQS overexpression. As 
IDD14β overexpression rescues the IDD14α overexpression 
phenotype, AS of the IDD14 transcript may be a cold adap-
tation strategy for the plant to modulate starch accumulation 
to withstand the cold conditions (Seo et  al., 2011b). These 
findings suggest a possible link between carbohydrate me-
tabolism and low-temperature signalling mediated by AS. 
Also in potato (Solanum tuberosum), sugar metabolism genes 
undergo AS. Here, cold-induced AS by exon skipping occurs 
in the transcripts of one of the plant’s INVERTASE genes 
responsible for the conversion of sucrose to glucose and fruc-
tose (Bournay et al., 1996). The accumulation of these redu-
cing sugars in tubers stored under cold conditions leads to 
reduced tuber quality in many cultivars. This phenomenon is 
known as low-temperature sweetening (Davies et al., 1989). 
Here, invertase inhibitors bind to invertases to inactivate 
them (Hothorn et  al., 2010). Interestingly, one of the most 
abundant forms of invertase inhibitor genes expressed in po-
tato tubers, INH2, is regulated by AS. During cold storage 
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of potato tubers of cultivars resistant to cold-induced sweet-
ening, the levels of the unspliced INH2α transcript, which 
encodes the full-length INH2 protein, and hybrid INH2β 
mRNAs generated through splicing of INH2α and INH1 
transcripts, were higher than in tubers of sensitive cultivars. 
The increase in invertase inhibitor levels in the resistant cul-
tivars may be responsible for the suppression of acid invertase 
activity and sucrose breakdown, thereby leading to reduced 
cold-induced sweetening (Brummell et al., 2011). Also, sugar 
transporter genes, e.g. SUGARS WILL EVENTUALLY 
BE EXPORTED TRANSPORTER 17 (SWEET17) in 
C. sinensis undergo AS in response to cold (Yao et al., 2020). 
Interestingly, a metabolic or physiological reprogramming 
of the transcriptome as a result of AS was also observed in 
animals such as Caenorhabditis elegans, mouse, and human, 
where genes involved in pyruvate metabolism, glycolysis, 
and gluconeogenesis were found to be alternatively spliced 
(Tabrez et al., 2017; Biamonti et al., 2018).

A recent study showed that 46 of the 379 long non-coding 
RNAs (lncRNAs) in Arabidopsis are alternatively spliced in 
response to cold (of which half are also differentially expressed 
after cold treatment), suggesting an important regulatory 
mechanism involved in cold acclimation and freezing tolerance 
(Calixto et al., 2019). For example, the transcript of TAS1a is 
alternatively spliced upon exposure to cold, without a major 
change in gene expression level. The non-spliced TAS1a tran-
script, which is more abundant at normal growth tempera-
ture, contains a miR173 binding site in its intron; binding of 
miR173 to the non-spliced intron sequence causes the forma-
tion of transacting siRNAs (tasiRNAs). The splicing of the pri-
mary TAS1a transcript at low temperature removes its intron, 
thereby eliminating the miR173 binding site and leading to a 
reduction of the level of siRNAs. The data demonstrate that 
AS regulates the production of siRNAs in response to cold 
stress (Calixto et  al., 2019). In addition, various studies pro-
vide evidence that cold induces AS in a tissue-specific manner. 
For example, tissue-specific cold-induced AS occurs in the 
wild rice Oryza longistaminata, which is tolerant to cold non-
freezing temperatures, unlike Oryza sativa, which is chilling 
stress-sensitive. Transcriptome profiling of shoots and rhizomes 
of O.  longistaminata subjected to chilling stress revealed that 
cold-induced AS was transcript-specific in these tissues. Most 
of the chilling-induced genes undergoing AS only in shoots 
are involved in photosynthesis and the regulation of gene ex-
pression, whereas those undergoing AS only in rhizomes are 
mainly involved in stress signal transduction. This observation 
suggests that tissue-specific AS may play an important role in 
regulating cold acclimation in O. longistaminata (Zhang et al., 
2017).

In summary, compelling evidence from various studies dem-
onstrates that a large number of AS events observed in plants 
in response to cold temperature are not random. In fact, those 
events contribute to the acquisition of cold acclimation in 
plants, allowing them to develop cold tolerance.

Alternative splicing induced by moderate 
changes in ambient temperature

In addition to low temperature, moderate changes in ambient 
temperature may trigger AS (Fig. 3) (Verhage et al., 2017). For 
example, transcripts of Arabidopsis genes encoding the RNA-
binding protein PUMILIO 23 (PUM23) and three other regu-
latory proteins, i.e. mitochondrial EMBRYO DEFECTIVE 
3114 (EMB3114), SNF1 KINASE HOMOLOG 11 
(AKIN11), and FYD (Streitner et al., 2013), are subject to AS 
at small changes in ambient temperature (from 16 °C to 20 °C, 
from 20  °C to 24  °C, and from 20  °C to 16  °C) (Streitner 
et al., 2013).

AS is also involved in regulating flowering time in response to 
fluctuating ambient temperature. The temperature-dependent 
AS observed in the transcript of FLOWERING CONTROL 
LOCUS A  (FCA), which encodes an RNA-binding protein 
involved in the biosynthesis of the flowering time regulator 
microRNA172 (miR172) (Macknight et  al., 1997; Jung et  al., 
2012), is a well-known example. The FCA mRNA undergoes 
AS so that functional FCA protein is more abundant at 23 °C 
than 16 °C, which leads to an accumulation of miR172 at the 
higher temperature (Jung et al., 2012).

Other flowering time regulators are also controlled by am-
bient temperature-triggered AS, including FLOWERING 
LOCUS M (FLM), a MADS-domain TF (Scortecci et  al., 
2001; Balasubramanian et  al., 2006). FLM modulates 
flowering time by creating a repressor complex with FLC or 
SHORT VEGETATIVE PHASE (SVP) proteins in a wide 
range of temperatures. Interestingly, the FLM transcript 
undergoes alternative splicing in response to changes in am-
bient temperature (Balasubramanian et  al., 2006). FLM-β 
and FLM-δ are the predominant splice variants formed by 
the mutual exclusion of exons: while exon 2 is maintained 
in the FLM-β transcript, exon 3 is retained in the FLM-δ 
transcript (Lee et al., 2013; Posé et al., 2013). Low ambient 
temperature (16  °C) favours the expression of the repres-
sive isoform FLM-β, and its expression decreases when am-
bient temperature increases (27  °C) (Lee et  al., 2013; Posé 
et  al., 2013). FLM-β protein forms a complex with SVP, 
a MADS-domain TF that actively represses flowering by 
binding to, for example, the promoter of the flowering time 
integrator SUPPRESSOR OF OVEREXPRESSION OF 
CONSTANS 1 (SOC1) (Posé et  al., 2013). Although ini-
tial research had indicated an important role of the FLM-δ 
isoform for flowering control, as a competitor of FLM-β in its 
interaction with SVP, follow-up research revealed a less im-
portant role of FLM-δ (Lutz et al., 2015; Sureshkumar et al., 
2016; Lutz et al., 2017). Apart from FLM-β and FLM-δ, add-
itional FLM splice variants are generated in Arabidopsis Col-
0, particularly at higher ambient temperatures (Sureshkumar 
et  al., 2016; Capovilla et  al., 2017). Most of the additional 
splice variants harbour PTCs and are targeted for degrad-
ation by NMD, which in consequence leads to a decrease 
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in the level of transcripts available for translation into the 
functional isoform FLM-β at higher ambient temperatures. 
Furthermore, the SVP protein is degraded at higher ambient 
temperatures (Lee et al., 2013). This decrease in the FLM–
SVP repressor complex promotes flowering at elevated tem-
peratures (Sureshkumar et al., 2016). To further elucidate the 
role of FLM-β and FLM-δ in flowering, CRISPR-Cas9-
generated mutants lacking the second (FLM-∆E2, FLM-δ) 
or third (FLM-∆E3, FLM-β) exon of the FLM transcript 
were studied (Capovilla et  al., 2017). A  comparison of the 
genome-edited plants with the flm loss-of function mutant 
showed that expression of FLM-δ alone did not promote 
flowering while expression of FLM-β delayed flowering. 
Taken together, the results suggest that FLM-δ is unlikely to 
promote flowering, while temperature-induced AS regulates 
the levels of FLM-β, which plays a crucial role in flowering 
time regulation (Fig. 3).

The balance between the FLM-β and FLM-δ isoforms 
is regulated by splicing factors like the U2 AUXILIARY 
FACTORs ATU2AF65A and ATU2AF65B, the GLYCINE-
RICH PROTEINs ATGRP7 and ATGRP8, and SPLICING 
FACTOR 1 (ATSF1) (Lee et al., 2017; Park et al., 2019; Steffen 
et al., 2019). Recently, the CYCLIN-DEPENDENT KINASE 
G2 (CDKG2)–CYCLIN L1 (CYCL1) complex has also been 
shown to regulate this balance and to be required for the 
correct processing of the alternative introns 1 and 4 in FLM 
pre-mRNA (Nibau et al., 2020). When the CDKG2–CYCL1 
complex was absent, expression of the FLM-δ isoform in-
creased while expression of the FLM-β variant decreased in a 
temperature-dependent manner, resulting in an early-flowering 
phenotype (Nibau et  al., 2020). Interestingly, the CDKG2–
CYCL1 complex also regulates the temperature-dependent 
splicing of another CDK, i.e. CDKG1, which regulates AS 
of the splicing factor ATU2AF65A transcript (Cavallari et al., 
2018). ATU2AF65A undergoes AS when ambient tempera-
ture is lowered from 23 °C to 16 °C (Verhage et al., 2017). This 
observation indicates that apart from their primary function in 
the progression of the cell cycle, CDKs may play an essential 
role in linking temperature sensing mechanisms with the AS of 
specific transcripts.

Another flowering time component subject to AS is MADS 
AFFECTING FLOWERING 2 (MAF2), a gene closely re-
lated to FLM at the sequence level. Different AS events occur 
in the MAF2 primary transcript. However, only one of them 
leads to the formation of a functional, full-length MIKC-type 
MADS-domain TF that represses flowering (Rosloski et  al., 
2013). The expression of this splice variant is elevated at low 
ambient temperature (16 °C), and the protein it encodes inter-
acts with SVP to repress flowering. Interestingly, at higher am-
bient temperatures (21–27 °C), the MAF2 primary transcript 
undergoes AS by IR to introduce a PTC (Rosloski et al., 2013). 
This isoform encodes a protein incapable of interacting with 
SVP and, consequently, to inhibit flowering. A  progressive 

temperature-dependent early-flowering phenotype has been 
observed in Arabidopsis plants, which flower earlier at 27 °C 
than at 21  °C, and earlier at 21  °C than at 16  °C (Airoldi 
et al., 2015). At higher ambient temperatures, AS triggers the 
increased production of MAF2 and FLM isoforms, which lack 
the repressive function that may be responsible for the decrease 
in flowering repression. Similarly, also MAF3 undergoes AS in 
response to changes in ambient temperature (Verhage et  al., 
2017). Among the several AS products derived from the pri-
mary MAF3 transcript, only the transcript that includes a skip-
ping of exon 2 shows temperature sensitivity (Verhage et al., 
2017).

There is increasing evidence that AS in response to changes 
in ambient temperature is not only limited to genes involved 
in flowering time regulation, but also affects other develop-
mental genes. For example, the splice regulator PORCUPINE 
(PCP) has recently been reported to be a temperature-specific 
regulator of development in Arabidopsis (Capovilla et  al., 
2018). When pcp-1 knockout plants grown at permissive am-
bient temperature (23 °C) were shifted to a lower temperature 
(16 °C), growth was arrested and plants were rendered male 
sterile. When the permissive temperature was re-established, 
the pcp-1 loss-of-function mutant restored the wild type-like 
phenotype. At low ambient temperature (16 °C), pcp-1 plants 
showed aberrant shoot apical meristems, and altered lateral 
organ formation. In a proteome study, two variants of the 
PCP protein, PCP-α and PCP-β, which are encoded by al-
ternatively spliced PCP transcripts, were identified (Ito et al., 
2011; Capovilla et al., 2018). The constitutive overexpression of 
PCP-α, but not PCP-β, rescues the pcp-1 phenotype at 16 °C. 
The two splice variants differ from each other only in the ex-
treme 3′ part of the protein-coding region, indicating that the 
C-terminal region of the PCP protein may be imperative for 
its function (Capovilla et al., 2018).

It is important to note that among the genes in 
Arabidopsis undergoing AS due to elevated ambient tem-
perature, approximately 96% harbour a histone H3 ly-
sine 36 tri-methylation (H3K36me3)-enriched region in 
their gene body. Several flowering time regulators (such as 
FLM, MAF2, and FCA) and circadian clock components 
(PRR3 and PRR7) affected by temperature-induced AS 
harbour this mark (Pajoro et  al., 2017). In addition, lack 
of histone methyltransferases involved in the deposition 
of H3K36me3 marks led to altered AS upon a tempera-
ture shift from 16 °C to 25 °C. Mutants affected in writing, 
erasing, and reading the H3K36me3 mark showed altered 
elevated temperature-induced flowering. Therefore, the 
H3K36me3 mark plays an important role in regulating am-
bient temperature-induced AS of biological relevance. The 
results also demonstrate that AS and epigenetic regulation of 
chromatin are coupled (Pajoro et  al., 2017). Evidence that 
AS affects the epigenetic landscapes of cells, thereby modu-
lating gene expression, has also been obtained in mammals. 
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For example, LYSINE-SPECIFIC DEMETHYLASE 1 has 
been reported to repress and activate gene expression pro-
grammes in neurons by mediating histone H3K4me1/2 and 
H3K9me1/2 demethylation, respectively (Laurent et  al., 
2015).

Heat-regulated alternative splicing

Heat stress is another abiotic stress that adversely affects plant 
growth and reduces crop yields. Each crop has a different 
threshold temperature (above which growth and development 
are severely affected). For example, a temperature threshold of 
35  °C has been reported for rice, and 33–38  °C for maize. 
The susceptibility to high temperature can also depend on the 
stage of development of the plant. For example, the tempera-
ture threshold in wheat was observed to be 20–30 °C for vege-
tative growth and 15 °C for reproductive growth, whereas in 
tomato the temperature threshold was observed to be 37 °C 
for vegetative growth and 28–30 °C for reproductive growth 
(Janni et al., 2020). Given the current level of knowledge of AS 
in plants in response to high temperature, it is predicted that 
~46, 46, and 55% of intron-containing genes in Arabidopsis 
undergo AS in response to mild, severe, or extreme/lethal 
changes in temperature, respectively (Ling et al., 2018). Here, 
we summarize recent findings that describe how heat stress in-
duces AS in different plant species that in turn can lead to plant 
adaptation to higher temperatures.

The heat stress response is controlled by members of the 
heat shock factor (HSF) transcription factor family that ac-
tivate (or repress) HEAT SHOCK PROTEIN (HSP) genes. 
The HSPs in turn function as molecular chaperones to pro-
tect the proteome against the negative effects of heat stress 
(Zhang et  al., 2010; Wu et  al., 2013). Interestingly, HSFs are 
strongly impacted by splicing regulation in the response to heat 
stress in plants. In the Drosophila HSF (dHSF), both heat- and 
cold-induced AS are observed, in which the abundance of the 
dHSFb isoform increases upon heat exposure, while that of the 
dHSFd isoform increases upon cold exposure, which may lead 
to the induction of different HSPs (Fujikake et al., 2005). AS of 
HSFs in response to cold has not yet been reported in plants. 
In Arabidopsis, various HSFs, e.g. HSFA2, HSFA7b, HSFB1, 
HSFB2a, and HSF4c, undergo extensive AS in response to heat 
stress by producing intron-retained splice variants (He et  al., 
2008; Sugio et al., 2009; Amano et al., 2011; Liu et al., 2013; 
Cheng et al., 2015; Jiang et al., 2017; Zhang et al., 2020). For 
example, at 22 °C the HSFA2 transcript is fully spliced, while 
at a moderately high temperature (37 °C) a 31-nucleotide-long 
cryptic mini-exon is derived from within the HSFA2 intron. 
This leads to the generation of the splice variant HSFA2-II that 
is further degraded by NMD due to a PTC present within the 
mini-exon (Sugio et  al., 2009). Interestingly, during extreme 
heat (45  °C) a third splice variant, HSFA2-III, is generated 
by retaining an approximately 80-nucleotide-long 5′ region 
of the intron in the processed mRNA. HSFA2-III is translated 

into a truncated, C-terminally modified protein, S-HSFA2. 
The S-HSFA2 variant binds to the HSFA2 promoter, thereby 
creating a positive auto-regulatory loop controlling HSFA2 
expression (Liu et al., 2013). Of note, alternatively spliced HSF 
transcripts are observed in different plant species, e.g. Medicago 
sativa HSF1, Potamogeton malaianus and P. perfoliatus HSFA2a2, 
rice (Oryza sativa) HSFA2d, maize (Zea mays) ZmHSF04 and 
ZmHSF17, and grape (Vitis vinifera) HSFA2 (He et al., 2008; 
Sugio et al., 2009; Amano et al., 2011; Liu et al., 2013; Cheng 
et al., 2015; Jiang et al., 2017; Zhang et al., 2020). In lily (Lilium 
spp.), LlHSFA3B undergoes heat-induced AS to generate splice 
variant LlHSFA3B-III (Wu et  al., 2019). The LlHSFA3B-III 
protein appeared to be transcriptionally inactive in a yeast test 
system. A green fluorescent protein (GFP)–LlHSFA3B-III fu-
sion protein accumulated in both the nucleus and cytoplasm. 
Notably, LlHSFA3B-III negatively affects the interaction of 
the full-length HSFA3 proteins LlHSFA3A-I and LlHSFA3B-I 
(Wu et  al., 2019). Enhanced tolerance to both salinity stress 
and prolonged heat treatment at 40  °C was observed in 
transgenic Arabidopsis and Nicotiana benthamiana plants ex-
pressing LlHSFA3B-III, while tolerance to acute heat shock 
at 45 °C was reduced. Furthermore, the interaction between 
LlHSFA3B-III with LlHSFA3A-I was found to be essential for 
reducing the transactivation function of LlHSFA3A-I, thereby 
limiting various adverse effects of increased LlHSFA3A-I ac-
cumulation such as sensitivity to salinity and heat during pro-
longed heat stress (Wu et al., 2019). More importantly, the AS 
pattern for HSFs appears to be largely conserved between 
plants indicating that heat-induced AS regulation is an evolu-
tionarily conserved phenomenon (Chang et al., 2014).

It is important to note that heat stress-induced AS not only 
occurs in transcripts of HSF genes, but also in transcripts of 
HSPs and other heat stress-inducible genes such as DREB2B 
and BZIP28 in Arabidopsis (Liu et al., 2013). As in the case of 
HSFs, retention of the first intron was observed in HSP tran-
scripts, suggesting a conserved mechanism of AS in response to 
high temperature (Neves-da-Rocha et al., 2019). Interestingly, 
recent research suggested that STABILIZED1 (STA1), a 
U5-snRNP-interacting protein, acts as a high temperature-
specific splicing factor involved in AS of HSP and HSF pri-
mary transcripts, i.e. HSFA3 (Kim et  al., 2018). Pre-mRNA 
of HSFA3, whose transcription is induced by the upstream 
transcription factor DREB2A, is spliced with a contribution 
from STA1. The protein produced from its mature mRNA in-
duces the expression of HSP genes. The findings also suggest 
that heat-inducible STA1 is required for the establishment of 
acquired, but not basal, heat stress tolerance (Kim et al., 2017, 
2018).

In natural environments and in agricultural fields, plants are 
often subject to recurrent stress. One of the strategies to cope 
with recurring stress is a process called ‘priming’ through which 
moderately stressed plants ‘prepare’ themselves to successfully 
withstand a later, and often more severe, stress. The period be-
tween both stresses is called the ‘memory phase’. During this 
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phase the specific molecular-biochemical changes induced by 
a priming stress are maintained to allow the plant to withstand 
the second stress, which otherwise would be more harmful or 
even deadly (Hilker et al., 2016). Some of the molecular mech-
anisms underlying molecular memory have been discovered 
in recent years, although a coherent picture is not yet avail-
able (Sedaghatmehr et  al., 2016; Luo et  al., 2020; Mayer and 
Charron, 2020).

Heat priming-induced splicing memory has been studied in 
Arabidopsis, where plants subjected to a priming heat stress re-
tain the memory of constitutive splicing of transcripts of many 
heat-responsive genes (including HSFs and HSPs). In response 
to heat priming, the transcripts of HSP genes like HSP21, 
HSP101, HSP70.10, HSP70.6, HSP90.5, and HSP100.3 are 
alternatively spliced, mostly by IR (Ling et al., 2018). In primed 
plants, these gene transcripts undergo constitutive splicing 
when subjected to a second heat stress (called triggering). 
Unlike in primed plants, a significant splicing repression was 
observed in non-primed plants directly subjected to the trig-
gering heat stress, which subsequently led to an increase in al-
ternatively spliced isoforms of several HSF and HSP transcripts 
in these plants. This ‘splicing memory’ enables the primed 
plants to combat subsequent and otherwise lethal heat stress 
conditions (Ling et  al., 2018). Heat-induced AS may, there-
fore, play an important role in the thermomemory response in 
plants. However, the molecular mechanisms underpinning the 
splicing memory are unknown at present.

Interestingly, transcripts undergoing AS are not only dir-
ectly involved in the heat stress response, but are also in-
volved in plant growth and metabolism. For example, the 
zinc finger (ZF)-containing transcription factor SHOOT 
GRAVITROPISM 5 (SGR5; also called INDETERMINATE 
DOMAIN 15, IDD15), which is responsible for mediating 
initial events of gravitropic responses in inflorescence stems 
in Arabidopsis (Morita et  al., 2006), undergoes AS that is 
accelerated by higher temperatures. IR in the SGR5 tran-
script produces two protein isoforms, the completely spliced 
SGR5α transcription factor and the truncated SGR5β form 
lacking the functional ZF motif. SGR5β binds to SGR5α to 
form a non-functional heterodimer that lacks DNA-binding 
activity and thus functions as an siPEP. Since this AS is en-
hanced at higher temperature, SGR5β protein accumulates 
during heat stress; this heat-induced accumulation of SGR5β 
enables shoots to curve away from the source of heat, thereby 
serving as an adaptive response developed to protect shoots 
from hot air when plants are growing in heat stress conditions 
(Kim et al., 2016).

A second example is the rice transcription factor OsbZIP58, 
a regulator of various starch synthesis and storage protein genes 
(Hakata et  al., 2012; Xu et  al., 2020). The loss-of-function 
phenotype of OsbZIP58 is characterized by reduced seed 
storage material, and floury and shrunken endosperms under 
high-temperature conditions. The OsbZIP58 primary tran-
script undergoes AS by IR during heat stress to generate PTCs, 

leading to the increased accumulation of a truncated protein, 
OsbZIP58β. The newly formed OsbZIP58β protein is tran-
scriptionally less active than OsbZIP58α derived from the fully 
spliced transcript. The heat-induced AS of OsbZIP58 is more 
pronounced in heat sensitive rice varieties like japonica than in 
heat resistant varieties like indica. The production of the tran-
scriptionally less active protein OsbZIP58β due to increased 
AS in japonica may lead to an impaired accumulation of storage 
materials, thereby leading to the higher heat sensitivity. The 
reduced AS of OsbZIP58 in less heat sensitive indica may be 
responsible for the heat tolerance observed during grain filling 
in these varieties (Xu et al., 2020).

In addition, heat stress-induced AS provides a mechanism 
for regulating miRNA processing in plants. An example for 
this has been reported in Arabidopsis, where intronic miR400 
is co-transcribed together with its host gene (AT1G32583). 
Under conditions of elevated temperature (37  °C, 30 min–
12 h), miR400 and the host gene transcript display opposite 
responses. While the abundance of the host gene transcript 
slightly decreased, the abundance of miR400 primary tran-
script strongly increased by 12 h compared with controls; the 
level of mature miR400 continuously declined. It turned out 
that the accumulation of miR400 was triggered by an AS in 
intron 1 under higher temperatures that produced a version of 
the transcript from which the miR400-containing intron could 
not be spliced out. This then blocked the efficient further pro-
cessing to mature miR400 (Yan et al., 2012). Overexpression of 
miR400 reduces the tolerance to heat stress, although the pre-
cise molecular mode of action for this is not well known yet. 
However, miR400 guides PPR1 and PPR2 mRNAs, which 
encode pentatricopeptide repeat proteins, for cleavage, which 
may suggest an involvement of the two proteins in the heat 
stress response (Yan et al., 2012; Park et al., 2014).

In summary, AS in response to high temperature occurs in 
many genes involved in the heat stress response like HSFs, 
bZIPs, HSPs, and others. The heat-induced AS of these genes 
leads to favourable adaptive responses in plants as seen in the 
case of AS in SGR5, OsbZIP58, and the heat priming-induced 
splicing memory.

Temperature-induced alternative splicing 
of splicing regulators

In addition to the above mentioned examples, also members 
of the spliceosomal complex themselves undergo AS in dif-
ferent temperature regimes. For example, transcriptome ana-
lysis of ambient temperature-induced AS in Arabidopsis and 
Brassica oleracea ssp. botrytis revealed differential splicing in sev-
eral classes of splicing-related genes, indicating that the whole 
spliceosome is affected by fluctuations in ambient tempera-
ture (Verhage et al., 2017). These findings suggest a two-step 
model controlling ambient temperature perception through 
AS: first, the splicing regulator genes undergo changes in their 
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splicing patterns, and second, the altered splicing machinery 
subsequently affects the splicing of downstream genes involved 
in the adaptation to altered temperature (Verhage et al., 2017).

A good example of splicing-related genes affected by AS in 
response to a wide range of temperatures are those for SR 
proteins. In fact, transcripts of SR proteins undergo AS to gen-
erate approximately 100 distinct splice variants from 15 SR 
genes in Arabidopsis (Palusa et al., 2007). The AS of some SR 
genes was found to be controlled during development and 
with tissue specificity. The AS of the transcripts of many SR 
genes drastically changes in response to extreme temperat-
ures (cold and heat). The transcripts of SR30, RS31a, RS41, 
RSZ33, and SCL30a undergo heat-induced AS, while the 
transcripts of SR33/SCL33, SR1/SR34, and RS40 undergo 
AS under both heat and cold conditions (Palusa et al., 2007). 
Heat or cold treatments also had an impact on the recruitment 
of splice variants of many SR genes to polysomes for transla-
tion (Palusa and Reddy, 2015). Here, the functional isoforms 
of SR30, SR34, and SR34a were found to be more abun-
dant in polysome-associated RNA of heat- and cold-treated 
Arabidopsis seedlings. On the contrary, many isoforms associ-
ated with polysomal RNA in the control were not recruited 
to polysomes under heat or cold stress conditions. One splice 
variant of SR34 is recruited to polysomes only during heat 
stress. The differential AS in response to cold produces new 
splice variants of SCL33 that are not recruited to polysomes. 
These splice variants may be involved in regulating the amount 
of functional SCL33 mRNA. In heat-treated seedlings, the 
functional isoform of SCL33 was found to be more enriched 
(Palusa and Reddy, 2015). In Arabidopsis, cold stress medi-
ates the repression of the active isoforms of SR45a and SR30 
(Tanabe et al., 2007), whereas it leads to an elevated expression 
level of STABILIZED1 (STA1), which encodes a protein re-
sponsible for the correct splicing of the COLD REGULATED 
15a (COR15a) gene transcript (Lee et  al., 2006). In tomato 
(Solanum lycopersicum), the splicing factor genes Le9G8-SR and 
LeSF2-SR1 undergo AS at low temperature (Fung et al., 2006).

The AS of splicing regulators that leads to the formation 
of different isoforms and differential protein levels in response 
to varying temperatures may be responsible for rapid and dy-
namic transcriptome changes, providing plants with develop-
ment plasticity.

Open questions regarding temperature-
controlled alternative splicing

Rapid progress in exploring the regulatory aspects of AS in 
plants has been achieved recently. Yet, most studies have con-
centrated on the splicing events themselves and their impact on 
protein levels, while the impact of AS on the plant’s physiology 
has often been neglected. However, understanding the func-
tional consequences of AS events for plants has an important 
practical relevance, in particular with respect to improving 

the resilience of crops towards climate-related environmental 
changes in the coming decades. In mammals the biological im-
portance of AS is relatively well understood. A large number 
of human diseases are caused by mutations in splicing factors 
or other components of the spliceosome (Scotti and Swanson, 
2016). In fact, the Human Genome Mutation Database pre-
dicts that more than one-third of the diseases caused by single 
nucleotide polymorphisms are due to mutations within splice 
sites or splicing elements (Krawczak et al., 2007). Interestingly, 
in mammals, physiological body temperature differences of 
only 1  °C occurring during day–night cycles lead to func-
tionally relevant AS events that affect the levels of TATA-box 
binding proteins (Tbp) and, as a consequence, global gene 
expression (Preußner et  al., 2017). Also in ectotherm insects 
such as D. melanogaster, temperature changes dramatically af-
fect splicing patterns. Anduaga et al. (2019) demonstrated the 
presence of two thermosensitive transcript isoforms of the cir-
cadian clock gene TIMELESS (TIM). Temperature-dependent 
switching of the isoforms, e.g. TIM-COLD (18 °C) and TIM-
MEDIUM (29 °C), mediates temperature adaptation of flies by 
acting as a thermometer within the circadian clock (Anduaga 
et al., 2019).

Temperature-induced AS also plays a functional role in 
conferring an adaptive benefit in single-cell eukaryotic spe-
cies. For example, in Saccharomyces cerevisiae, the HSP70 nu-
cleotide exchange factor FACTOR EXCHANGE FOR SSA1 
PROTEIN 1 (FES1) undergoes AS to produce two isoforms, 
FES1L and FES1S. At elevated temperature (37 °C), the ex-
pression of FES1S is highly induced. The protein encoded 
by stress-inducible FES1S localizes to the cytosplasm and 
plays an important role in proteasomal degradation of cyto-
solic misfolded proteins, thereby contributing to proteostasis 
(Gowda et al., 2016).

An important question is how environmental temperature 
changes are registered by plants, and how monitoring such 
changes then leads to altered molecular responses. A  recent 
study (Jung et al., 2020) showed that a prion-like domain pre-
sent in the EARLY FLOWERING 3 (ELF3) protein serves as 
a thermosensor in Arabidopsis. However, it is currently unclear 
whether temperature sensing through the ELF3 protein, or 
other known thermosensory mechanisms (Dai Vu et al., 2019), 
controls nuclear splicing, and if so, which transcripts are ac-
tually affected. Addressing this will be an important aspect of 
future research.

Another issue that recently attracted increased interest tackles 
evolutionary conservation of temperature-triggered AS events in 
orthologous (and paralogous) genes in diverse plants (including 
crops), or—equally relevant—the diversification of AS in genes 
conserved between species. Addressing this will be essential in fu-
ture research. In silico analysis suggests that SR proteins are evolu-
tionarily conserved between multicellular green algae, bryophytes, 
and angiosperms (Melo et al., 2020). In the future, experimental 
evidence is required to support the function of those proteins for 
(alternative) splicing and to investigate how they contributed to 
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processes that allowed plants to colonize terrestrial habitats and 
their adaptation to terrestrial temperatures.

As described in this review, changes in environmental tem-
perature modify the splicing patterns of many genes. A pos-
sibly important aspect that needs further investigation is how 
day–night changes in environmental temperature shape the AS 
landscape, since in their natural environment and in the field, 
plants are subject to frequent day–night temperature shifts. In 
Arabidopsis, temperature-induced AS may be involved in the 
regulation of the plant circadian clock (James et al., 2012) and 
the circadian clock can also regulate AS (Yang et  al., 2020). 
Recently, an increase in daytime temperature was found to 
affect the splicing of the SR45a transcript in maize. SR45a 
isoforms with higher splicing efficiencies were formed later in 
the day (afternoon) when the temperatures rose, while earlier 
in the day (morning) when the temperature is lower, SR45a 
isoforms less efficient in splicing were produced (Li et  al., 
2021). As plants are not able to control their ‘body’ tempera-
ture, the effects of day–night cycles on AS, besides the effect 
of abiotic stress-related environmental changes in temperature, 
may be significant. Analysing this in the future would be highly 
important, in particular for crops to improve their growth and 
yield potential at more severe day–night temperature regimes.

In order to further unravel the role of AS in response to 
temperature and its impact on agriculture in the context of cli-
mate change, it is important to acknowledge that even within 
a single species (e.g. in accessions, cultivars, mutants) there is 
considerable variation in the tolerance to temperature stress. 
In the future, detailed analyses will be required to relate differ-
ences in AS between species/accessions/cultivars to their ac-
tual temperature change response profiles.

Conclusion

Temperature-dependent AS plays a crucial role in integrating 
environmental temperature information into the molecular 
networks that control plant biological processes, including 
development and growth. From a biological point of view, 
it seems reasonable that plants evolved AS to allow rapid ad-
justments of transcript abundance to changes in tempera-
ture, thereby providing developmental plasticity as seen in the 
regulation of flowering time by AS in response to changes in 
environmental temperature. Although AS is a common phe-
nomenon in many organisms, we are only starting to under-
stand the possibly wide relevance of AS for stress adaptation 
in plants. Importantly, most of the studies on temperature-
induced AS have so far been conducted under controlled la-
boratory conditions. However, considering the huge effect 
climate change has on our global ecosystem and agricultural 
productivity it would be tremendously important to study the 
role of AS in natural (outdoor) settings. Only then will we be 
able to fully appreciate the biological role of AS in the response 
to changes in environmental temperature. Biotechnological 

approaches including, for example, CRISPR-Cas-mediated 
genome editing to place mutations in splice sites in order to 
generate the desired temperature-responsive splicing patterns, 
or overexpression of splice variants and siPEPs essential for 
improving temperature stress tolerance, could be employed to 
engineer crops resistant to different temperature stresses.
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