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Abstract

A multilocus genome-wide association study of a panel of 369 diverse wheat (Triticum aestivum) genotypes was 
carried out in order to examine the genetic basis of variations in nutrient mineral concentrations in the grains. The 
panel was grown under field conditions for three consecutive years and the concentrations of Ca, K, Mg, Mn, P, and 
S were determined. Wide ranges of natural variation were detected among the genotypes. Strong positive correl-
ations were found among the minerals except for K, which showed negative correlation trends with the other min-
erals. Genetic association analysis detected 86 significant marker–trait associations (MTAs) underlying the natural 
variations in mineral concentrations in grains. The major MTA was detected on the long arm of chromosome 5A and 
showed a pleiotropic effect on Ca, K, Mg, Mn, and S. Further significant MTAs were distributed among the whole 
genome except for chromosomes 3D and 6D. We identified putative candidate genes that are potentially involved 
in metal uptake, transport, and assimilation, including TraesCS5A02G542600 on chromosome 5A, which was anno-
tated as a Major Facilitator Superfamily transporter and acted on all the minerals except K. TraesCS5A02G542600 
was highly expressed in seed coat, and to a lesser extent in the peduncle, awns, and lemma. Our results provide 
important insights into the genetic basis of enhancement of nutrient mineral concentrations that can help to inform 
future breeding studies in order to improve human nutrition.
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Introduction

Cereal-based foods represent the largest proportion of the 
human daily diet consumed worldwide and wheat (Triticum 
aestivum) is the primary protein source in developing countries, 
with 2.5 billion consumers in 89 countries (https://wheat.

org/). However, wheat grain is inherently relatively low in nu-
trients, where ‘nutrients’ refers to a broad range of minerals and 
vitamins that play important roles in the biological functioning 
of the human body (Tapiero et al., 2003; Pujar et al., 2020).
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Many wheat research programs have focused on increasing yields 
whilst ignoring grain quality, leading to depletion in the nutrient 
composition and decreased nutritional value. This can lead to high 
incidences of nutrient deficiencies and malnutrition occurring in 
countries that rely on a cereal-based diet and where bread wheat 
forms the majority of the daily intake of calories. For example, the 
World Health Organization has reported that in 2012, 162 and 
99 million children were stunted and underweight, respectively, 
mainly because of insufficient intake of essential nutrients (WHO, 
2013). The importance of developing wheat genotypes with im-
proved nutrient contents in the grains is therefore clear.

Wheat is the second most important staple crop world-
wide: it is cultivated on almost 200×106 ha, feeds more than 
a third of the world’s population, and provides a fifth of the 
total calories consumed worldwide (Godfray et al., 2010). Ray 
et  al. (2013) anticipated that by 2050 the food demand for 
wheat in particular would increase by 35–40%. In response, 
recent research has begun to focus on exploiting natural vari-
ations among genotypes to identify those that have not only 
good yields but also high quality in terms of nutritional value 
(Alomari et al., 2017; Yu and Tian, 2018).

Recent developments in molecular markers and genome 
sequencing technologies combined with the release of the 
high-quality wheat reference genome sequence allow plant re-
searchers to characterize the genetic basis of complex pheno-
typic traits by using hundreds of thousands of genetic markers 
in association mapping and in the detection of quantitative trait 
loci (QTLs) (Appels et al., 2018). Applying high-density marker 
arrays for single-nucleotide polymorphisms (SNPs) combined 
with a suitable approach such as genome-wide association 
studies (GWAS) can identify robust QTLs and help detect genes 
underlying complex phenotypic traits (Rasheed and Xia, 2019; 
Alqudah et al., 2020). Nutrient accumulation in wheat grains is 
one such example, as it is a function of complex inherited traits 
that are controlled by several different factors, including nutrient 
uptake by the roots from the soil, translocation, assimilation, and 
remobilization to the grains (Sperotto et al., 2014).

Another approach that has recently become popular in 
plant breeding research is based on using molecular markers 
covering the whole genome, the so-called genomic predic-
tion (GP) approach. This uses genome-wide marker informa-
tion to predict the breeding value of complex traits in order 
to accelerate breeding programs (Meuwissen et al., 2001). The 
accuracy of GP can vary according to the prediction method 
that is used, as different assumptions and treatments of marker 
effects and models are utilised (Desta and Ortiz, 2014).

In the current study, we aimed to examine the nat-
ural variations in nutrient mineral accumulation in grains 
of elite European hexaploid winter wheat genotypes. Using 
high-density SNP arrays, we attempted to detect stable gen-
omic regions associated with natural variations in calcium (Ca), 
magnesium (Mg), manganese (Mn), phosphorus (P), potassium 
(K), and sulphur (S) based on multi-locus GWAS, and to as-
sess their value in terms of genomic prediction and breeding 
potential. The ultimate goal was to identify the most relevant 

candidate genes potentially involved in controlling mineral 
accumulation in wheat grains with a view to assisting future 
breeding programs aimed at crop improvement.

Materials and methods

Plant material
The wheat (Triticum aestivum) germplasm that we used consisted of 369 
European elite registered varieties, made up of 355 winter varieties and 
14 spring varieties (Supplementary Table S1). The genotypes were mostly 
from Germany and France. Field experiments were conducted at IPK, 
Gatersleben, Germany (51°490´N, 11°170´E), during the growing sea-
sons of 2014/2015, 2015/2016, and 2016/2017, with the full set of geno-
types being grown each year in plots of 2×2 m with six rows spaced 
0.20 m apart. All varieties were subjected to standard agronomic wheat 
management practices.

Grain sampling and measurement of nutrients
For each genotype, ears were harvested by hand from the whole plot 
and a randomly selected sample of kernels were placed in a MARViN 
digital seed analyser/counter (GTA Sensorik GmbH, Neubrandenburg, 
Germany) and 50 were collected for mineral analysis. These kernels were 
also used for determination of thousand-kernel weight (TKW). The 
samples for mineral analysis were ground using a Mixer Mill MM 300 
(Retsch GmbH, Germany) and dried at 40  °C in an incubator over-
night. The concentrations of Ca, K, Mg, Mn, P, and S were measured 
by inductively coupled plasma optical emission spectrometry (ICP-
OES) using an iCAP 6000 (ThermoFisher Scientific) combined with an 
ASXPRESS PLUS Rapid Sample Introduction system and an ASX-560 
autosampler (both Teledyne CETAC Technologies, Omaha, NE, USA). 
Each ground sample was subjected to wet digestion in 2 ml 69% nitric 
acid (HNO3) using a high-performance microwave reactor (UltraClave 
IV, MLS, Germany). The digested samples were made up to 15 ml final 
volume with de-ionized distilled water. Element standards were prepared 
from Bernd Kraft GmbH multi-element standard solution (Duisburg, 
Germany). Standard solutions were used for determination of the min-
erals, and yttrium was used as an internal standard for matrix correction 
(ICP Standard Certipur, Merck, Germany).

Genotyping and quality control for markers
The wheat panel was genotyped using two marker arrays: a 90K iSELECT 
Infinium array including 7761 markers and a 35K Affymetrix SNP array 
including 7762 markers (Wang et  al., 2014) (Axiom® Wheat Breeder’s 
Genotyping Array, https://www.cerealsdb.uk.net/cerealgenomics/). Both 
were genotyped by SGS-TraitGenetics GmbH, Gatersleben, Germany 
(www.traitgenetics.com) as detailed previously (Alomari et al., 2019). The 
ITMI-DH population was used as a reference map to anchor the SNP 
markers of the two arrays (Sorrells et al., 2011; Poland et al., 2012). To ob-
tain high-quality makers, the SNP markers of the 90K and 35K chips were 
subjected to a quality control and filtration process by removing those 
with ≤3% missing values, a minor allele frequency (MAF) of ≤3%, and 
those with unknown chromosomal positions. We then used the physical 
position of wheat genome sequence RefSeq v.1.0 for the SNPs.

GWAS and genomic prediction
The GWAS analysis was carried out using the Genomic Association 
and Prediction Integrated Tool (GAPIT) in the R software (Lipka et al., 
2012). First, the GWAS analysis was computed using a mixed linear 
model (MLM) that took into account the variance–covariance kin-
ship matrix and principle component analysis (PCA), and conducted by 
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incorporating the phenotypic and genotypic dataset. The kinship matrix 
was calculated using the VanRaden method (VanRaden, 2008) to deter-
mine relative kinship among the sampled individuals. Both PCA and kin-
ship matrix were used for population correction and stratification.

We also applied a GAPIT model known as ‘fixed and random model 
circulating probability unification’ (FarmCPU) to our data analysis. This 
was applied by considering the incorporation of multiple markers sim-
ultaneously as a covariate in a fixed-effects model and optimization on 
the associated covariate markers separately in a random effects model, 
which enabled us to avoid any false-negatives and to control the false-
positive associations by preventing model over-fitting (Liu et al., 2016). 
Thus, FarmCPU is a powerful tool with less false-positives than MLM. 
The selection of an appropriate model and thresholds are important steps 
in identifying markers that are truly associated with specific traits and 
that might be located within or very close to genes that control the trait 
variation while also controlling both false-positive and false-negative as-
sociations. To determine which of the tested models best fitted the data, 
we plotted quantile-quantile (Q-Q) plots based on the observed and ex-
pected –log10(P) values. Based on the GWAS output of three models 
(GLM, MLM, and FarmCPU), the number of significant associations, 
and the resulting Q-Q plots, we then selected the FarmCPU model. 
A threshold P-value 0.001 equal to –log10(P)≥3 was used to determine 
the significance of marker–trait associations, and then Bonferroni correc-
tion at P<0.05 was used to adjust the –log10(P) threshold to a value of 
5.49 for the studied traits.

Marker effects (positive or negative) and phenotypic variance explained 
by the associated markers (R2) were removed from the GWAS results.

Ridge regression–best linear unbiased prediction (RR-BLUP) and 
Bayes-Cπ methods were used to evaluate the genomic predictions 
(Meuwissen et al., 2001; Habier et al., 2011), with both methods being 
implemented in the R software. Five-fold cross-validation was applied to 
the complete set, with the set being randomly divided into five subsets, 
four of which were used as estimation sets and the remaining ones were 
used as the test set. The prediction ability was calculated from the correl-
ation between the observed and predicted values. The whole process was 
repeated 100 times to obtain a mean value. 

Gene identification, annotation, and expression analysis
Significant markers and the markers located within the linkage disequi-
librium region (r2≥0.2) were considered for BLAST. The sequences of 
the identified makers were obtained from the wheat 90K (Wang et al., 
2014) and 35K databases (Allen et  al., 2017). Marker sequences were 
BLASTed against the recently released IWGSC RefSeq v.1.1 genome 
using EnsemblPlants (http://plants.ensembl.org/Triticum_aestivum) to 
obtain their gene annotations. The expression profiles of all the putative 
candidate genes associated with the identified SNPs obtained from the 
published RNA-seq expression database for wheat in the WheatGmap 
web tool (https://www.wheatgmap.org; Zhang et al., 2020).

Statistical analysis
Significant differences in minerals among genotypes and years were de-
termined using ANOVA and Pearson correlation coefficients were de-
termined to evaluate strengths of relationships among the measured 
parameters, both using GenStat v.19. This software was also used to deter-
mine best linear unbiased estimates (BLUEs) over the three years of the 
experiments by restricted maximum likelihood (REML) analysis with a 
mixed linear model (MLM) where the genotype considered as a fixed ef-
fect and the environment as a random effect. BLUEs were calculated for 
each genotype of each trait across the years.

Broad-sense heritability was calculated for each trait using the formula 
H2=VG/[VG+(Ge/nE)], where VG is the variance of the genotype, Ge is 
the variance of the residual, and nE is the number of years.

Results

Genetic variation and correlations

The wheat genotypes showed wide variations in min-
eral concentrations in the grains across the three years (Fig. 
1a) and BLUEs that followed approximately normal distri-
butions (Supplementary Fig. S1). The variation ranged from 
208–797 μg g–1 for Ca, 3495–6727 μg g–1 for K, 963–1988 μg 
g–1 for Mg, 23.3–62.2  μg g–1 for Mn, 2943 to 5807  μg g–1 
for P, and 974–2368 μg g–1 for S (Supplementary Table S2). 
Concentrations of Ca and S were highest in 2015, K, P, and 
Mn concentrations were highest in 2016, and Mg concentra-
tion did vary appreciably over the three years. This variation 
among years could be explained by environmental influences 
(Supplementary Table S3). Correlation analysis was performed 
for the nutrient traits and for thousand-kernel weight (TKW) 
based on BLUE values (Fig. 1B). Strong positive correlations 
were found between Mg and P, and between Mg and Mn 
(r=0.69 and r=0.63, respectively, P<0.05), while moderate posi-
tive correlations were detected between Ca and Mg (r=0.25), 
Mn (r=0.43), P (r=0.25), and S (r=0.270 (all P<0.01). Negative 
correlations were detected between K and Ca, Mg, Mn, and 
S, but this was not significant for both Ca. All the minerals 
showed only very weak correlations with TKW. . In this study, 
the five genotypes with highest measured mineral concentra-
tions were Isengrain, Inoui, Nirvana, Exotic, and Lona.

ANOVA indicated that significant differences concentra-
tions existed among the genotypes (P<0.001) and the years 
(P<0.001) for all the minerals, except Mn where there was no 
effect of year (Supplementary Table S3). The broad-sense her-
itability (H2) values were high and ranged from 0.72 for Mn to 
0.87 for Ca. These results indicated that there was considerable 
natural variation in mineral concentrations that were predom-
inantly genetically controlled with a relatively low influence 
of the environment. This suggested that it might be possible to 
detect shared genomic regions for the mineral traits.

Association analysis and genomic predictions

GWAS analysis was performed to determine the genetic basis for 
the accumulation of the minerals in the grains using FarmCPU 
for 15 523 SNP markers. Most of the markers were mapped on 
the B-genome, followed by the A- and D-genomes. In brief, 
the marker–trait associations (MTAs) were distributed across 
the whole genome, except for 3D and 6D where 86 significant 
associations were detected [–log10(P)≥3], and the highest num-
bers of significant markers were found on 2B (12) followed 
by 5B (nine) and 3B (eight). The MTAs were identified using 
estimated BLUE values across the three years (Supplementary 
Table S4A). A  total of 17 MTAs were above the Bonferroni 
threshold of –log10(P-value)=5.42 (Fig. 2A, Supplementary 
Table S4B). A total of 50 MTAs had positive effects and 36 had 
negative effects on the mineral concentrations (Supplementary 
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Fig. 1.  Mineral nutrient concentrations in the grains of 369 European wheat genotypes grown in over three seasons. (A) Violin plots mineral 
concentrations. (B) Pearson correlations among mineral concentrations and thousand-kernel weight (TKW) based on best linear unbiased estimates 
(BLUEs). Significant correlations were determined using ANOVA (*P≤0.05).
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Table S4A). The phenotypic variance explained by each SNP 
ranged from 0.04–10.54% (Supplementary Table S4A, B). 
RAC875_c8642_231 showed the highest –log10(P-value) of 
Ca, Mg, Mn, and K (Figs 2A, 3A) and had a positive effect on 
Ca, Mn, Mg, and S (26, 1.8, 49, and 28 μg g–1, respectively) 
and a negative effect on K (–117 μg g–1) (Supplementary Table 
S4B). This marker could explain ~10% of the variation in Ca 
and ~ 3.4% in K. This indicated that there was allelic vari-
ation at this marker among the genotypes that lead to variation 
in the mineral concentrations (Supplementary Table S5). The 
Q-Q plots showing the observed associations between SNPs 
and grain nutrient concentrations compared to expected asso-
ciations are presented in Fig. 2B.

Statistical methods for developing prediction models for the 
breeding value of studied traits include ridge regression–best 
linear unbiased prediction (RR-BLUP) and the Bayes-Cπ 
method. We found that the mean of prediction ability values 

that resulted from using these two different methods were in 
close agreement for the individual minerals. The highest values 
were obtained for Mg followed by Mn (Fig. 4).

Detection of candidate genes and expression analysis

The significant SNPs that we identified were used to pre-
dict gene models located on the wheat genome using the 
reference Chinese Spring RefSeqv1.1. Candidate gene tran-
scripts and their corresponding annotation information were 
obtained from EnsemblPlants (http://plants.ensembl.org/
Triticum_aestivum). The results showed that the genes were 
annotated as transmembrane transporter activity, protein 
kinase, ATPase-coupled cation transmembrane transporter, 
metal ion binding, and magnesium ion binding. All the po-
tential candidate genes and their corresponding annotations 
within all detected loci are listed in Table 1. It was notable 

Fig. 2.  Genome-wide association study (GWAS) of mineral nutrient concentrations in the grains of 369 European wheat genotypes grown over three 
seasons. Data were analysed using two marker arrays: a 90K iSELECT Infinium array and a 35K Affymetrix SNP array based on best linear unbiased 
estimates (BLUEs). (A) Summary of the GWAS data for each mineral. The horizontal lines indicate the Bonferroni threshold (5.42). RAC875_c8642_231 
is indicated. (B) Quantile-quantile plots showing the observed associations between SNPs and grain nutrient concentrations compared to expected 
associations. 
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that TraesCS5A02G542600, which was annotated as trans-
membrane transporter activity and that underlay the natural 
variation of Ca, Mn, Mg, S, and K, was located on chromo-
some 5A (698 507 247–698 511 217 bp; Fig. 3A). Interestingly, 
RAC875_c8642_231 that had the highest association value 
among all the SNPs was also located on chromosome 5A (698 
510 016 bp), inside TraesCS5A02G542600 (Fig. 3A). Based 
on the gene structure, the RAC875_c8642_231 marker was 
physically located inside exon 3 of TraesCS5A02G542600 
(Fig. 3C). Polymorphism analysis of RAC875_c8642_231 al-
leles showed that the genotypes of the population either car-
ried the C allele (337 genotypes) or the T allele (32 genotypes) 
(Supplementary Table S5). The genotypes with the T allele had 
significantly higher (P<0.05) mineral concentration values in 
the grains except for K (Fig. 3D). A positive effect of the T 

allele on TKW was also found. The genotypes that carried 
the T allele originated from France (Fig. 3F) and showed the 
highest minerals concentration (Fig. 3E) .

We found a wide range of expression for the candidate 
genes in different grain tissues and at different developmental 
stages using the WheatGmap web tool (Fig. 5). Generally, 
TraesCS2B02G202600 at 2B and TraesCS5A02G542600 
at 5A showed the highest expression in most of the organs 
and tissues, indicating that they play vital roles during growth, 
filling, and development. TraesCS3B02G006700 was highly 
expressed in the lemma and seed coat, and also in the flag-leaf 
blade, leaf ligule, and grain. One of the significantly associated 
genes, TraesCS6B02G002500, showed very low expression in 
the tissues compared to the other genes and was removed from 
the expression analysis.

Fig. 2.  Continued.
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Discussion

Phenotypic variations in grain mineral across 
genotypes

The use of genomics breeding tools to increase the contents of 
essential nutrients in wheat grain is a promising approach for 
crop improvement, and the detection of natural phenotypic 
variation in existing genotypes is the primary step in this pro-
cess (Yu and Tian, 2018). Overall, we observed wide natural 
variation in grain concentrations of Ca, Mg, Mn, P, K, and S 
in our panel of 369 European elite registered varieties (Fig. 

1A, Supplementary Fig. S1), which was consistent with pre-
vious results (Bhatta et al., 2018). We found high broad-sense 
heritability values for the mineral concentrations (H2>0.7; 
Supplementary Table S3), indicating that the major part of the 
variation was genetically controlled. Similar findings Ca, Mg 
and S for have been reported in recombinant inbred lines of 
tetraploid wheat (Peleg et al., 2009), while lower H2 values have 
been found for Mn, P, and K in a wild barley NAM popu-
lation (Herzig et al., 2019). The positive correlations that we 
found among the minerals (Fig. 1B) suggested the presence of 
common genetic factors affecting the accumulation of these 

Fig. 3.  Marker–trait associations (MTAs) in chromosome 5A for nutrient mineral concentrations in grains of 369 European wheat genotypes grown over 
three seasons. (A) Manhattan plot for associations and (B) detail of the locus of the highly associated SNP RAC875_c8642_231. The heatmap below 
shows linkage disequilibrium for SNPs within 15 Mbp. (C) Structure of the candidate gene TraesCS5A02G542600 showing the C/T sequence variation in 
third exon. (D) Box plots showing the allele effects on nutrient concentrations and thousand-kernel weight (TKW) in the genotypes, and (E) table showing 
the corresponding data for some of the traits. (F) Frequency distribution of countries of origin of the genotypes carrying the T allele.
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nutrients in the grains, and similar trends of correlations have 
been observed previously in hexaploid wheat (Shi et al., 2013). 
The lack of correlations between thousand-kernel weight and 
the mineral contents implied that there was no clear effect of 
grain weight on the content.

GWAS analysis and genomic prediction

Most of the previous genetic studies in wheat have used QTL 
mapping to investigate the genetic basis of nutrient accu-
mulation (Shi et  al., 2013; Pu et  al., 2014). In these studies, 
bi-parental crosses have been used to identify QTLs and genes 
associated with the mineral concentrations. However, the re-
sulting mapping is relatively low resolution and hence GWAS 
is increasingly being used as an alternative that can identify 
alleles within a relatively broader set of germplasm with high 
resolution (Alomari et  al., 2017, 2018, 2019; Alqudah et  al., 
2020). In addition, GWAS analysis is useful for identifying mo-
lecular markers that are tightly linked to the genomic regions 
that underlie natural variation in nutrients, which can then 

Fig. 3.  Continued.

Fig. 4.  Genomic prediction ability for nutrient mineral concentrations 
in grains of 369 European wheat genotypes grown over three seasons 
according to best linear unbiased estimates (BLUEs) values as determined 
using two different statistical models, ridge regression–best linear unbiased 
prediction (RR-BLUP) and the Bayes-Cπ method.
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be used in genomics-assisted breeding for enhancing the effi-
ciency of biofortification (Collard et al., 2005).

Most of the association mapping studies that have been 
undertaken for different complex traits have used single-locus 

GWAS models (GLM, MLM) and these require additional 
corrections, for example multiple testing corrections to con-
trol false positives (Yu et al., 2006; Price et al., 2010; Pujar et al., 
2020). However, the corrections are often either not stringent 

Table 1.  Candidate genes for the significant marker–trait associations for nutrient mineral concentrations in a panel of 369 European wheat genotypes

Chromosome Mineral Gene ID Description Putative functionality

5A Ca, Mn, 

Mg, S, K

TraesCS5A02G542600 Transmembrane transporter activity Major facilitator superfamily

3B Ca TraesCS3B02G006700 Transferase activity Diacylglycerol O-acyltransferase

7A Ca TraesCS7A02G169100 Transmembrane transporter activity WAT1-related protein

5B Ca TraesCS5B02G403400 Aspartate-semialdehyde dehydrogenase 

activity

Semialdehyde dehydrogenase

6B Ca TraesCS6B02G428500 NAD+ kinase activity NAD kinase/diacylglycerol kinase-like domain 

superfamily 

4B K TraesCS4B02G380200 Cysteine-type endopeptidase activity Type II CAAX prenyl endopeptidase Rce1-like

5B K TraesCS5B02G301100 Protein binding WD40 repeat

7D K TraesCS7B02G478200 DNA binding Homeobox superfamily

 K TraesCS3B02G590500 Protein kinase activity Protein kinase superfamily

4A K TraesCS4A02G352200 Ubiquitin protein ligase activity E3 ubiquitin-protein ligase RNF170

2D K TraesCS2D02G190600 Protein kinase activity Protein kinase domain-containing protein

7D K TraesCS7D02G540700 DNA binding Homeobox superfamily

3B Mg TraesCS3B02G125400 Membrane Uncharacterized protein

3B Mg TraesCS3A02G514300 Protein binding F-box superfamily

4A Mg TraesCS4A02G369500 Catalytic activity Alkaline-phosphatase

4B Mg TraesCS4B02G293600 ATPase-coupled cation transmembrane 

transporter activity

P-type ATPase

5B Mg TraesCS5B02G427800 Protein binding IQ motif, EF-hand binding site

7A Mg TraesCS7A02G498400 Metal ion binding Ubiquitin specific protease

4B Mn TraesCS4B02G024300 Protein binding Tetratricopeptide-like helical domain superfamily

5B Mn TraesCS5B02G012300 Magnesium ion binding Phosphopyruvate hydratase

5B Mn TraesCS5B02G042900 Protein binding Tetratricopeptide-like helical domain superfamily

6B Mn TraesCS6B02G181100 Integral component of membrane Uncharacterized protein

2A P TraesCS2A02G130200 Hydrolase activity Haloacid Dehalogenase

2A P TraesCS2A02G123400 Oxidoreductase activity FAD-binding PCMH-type domain-containing 

protein

2B P TraesCS2B02G202600 Integral component of membrane GPI transamidase subunit PIG-U

3B P TRAES_3BF053100070CFD_c1  

TraesCS3B02G013300

Cytoskeleton Targeting protein for Xklp2 domain containing 

protein, expressed

3B P TraesCS3B02G125400 Integral component of membrane Uncharacterized protein

4A P TraesCS4A02G369500 Catalytic activity Alkaline-phosphatase

5A P TraesCS5A02G486100 Calmodulin binding CALMODULIN-BINDING PROTEIN60

6A P TraesCS6A02G352300 Protein binding Ankyrin repeat

6B P TraesCS6B02G002500 Protein kinase activity Serine-threonine/tyrosine-protein kinase

1A S TraesCS1A02G292100 Protein kinase activity Serine-threonine/tyrosine-protein kinase

1A S TraesCS1A02G322300 Serine-type endopeptidase activity Peptidase S9

1B S TraesCS1B02G338500 Cysteine-type peptidase activity Papain-like cysteine peptidase superfamily 

1B S TraesCS1B02G033200 Cysteine-type peptidase activity  Papain-like cysteine peptidase superfamily 

2B S TraesCS2B02G166300 Regulation of DNA methylation SAC3 family protein B

2B S TraesCS2B02G169300 Lipid binding Synaptotagmin-like mitochondrial-lipid-binding 

domain

2B S TraesCS2B02G169500 Nucleic acid binding Cold-shock protein, DNA-binding

2B S TraesCS2B02G169400 Actin binding Stomatal closure-related actin-binding protein

2B S TraesCS2B02G169400 Actin binding Stomatal closure-related actin-binding protein

2B S TraesCS2B02G169500 Nucleic acid binding Cold-shock protein, DNA-binding

2D S TraesCS2D02G074700 Hydrolase activity Amidohydrolase

4B S TraesCS4B02G278100 DNA-binding transcription factor activity Heat shock transcription factor HsfA2-8

5B S  TraesCS5B02G392500 DNA binding B3 DNA binding domain

6A S TraesCS6A02G037800 Metal ion binding Ribonuclease Nob1

7A S TraesCS7A02G419800 ADP binding P-loop containing nucleoside triphosphate 

hydrolase

The significant SNPs identified in the current study were used to predict gene models located on the wheat genome using the reference Chinese Spring RefSeqv1.1. 
Candidate gene transcripts and their corresponding annotation information were obtained from the website of EnsemblPlants (http://plants.ensembl.org/Triticum_aestivum).

http://plants.ensembl.org/Triticum_aestivum
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enough, or too stringent and overcompensate for population 
structure and kinship, which can lead to over-correction that 
results in some potentially important marker–trait associations 
(MTAs) being missed (Alqudah et al., 2020). To help overcome 
this issue, a GAPIT model known as ‘fixed and random model 
circulating probability unification’ (FarmCPU) has been de-
veloped and has been shown to be much more powerful, ef-
ficient, and superior to previous approaches in reducing false 
positive/negative associations, particularly in complex traits, by 
incorporating multiple markers simultaneously as covariates in 
a stepwise MLM to partially remove confounding effects be-
tween testing markers and kinship (Liu et al., 2016). For this 
reason, we applied the FarmCPU model in our GWAS analysis.

We observed many genomic regions harboring markers that 
were associated with nutrient concentrations. In total, we de-
tected 19 MTAs for S, 15 for K, 15 for P, 14 for Mg, 13 for 
Ca, and 10 for Mn (Supplementary Table S4A). The most sig-
nificant association was detected at the end of the long arm of 
chromosome 5A and was linked with the RAC875_c8642_231 
marker at the position ∼114.5 cM (698 5100 16 bp; Fig. 3). This 

was linked with all the minerals that we focused on except for 
P. P is positively correlated with phytate content in plants and 
it is known as an ‘anti-nutrient’ compound that negatively in-
fluences the absorption of other minerals in the human body 
(Stangoulis et  al., 2007). The RAC875_c8642_231 marker 
therefore appears to be a good candidate in breeding wheat to 
improve the concentrations of many minerals within the grain 
simultaneously. We also observed that the K concentration in 
the grain was negatively correlated with the concentrations of 
Ca, Mn, Mg, and S (Fig. 1B). MTAs for grain K concentration 
were also negatively associated with those for Ca, Mn, Mg, and 
S at the 5A locus (Supplementary Table S4A.

Co-localization of QTLs on chromosome 5A of wheat have 
previously been reported for N, Fe, Cu, Mg, and K (Shi et al., 
2013), and Fe, Zn, Cu, and Mg but not P (Cu et al., 2020), and 
the latter study detected a co-located locus for Zn, Fe, Cu, P, 
and Mn on chromosome 5B at ~95 cM. It therefore seems 
that the QTL on chromosome 5A plays a vital role in mineral 
accumulation in wheat, and this needs further functional valid-
ation. Our results showed that most of the genotypes with the 

Fig. 5.  Expression patterns of selected candidate genes for mineral nutrient concentrations within different tissues of wheat. Expression data were 
obtained from the Wheat Gmap database (https://www.wheatgmap.org/expression/search/gene/) and are presented as a heatmap of transcripts per 
kilobase million (TPM) values.

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab297#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab297#supplementary-data
https://www.wheatgmap.org/expression/search/gene/
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highest nutrient contents originated from France (Fig. 1E), and 
these were characterized by having awns. The top five of these 
genotypes were Isengrain, Inoui, Nirvana, Exotic, and Lona 
(Supplementary Table S1), and including varieties such as this in 
breeding programs might help in enhancing the accumulation 
of minerals in wheat grain. We extended our analysis to include 
the genomic prediction (GP) method, which has a practical 
role in improving the breeding efficiency of quantitative and 
complex traits. The predictability results for our wheat panel 
showed low-to-moderate values (Fig. 4), which was in agree-
ment with a previous study of macro- and micro-nutrients in 
wheat (Manickavelu et al., 2017). GP might be considered as a 
promising approach for enhancing nutrient minerals in wheat 
in situations where relatively large germplasm panels are used 
with high numbers of markers, thus giving more accurate esti-
mates of breeding values.

Candidate genes and their expression patterns

The recently released IWGSC RefSeq v1.1 genome by 
EnsemblPlants enabled us to further investigate the candidate 
genes potentially responsible for the variations in the grain 
nutrient concentrations (listed in Table 1). In the following 
sections we only consider high-confidence candidate genes 
that are linked to transcription factor regulators, transporters, 
and grain development.

Ca. 
The most significant MTA detected in the GWAS output was 
found to be associated with Ca, K, Mg, Mn, and S, and was 
located on chromosome 5A (114.5 cM; Fig. 3). It was linked 
to the gene TraesCS5A02G542600, which encodes a trans-
membrane transporter belonging to the Major Facilitator 
Superfamily (MSF). This gene family is known to be one of the 
two largest superfamilies of membrane transporters, and they 
act as uniporters or symporters for different substances (Niño-
González et  al., 2019). Interestingly, three recent studies in 
wheat have explored the role of TraesCS5A02G542600 in the 
inhibition of awn formation; however, whilst it is located at the 
genetic locus of awn suppression, a closely linked gene has been 
considered as the most likely candidate (DeWitt et al., 2020; 
Huang et al., 2020; Würschum et al., 2020). Further studies are 
needed to shed light on the role of TraesCS5A02G542600 in 
nutrient mineral uptake and accumulation in wheat grains. We 
found that the expression of TraesCS5A02G542600 was very 
high in grain tissues such as the seed coat, lemma, aleurone, 
and endosperm, and in tissues closely associated with the grain 
such as the peduncle, spikes, and spikelets (Fig. 5), which would 
be consistent with its involvement in mineral accumulation in 
the grains.

Another candidate gene for Ca accumulation was 
TraesCS7A02G169100, (125 712 948–125 715 936 bp), which 
has an annotation as a transmembrane transporter and encodes 
a WALLS ARE THIN 1 (WAT1)-related protein. This gene 

has been found to be involved in secondary cell wall formation 
(Kaur et al., 2017), and it has been demonstrated that Ca2+ plays 
a major role in determining the structural rigidity of the cell 
wall, with high concentrations making the wall more rigid and 
less plastic whilst low concentrations make the wall more pliable 
and easily ruptured (Hepler, 2005). TraesCS7A02G169100 was 
highly expressed in the aleurone layer, the lemma, and within 
the grain (Fig. 5).

TraesCS3B02G006700 (3 601 450–3 607208 bp) was an-
notated as transferase activity and it encodes a diacylglycerol 
O-acyltransferase that catalyses the final step of the 
triacylglycerol (TAG) synthesis. TAG shows a significant in-
crease in accumulation in Arabidopsis seedlings during ni-
trogen deprivation (Yang et  al., 2011), and it is therefore 
possible that it might have a role in the accumulation of other 
nutrient minerals such as Ca in wheat grains. Expression of 
TraesCS3B02G006700 was found to be high for the lemma, 
seed coat, flag-leaf blade, leaf ligule, and grain (Fig. 5), which 
potentially supports this hypothesis.

TraesCS5B02G403400 (580 100 440–580 104 246bp) en-
codes semialdehyde dehydrogenase, which is one of three en-
zymes constituting the gamma-aminobutyric acid shunt, a 
metabolic pathway that has been associated with abiotic stress 
responses in durum wheat (Carillo, 2018). The first enzyme 
in the pathway is glutamate decarboxylase (GAD), which is a 
calcium/calmodulin-binding protein (Baum et al., 1996; Busch 
and Fromm, 1999).

K. 
Two Homeobox superfamily genes, TraesCS7B02G478200 
(733 527 123–733 530 917  bp) and TraesCS7D02G540700 
(630 527 242–630 530 005 bp) were linked with K, and this 
superfamily is one of the transcription factor families that are 
involved in plant development, growth, and in the response to 
diverse stresses (Wei et al., 2019). These genes showed almost 
the same expression pattern with the highest value in the ped-
uncle followed by the stem, rachis, aleurone layer, seed coat, leaf 
ligule, and spikelets (Fig. 5).

TraesCS3B02G590500 (815 476 561–815 480 015 bp) and 
TraesCS2D02G190600 (134 638 904–134 645 251 bp) were 
both annotated as protein kinase, which is a large superfamily 
that plays vital roles in plant development and stress tolerance; 
however, the functions of only a limited number of protein 
kinases have been studied in wheat (Wei and Li, 2019 Several 
studies have shown that the E3 ubiquitin-protein ligase gene 
TraesCS4A02G352200 (627 813 928–627 816 836 bp) is as-
sociated with the uptake and accumulation of various minerals 
such as Mn, Zn, and P in wheat and pearl millet (Cu et  al., 
2020; Pujar et  al., 2020), and thus it might have a role in K 
uptake as well.

Mg. 
We detected TraesCS4B02G293600 (579 391 172–579 398 
644 bp) encoding a P-type ATPase on chromosome 4B, and 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erab297#supplementary-data
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interestingly this is considered as a transmembrane protein that 
plays a crucial role in the transport of a wide variety of cations 
across membranes and is vital for ion homeostasis and detoxi-
fication of heavy metals (Axelsen and Palmgren, 2001). Very 
high expression levels were detected for in the peduncle, seed 
coat, spikelets, leaf ligule, and stem (Fig. 5).

TraesCS7A02G498400 (688 960 269–688 968 295  bp) 
encoding ubiquitin specific protease was detected on chromo-
some 7A and annotated as metal ion binding.

Mn. 
Genes encoding tetratricopeptide-like helical domain super-
family proteins, namely TraesCS4B02G024300 (173 621 
92–173 688 28  bp and TraesCS5B02G042900 (475 842 
53–475 880 87  bp), were found on chromosomes 4B and 
5B, respectively. These are involved in root development and 
auxin polar transport as well as gibberellin signal transduc-
tion in Arabidopsis (Jacobsen et al., 1996; Zhang et al., 2015), 
which might indicate their involvement in Mn accumulation 
in wheat plants. These two genes had their highest expression 
in the endosperm, flag-leaf blade, lemma, grain, and glumes.

 Another gene was identified on chromosome 5B as 
encoding phosphopyruvate hydratase and annotated as mag-
nesium ion binding, namely TraesCS5B02G012300 (12 324 
287–12 328 841 bp). (Silva et al., 2018) have reported an as-
sociation between phosphopyruvate hydratase and enhanced 
nitrogen metabolism in maize seedlings.

P. 
TraesCS2A02G130200 (77 938 466–77 941 846  bp) 
encoding a haloacid dehalogenase (HAD) was found on 
chromosome 2A. HAD enhances phosphate accumula-
tion, and LePS2 in tomato was the first low-Pi inducible 
gene in this superfamily to be characterized (Baldwin et al. 
2001, 2008). Another HAD gene, PvHAD1, shows spe-
cific induction at low P and encodes a functional serine/
threonine phosphatase (Liu et  al., 2012). Two other HAD 
genes responsive to low P, AtPPsPase1 and AtPECP1, have 
been reported to encode functional pyrophosphatase and 
phosphoethanolamine phosphatase in Arabidopsis (Pandey 
et al., 2017). In rice, only two HAD genes have been shown 
to be up-regulated under P deficiency, namely OsACP1 
(Hur et al., 2007) and OsHAD1 (Pandey et al., 2017) . These 
studies therefore suggest HAD superfamily members have 
important functions in P accumulation in various plants; 
however, there are no studies available on wheat.

TraesCS2A02G123400 (729 311 06–729 331 77 bp) encoding 
a FAD-binding PCMH-type domain-containing protein was 
detected on chromosomes 2A, and TraesCS2B02G202600 
(182 355 759–182 361 233  bp) encoding GPI transamidase 
subunit PIG-U was detected on chromosome 2B, which may 
be involved in P accumulation in wheat.

Interestingly, TraesCS3B02G01330 (5 952 761–5 955 519 bp) 
encoding a targeting protein for Xklp2 (TPX2) was detected on 
chromosome 3B. This gene is important for phosphorylation/

dephosphorylation of regulatory proteins by phosphatase. The 
TPX2 gene is not well studied, and it is only recently that two 
genes, TPXL2 and TPXL3, have been functionally characterized 
in Arabidopsis (Dvořák Tomaštíková et al., 2020). Another gene in-
volved in phosphorylation, TraesCS6B02G002500 (1 963 516–1 
970 774 bp), was detected on chromosome 6B and encodes as 
serine-threonine/tyrosine-protein kinase (Dvořák Tomaštíková 
et  al., 2020). Another important gene, TraesCS4A02G369500 
(641 504 088–641 508 259 bp), was detected on chromosome 
4A and belongs to the alkaline-phosphatase family, which is 
and associated with phosphate efflux from arbuscules (Aono 
et  al., 2004). In addition, TraesCS5A02G486100 (657 191 
801–657 195 889 bp) encoding CALMODULIN-BINDING 
PROTEIN60 has a significant role in protein phosphorylation/
dephosphorylation (Bergey et al., 2014).

S. 
Two SNP markers were detected on chromosome 1B as papain-
like cysteine peptidase (PLCP) superfamily genes, namely 
TraesCS1B02G338500 (566 601 144–566 605 225  bp) and 
TraesCS1B02G033200 (162 164 83–162 176 35 bp). PLCPs 
have important functions in plant growth, seed germination, 
anther development, and senescence. Thus, they might play a 
role in S accumulation in wheat grains (Liu et al., 2018).

Conclusions

There have been very few GWAS analyses identifying sig-
nificant loci associated with nutrient mineral accumulation in 
wheat grains. Hence, the marker–trait associations and candi-
date genes identified in this study will be useful for the fu-
ture genetic improvement of wheat nutritional quality through 
marker-assisted selection. This study also provides useful in-
formation on the range of phenotypic variation encountered 
within European wheat germplasm. However, further research 
is needed for a better understanding of the relationships be-
tween the individual mineral nutrients in wheat and to provide 
more detailed information that can lead to efficient breeding 
to overcome malnutrition problems.
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Table S5. Allelic variation analysis for the RAC875_
c8642_231 marker across all the genotypes.

Table S6. Expression analysis for the putative candidate genes 
underlying the accumulation of nutrient minerals in the grains.
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