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ABSTRACT:
A fundamental question in the neuroscience of everyday communication is how scene acoustics shape the neural

processing of attended speech sounds and in turn impact speech intelligibility. While it is well known that the

temporal envelopes in target speech are important for intelligibility, how the neural encoding of target-speech enve-

lopes is influenced by background sounds or other acoustic features of the scene is unknown. Here, we combine

human electroencephalography with simultaneous intelligibility measurements to address this key gap. We find that

the neural envelope-domain signal-to-noise ratio in target-speech encoding, which is shaped by masker modulations,

predicts intelligibility over a range of strategically chosen realistic listening conditions unseen by the predictive

model. This provides neurophysiological evidence for modulation masking. Moreover, using high-resolution vocod-

ing to carefully control peripheral envelopes, we show that target-envelope coding fidelity in the brain depends not

only on envelopes conveyed by the cochlea, but also on the temporal fine structure (TFS), which supports scene

segregation. Our results are consistent with the notion that temporal coherence of sound elements across envelopes

and/or TFS influences scene analysis and attentive selection of a target sound. Our findings also inform speech-

intelligibility models and technologies attempting to improve real-world speech communication.
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I. INTRODUCTION

A fundamental question in sensory neuroscience is

how our brains parse complex scenes to organize the bar-

rage of sensory information into perceptually coherent

objects and streams. Low-level regularities in stimulus fea-

tures, such as proximity and continuity of boundaries/tex-

tures in vision (Gray, 1999) or rhythmicity, pitch, and

harmonicity in audition (Darwin, 1997), can promote per-

ceptual binding and scene segregation. Speech perception

in complex environments is a prominent example where

such feature-based scene analysis is critical for everyday

communication (Cherry, 1953), yet the neurophysiological

mechanisms supporting this process are poorly understood.

Elucidating the mechanisms underlying speech intelligibil-

ity is important for both clinical applications and audio

technologies, such as optimizations for cochlear-implant

and hearing-aid signal processing, clinical diagnostics and indi-

vidualized interventions for speech-in-noise communication

problems, and speech denoising algorithms (e.g., in cell

phones).

Any acoustic signal can be decomposed into a slowly

varying temporal modulation, or envelope, and a rapidly

varying temporal fine structure (TFS) (Hilbert, 1906). In the

auditory system, the cochlea decomposes broadband inputs

into a tonotopic representation, where each channel encodes

the signal content in a relatively narrow band of frequencies

around a different center frequency. The envelope and TFS

information in each channel is then encoded through the

activity of neurons in the ascending auditory pathway

(Johnson, 1980; Joris and Yin, 1992). Psychophysical stud-

ies suggest that envelopes convey important information

about speech content (Elliott and Theunissen, 2009;

Shannon et al., 1995; Smith et al., 2002), whereas TFS is

important for our perception of attributes such as pitch and

location (Smith et al., 2002).

The temporal coherence theory of scene analysis (Elhilali

et al., 2009; Gray, 1999) suggests that neural assemblies that

fire coherently (driven by envelopes, TFS, or both) support

perceptual grouping of sound elements across distinct fre-

quency channels, which can aid source segregation

(Schooneveldt and Moore, 1987). This may also explain how

masker elements that are temporally coherent with target

speech, but are in a different channel from the target, can
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perceptually interfere (Apoux and Bacon, 2008). Accordingly,

the temporal coherence theory makes important predictions

about how the envelopes and TFS of sources in a scene affect

scene analysis and thus how they should influence the neural

representation and intelligibility of target speech. However,

these predictions have not been evaluated in neurophysiologi-

cal experiments for realistic listening conditions that capture

the complexity of everyday “cocktail-party” environments.

A parallel psychoacoustic literature suggests that modu-

lation masking (i.e., the internal representation of temporal

modulations in the target relative to those from the back-

ground, which contains inherent distracting fluctuations)

may be a key contributor to speech understanding in noise

(Bacon and Grantham, 1989; Stone and Moore, 2014).

Accordingly, while classic speech-intelligibility models

emphasized audibility in different frequency bands (ANSI,

1969, 1997), current models that emphasize envelope cod-

ing (Steeneken and Houtgast, 1980) and modulation mask-

ing (Dubbelboer and Houtgast, 2008; Rela~no-Iborra et al.,
2016) have been successful in predicting performance in

many realistic conditions. However, the core notion that

modulation masking is important has not been validated

neurophysiologically. With the exception of current speech-

intelligibility models that restrict modulation masking

effects to within a carrier frequency channel (Jørgensen

et al., 2013; Rela~no-Iborra et al., 2016), the literature on

modulation masking largely does not distinguish between

cross-channel interference and within-channel masking. In

this sense, the theory of modulation masking is consistent

with the temporal coherence theory. However, modulation

masking does not consider the role of TFS, despite the con-

sistent finding that cues conveyed by TFS (e.g., pitch)

(Smith et al., 2002) critically support object formation, per-

ceptual scene segregation, and selective attention (Darwin,

1997; Shinn-Cunningham, 2008). Indeed, temporal coher-

ence across low-frequency TFS and high-frequency pitch

envelopes may significantly improve speech intelligibility in

noise compared to having either cue alone (Oxenham and

Simonson, 2009). While some psychophysical studies have

explored the relative roles of envelope and fine-structure

cues for speech intelligibility in noise (Lorenzi et al., 2006;

Qin and Oxenham, 2003; Swaminathan and Heinz, 2012),

few neurophysiological studies have investigated how these

cues work together during selective listening.

In the present study, we bridge these gaps by measuring

electroencephalography (EEG) simultaneously with intelli-

gibility for target speech over a range of strategically chosen

realistic listening conditions. The EEG measured is the

response evoked by ongoing stimulus fluctuations when

attending to the target speech. We hypothesized that the

neural tracking of target modulations, as quantified from

EEG, will depend strongly on the modulation content of the

masker, in line with the temporal coherence theory and the

notion of modulation masking. Furthermore, we hypothe-

sized that the availability (or lack thereof) of TFS will also

impact this neural target-envelope coding, in line with the

role of TFS in providing cues to facilitate scene analysis

and attention. Finally, we hypothesized that the net neural

target-envelope coding shaped by these factors [i.e., the neural

signal-to-noise ratio (SNR) in the envelope domain] will pre-

dict (in a quantitative, statistical sense) speech intelligibility

in conditions unseen by the predictive model. Our neurophysi-

ological results provide evidence for all of the above hypothe-

ses. The present study thus goes beyond comparing individual

outcomes to neural measures in a particular condition (e.g.,

Bharadwaj et al., 2015; Ding and Simon, 2013), to elucidate

what aspects of the scene acoustics and neural processing pre-

dict intelligibility across diverse real-world conditions.

II. MATERIALS AND METHODS

A. Stimulus generation

Seven hundred Harvard/Institute of Electrical and

Electronics Engineers (IEEE) sentences (Rothauser, 1969)

spoken in a female voice and recorded as part of the PN/NC

corpus (McCloy et al., 2013) were chosen for the study. The

Harvard/IEEE lists have relatively low semantic context

compared to other commonly used speech material

(Boothroyd and Nittrouer, 1988; Grant and Seitz, 2000;

Rabinowitz et al., 1992). Stimuli were created for eight dif-

ferent experimental conditions as described below.

1. Conditions 1–3: Speech in speech-shaped station-
ary noise (SiSSN)

Speech was added to spectrally matched stationary

Gaussian noise, i.e., speech-shaped stationary noise, at

SNRs of �2, �5, and �8 dB. The long-term spectra of the

target speech sentences and that of stationary noise were

adjusted to match the average (across instances) long-term

spectrum of four-talker babble. A different realization of

stationary noise was used for each SiSSN stimulus.

2. Conditions 4 and 5: Speech in babble (SiB)

Speech was added to spectrally matched four-talker

babble at SNRs of 4 and �2 dB. The long-term spectra of

the target speech sentences were adjusted to match the aver-

age (across instances) long-term spectrum of four-talker

babble. In creating each SiB stimulus, a babble sample was

randomly selected from a list comprising 72 different four-

talker babble maskers obtained from the QuickSIN corpus

(Killion et al., 2004).

3. Condition 6: Speech in babble with reverberation
(SiB reverb)

SiB at 6 dB SNR was subjected to reverberation simu-

lating St. Albans Cathedral in England [by convolution with

a binaural impulse response; see Gorzel et al. (2010)]. The

reverberation time (T60) was 2.4 s.

4. Condition 7: Vocoded speech in babble (SiB
vocoded)

SiB at 4 dB SNR was subjected to 64-channel envelope

vocoding, which left the peripheral envelopes and place
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coding intact, while replacing the TFS with a noise carrier

in accordance with the procedure described in Qin and

Oxenham (2003). The 64 frequency channels were contigu-

ous with their center frequencies equally spaced on an ERB-

number scale (Glasberg and Moore, 1990) between 80 and

6000 Hz. To verify that the vocoding procedure did not sig-

nificantly change envelopes at the cochlear level, we

extracted the envelopes at the output of 128 filters (using a

similar procedure as in the actual vocoding process) both

before and after vocoding for 50 different SiB stimuli. Note

that the use of 128 filters allowed us to compare envelopes

at both on-band filters (i.e., filters whose center frequencies

matched with the subbands of the vocoder) and off-band fil-

ters (i.e., filters whose center frequencies were halfway

between adjacent vocoder subbands on the ERB-number

scale). The average correlation coefficient between enve-

lopes before and after vocoding (across the 50 SiB stimuli

and the 128 cochlear filters and after adjusting for any

vocoder group delays) is about 0.9. This suggests that our

vocoding procedure leaves the cochlear-level envelopes

largely intact. Indeed, as illustrated in Fig. 1, our 64-channel

vocoding procedure better preserves the within-band enve-

lopes than the lower-resolution procedures of Ding et al.
(2014). Although Ding et al. (2014) suggested that TFS

matters for neural envelope tracking, their methods using

four- or eight-channel vocoding do not preserve peripheral

envelopes within individual cochlear bands. Consequently, a

purely envelope-based explanation of their findings cannot

be ruled out.

5. Condition 8: Speech in babble with ideal
time-frequency segregation (SiB ITFS)

SiB at �6 dB SNR was subjected to 64-channel ITFS, a

non-linear denoising procedure that forms the basis of many

machine-learning denoising strategies (Wang and Chen,

2018). This was performed over a frequency range of

80–8000 Hz, mirroring the procedure in Brungart et al.
(2006). A local SNR criterion of 0 dB was used in the ITFS

procedure.

Prior to the full study, a behavioral pilot study (with

five subjects who did not participate in the actual EEG

experiment) was used to determine the SNRs for the differ-

ent experimental conditions. The SNRs for the three SiSSN

conditions were chosen to yield intelligibility values of

roughly 25%, 50%, and 75%, respectively, to span the full

range of intelligibility. The SNRs for the other conditions

were chosen such that the intelligibility scores were between

(but did not include) 0% and 100% and were different across

the different conditions.

Table I lists the different stimulus conditions along with

the rationale for including them in our study.

B. Participants

Data were collected from 12 human subjects (four male),

aged 19–31 years, recruited from the Purdue University com-

munity. All subjects were native speakers of American

English, had pure-tone hearing thresholds better than 20 dB

hearing level in both ears at standard audiometric frequencies

between 250 Hz and 8 kHz, and reported no neurological dis-

orders. All subjects also had distortion-product and click-

evoked otoacoustic emissions (DPOAE and CEOAE) within

the normal range of published values for individuals with nor-

mal hearing (Gorga et al., 1993) as well as normal tympano-

grams. Subjects provided informed consent in accordance

with protocols established at Purdue University. Data were

collected from each subject over the course of one or two vis-

its (with a total visit time of �5 h).

FIG. 1. (Color online) Illustration of the effect of 64-channel vocoding versus the lower-resolution procedures of Ding et al. (2014) on envelopes within individ-

ual cochlear bands. (A) A histogram of the group-delay-adjusted squared normalized-correlation (i.e., variance explained) between the envelope in intact SiB and

64-channel vocoded SiB, which is used in this present study (i), and the eight-channel (ii) and four-channel (iii) vocoding of Ding et al. (2014) vocoded SiB. The

histograms are across different speech sentences and 128 different cochlear bands equally spaced on an ERB-number scale (Glasberg and Moore, 1990) from 80

to 6000 Hz. The 64-channel vocoding clearly better preserves the within-band envelopes than either the eight- or four-channel procedures of Ding et al. (2014) in

that the 64-channel procedure captures an additional variance of more than 20%. This disruption of within-band envelopes using their technique was observed

despite replicating their result of 0.99 correlation for the band-summed envelope (i.e., the basis for their conclusion that their vocoding preserved speech enve-

lopes). (B) An example envelope derived from SiB for the 1.5-kHz speech band for intact SiB, our 64-channel vocoding, and the better-resolution, eight-channel

vocoding from Ding et al. (2014) to visualize how our procedure yields band-specific envelopes that more closely match those of intact SiB.
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C. Experimental design

Each subject performed seven blocks of speech intelli-

gibility testing, with 100 trials per block and with a distinct

target sentence in each trial. Subjects had a 5–10 min break

between successive blocks. Different but overlapping sub-

sets of experimental conditions were randomly assigned to

each subject, such that at least 700 trials for each experimen-

tal condition were collected across the subject cohort. This

design avoided confounding individual-subject effects with

experimental-condition effects. The different experimental

conditions were intermingled within each block.

Subjects were instructed that in each trial they would be

listening for a woman’s voice speaking a sentence and that

at the end of the trial they would have to verbally repeat the

sentence back to the experimenter sitting beside them in a

sound-treated booth. They were told that it would be the

same woman’s voice every time but that the type and level

of background noise/distortion would change from trial to

trial. They were also instructed that in each trial, the noise

would start first and the target woman’s voice �1 s later.

They were encouraged to guess as many words as they could

if they heard a sentence only partially.

Stimuli were presented to subjects diotically in all con-

ditions except the reverberation condition, in which stimuli

were generated with ear-specific impulse responses as

described previously. Thirty-two-channel EEG was mea-

sured while subjects performed the behavioral task. The tar-

get speech sentences were presented at a sound level of

72 dB sound pressure level (SPL), while the level of the

background was varied according to the stimulus SNR.

At the beginning of each trial, subjects were presented

with a visual cue that read “stay still and listen now” in red

font. The audio stimulus started playing 1 s after the visual

cue was presented. In every stimulus presentation, the back-

ground noise started first and continued for the entire dura-

tion of the trial, while the target speech started 1.25 s after

the background started. This was done to help cue the sub-

jects’ attention to the stimulus before the target sentence

was played. The target was at least 2.5 s long. After the tar-

get sentence ended, the background noise continued for a

short amount of time that varied randomly from trial to trial.

This was done to reduce EEG contamination from move-

ment artifacts and motor-planning signals. Two hundred ms

after the noise ended, subjects were presented with a differ-

ent visual cue that read “repeat now” in green font, cueing

them to report the target sentence to the experimenter.

Intelligibility was scored on five pre-determined keywords

(which excluded articles and prepositions) for each sen-

tence. For each experimental condition, an overall intelligi-

bility score was obtained by averaging the percentage of key

words correct (for a sentence) over all sentences used in that

condition and across subjects.

Subjects performed a short training demo task before

the actual EEG experiment. The demo spanned the same set

of listening conditions and used the same woman’s voice as

the actual experiment but contained a different set of

Harvard/IEEE target sentences, not used in the main experi-

ment. All 12 subjects scored more than 70% on the easiest

condition and got at least some words correct (>0%) on the

hardest condition. All were able to stay still during the pre-

sentation of the sentences and respond on cue. This ensured

that in the actual experiment, intelligibility scores showed

minimal ceiling or floor effects and that movement artifacts

were minimal, providing clean EEG recordings.

D. Hardware

A personal desktop computer controlled all aspects of

the experiment, including triggering sound delivery and

storing data. Special-purpose sound-control hardware

(System 3 real-time signal processing system, including dig-

ital-to-analog conversion and amplification; Tucker Davis

Technologies, Alachua, FL) presented audio through insert

earphones (ER-2; Etymotic, Elk Grove Village, IL) coupled

to foam ear tips. The earphones were custom shielded by

wrapping the transducers in layers of magnetic shielding

tape made from an amorphous cobalt alloy (MCF5;

YSHIELD GmbH & Co., Ruhstorf, Germany) and then

placing them in 3-mm-thick aluminum enclosures to attenu-

ate electromagnetic interference. The signal cables driving

the transducers were shielded with braided metallic

TABLE I. Rationale for the different stimulus conditions included in this study. Collectively, the different listening conditions represent a diversity of scene

acoustics, including important examples in our environment and clinical applications. Moreover, they span maskers with different modulation statistics

(Jørgensen et al., 2013; Rosen et al., 2013) and stimuli with intact and degraded TFS, which allowed us to rigorously test our hypotheses. Note that the SNR

levels were chosen to span the full range of intelligibility without floor or ceiling effects.

No. Stimulus condition Rationale for inclusion in study

1–3 SiSSN at SNRs of �2, �5, and �8 dB Widely used in the literature; used for calibration of prediction model

4 and 5 SiB at SNRs of 4 and �2 dB Simulates ecologically relevant cocktail-party listening; has different masker modula-

tion statistics from SiSSN

6 SiB at 6 dB SNR subjected to reverberation

(T60¼ 2.4 s)

Reverberation is ubiquitous in everyday listening environments (e.g., rooms and stair-

wells); linearly distorts temporal information

7 SiB at 4 dB SNR subjected to 64-channel

envelope vocoding

Used to investigate the role of TFS in target-speech coding and intelligibility

8 SiB at �6 dB SNR subjected to 64-channel

ITFS

ITFS is a precursor to deep-learning-based denoising algorithms that are increasingly

used in many audio processing applications, including hearing aids (Wang and Chen,

2018); nonlinear distortion
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Techflex (Techflex, Sparta, NJ). All shielding layers were

grounded to the chassis of the digital-to-analog (D/A) con-

verter. The absence of measurable electromagnetic artifact

was verified by running intense click stimuli through the

transducers with the transducers positioned in the same loca-

tion relative to the EEG cap as actual measurements but

with foam tips left outside the ear. All audio signals were

digitized at a sampling rate of 48.828 kHz. The EEG signals

were recorded at a sampling rate of 4.096 kHz using a

BioSemi (Amsterdam, The Netherlands) ActiveTwo system.

Recordings were done with 32 cephalic electrodes and two

additional earlobe electrodes.

E. Data preprocessing

Of the 12 subjects who participated, one subject could

not complete the task because they were sleepy, and another

subject was unable to return for their second visit to com-

plete the study. Data from these two subjects were excluded

from the study. The EEG signals of the remaining ten sub-

jects were re-referenced to the average of the two earlobe

reference electrodes. The signal space projection method

was used to construct spatial filters to remove eye blink and

saccade artifacts (Uusitalo and Ilmoniemi, 1997). The

broadband EEG was then bandpass filtered between 1 and

400 Hz for further analysis. Data from three completely new

subjects (who were not among the 12 who participated in

the main experiment) showed that responses from the audi-

tory cortex and brainstem are strongest in EEG channel FCz

[see Fig. 2(B)]; thus, we used FCz to derive all results pre-

sented in this report.

F. Quantifying EEG-based target-envelope encoding
fidelity

We sought to quantify the fidelity (i.e., SNR) of neural

envelope encoding of target speech relative to masker fluc-

tuations for each of the eight experimental conditions. The

EEG measured in response to our speech-in-noise stimuli

reflects not only the neural responses to the target speech

and masking noise, but also unrelated brain activity and

other EEG measurement noise. To quantify target-envelope

coding, we computed the extent to which the EEG response

is phase locked to the target-speech envelope using the

phase-locking value measure (PLV; Lachaux et al., 1999).

We chose this metric because the PLV is monotonically

related to the SNR (approximately linearly in the SNR range

of 66 dB) in the EEG measurements (Bharadwaj and Shinn-

Cunningham, 2014) and consequently also to the neural

envelope-domain SNR of the target relative to the masker

(as sources of noise other than the masker do not vary

between conditions). A high PLV between the target-speech

FIG. 2. (Color online) Quantifying the fidelity of target-speech envelope encoding with EEG. (A) illustrates the steps used to quantify target-envelope cod-

ing. Target-speech envelopes were extracted using a bank of ten gammatone filters simulating cochlear processing, with roughly log-spaced center frequen-

cies spanning 100–8500 Hz. The envelope at the output of each filter was extracted using the Hilbert transform, and the results were summed across all

filters to obtain one overall temporal envelope for each target speech sentence. The fidelity of neural envelope coding of target speech relative to that of

background noise (i.e., neural SNR in the envelope domain) was quantified for each experimental condition by computing the phase-locking spectrum

between the EEG response in channel FCz and the target-speech envelope across the different trials of that condition [see Eqs. (1)–(4)]. The resulting phase-

locking spectra were z-scored with respect to an appropriate null distribution of zero phase locking. To obtain a summary metric of neural envelope coding

ENVneural, the average z-score over all modulation frequencies was computed by weighting the frequencies to compensate for the 1/f transfer function that

is observed in EEG measurements. (B) shows that responses from auditory cortex and brainstem are strongest in EEG channel FCz. Data shown are from

three different subjects who did not participate in the main experiment but underwent the same screening protocols as the subjects in the main study.

Established paradigms for envelope-following responses (EFRs) and onset-evoked potentials (N100 and ABR wave 5) were used to elicit responses from the

auditory cortex and brainstem (Picton, 2010). The scalp maps obtained from these responses were normalized such that the amplitudes across channels

within each map add to one. The red and blue colors in a scalp map indicate opposite polarities, and the color saturation indicates the normalized amplitude.

These scalp maps were used to select the sensor location (FCz) used for all analyses and results presented in this report.
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envelope and EEG response indicates a consistent phase

relationship between those signals, and a low PLV implies

little to no relationship between the two signals. Thus, if the

EEG response mostly coded target fluctuations (e.g., in a

condition with low background noise levels), then the PLV

between the EEG signal and the target envelope would be

strong. On the other hand, if the EEG response coded mostly

masker fluctuations rather than target fluctuations, the PLV

would be small. Thus, the PLV captures the envelope-

domain SNR with which target envelopes are internally

represented relative to modulations in masking sounds and

random noise. Note that envelope coding has often been

quantified in the literature using a stimulus reconstruction

approach, which estimates a linear filter that approximately

reconstructs the input speech envelope from EEG responses

(e.g., Ding and Simon, 2012; O’Sullivan et al., 2015).

Following reconstruction, the proportion of the actual stimu-

lus envelope that is linearly related to the reconstructed

envelope is computed as a metric of envelope coding. One

disadvantage with this approach is that the first filter estima-

tion step is ill conditioned and necessitates the use of arbi-

trary regularization techniques (Wong et al., 2018). Our

phase-locking measure bypasses this filter estimation step

and instead directly captures the proportion of the EEG

power that is linearly related to the input speech envelope.

To derive speech envelopes for use in the PLV computa-

tion, we used a bank of 10 gammatone filters that mimic

cochlear frequency selectivity (Glasberg and Moore, 1990)

with center frequencies spanning 100–8500 Hz. The filters

were spaced roughly logarithmically, such that their center

frequencies had best places that are spaced uniformly along

the length of the cochlea according to an established place-

frequency map (Greenwood, 1990). Each of the 700 speech

sentences used in our study was processed through this filter-

bank. The envelope of the output of each filter was extracted

using the Hilbert transform; the results were summed across

all cochlear bands to obtain one overall temporal envelope for

each target speech sentence. Note that the single overall enve-

lope obtained by summing across 10 bands is adequate to

characterize envelope coding with EEG since EEG does not

offer tonotopically resolved information and our focus was

not on tonotopic weightings. This is in contrast to the high-

resolution procedure crucial for generating vocoded stimuli,

as the envelopes conveyed by the periphery are expected to

influence the neural processing of target speech. To extract the

EEG response to the speech-in-noise stimulus in each trial, a

2.5-s-long epoch that corresponds to the time window during

the trial when the target speech was presented was extracted

from the overall EEG response in that trial. Epochs corre-

sponding to a particular experimental condition were then

pooled over all subjects who performed the condition, to yield

a total of 700 epochs per condition. All EEG epochs for a par-

ticular condition were paired with the envelopes of the corre-

sponding target speech sentences and used to calculate the

condition-specific PLV measure. PLV was computed in two

different ways using custom code adapted from the MNE-

PYTHON toolbox (Gramfort et al., 2014), as described below.

The “long-term” PLV spectrum was estimated for each

condition using a multi-taper approach (Zhu et al., 2013).

Five tapers were used, which resulted in a frequency resolu-

tion of 2.4 Hz. The multi-taper PLV estimate minimizes

spectral leakage (i.e., reduces mixing of information

between far-away frequencies) for any given spectral resolu-

tion and is calculated from the Fourier representations of

two signals X(f) and Y(f) (representing target-speech enve-

lope and EEG response, respectively) as follows:

Cknðf Þ ¼ exp jð/Xknðf Þ �/Yknðf ÞÞ½ �; (1)

PLVXYðf Þ ¼
1

KtapersNepochs

XKtapers

k¼1

XNepochs

n¼1

Cknðf Þ
�����

�����: (2)

Here, k indexes the taper, n indexes the epoch, and f is mod-

ulation frequency.

In addition to the long-term PLV measure described

above, we also computed a short-term multi-resolution PLV

for modulation frequencies above 7 Hz to account for any

modulation masking release that may occur in short time

windows. Multi-resolution analyses have been shown to pre-

dict intelligibility better than long-term analyses in the case

of fluctuating maskers (Jørgensen et al., 2013). A Morlet

wavelet was used to compute the EEG and speech spectra in

short time windows using seven cycles at each frequency

bin (which resulted in a frequency resolution that monotoni-

cally decreased with increasing bin center frequency). The

window length is inversely proportional to the wavelet cen-

ter frequency; thus, the number of windows also varied

according to frequency (with fewer windows at lower fre-

quencies and more windows at higher frequencies). Given

that each target sentence was a little over 2 s and that each

wavelet had seven cycles, the multi-resolution analysis was

restricted to 7 Hz and above in order for at least two non-

overlapping windows to be resolvable. The multi-resolution

PLV is calculated from the Fourier representations of two

signals X(f) and Y(f) (representing target-speech envelope

and EEG response, respectively) as follows:

Cmnðf Þ ¼ exp jð/Xmnðf Þ �/Ymnðf ÞÞ½ �; (3)

mrPLVXYðf Þ ¼
1

Mwinðf ÞNepochs

XMwinðf Þ

m¼1

XNepochs

n¼1

Cmnðf Þ
�����

�����: (4)

Here, m indexes the window, n indexes the epoch, and f is

modulation frequency.

The long-term PLV spectra were averaged within

octave-wide modulation bands, spaced half an octave apart.

In the case of the multi-resolution PLV computation, we

used a similar half-octave spacing when defining the wave-

let center frequencies. The binned long-term and multi-

resolution PLV spectra thus obtained were z-scored with

respect to corresponding null distributions of zero phase

locking, which were obtained by pairing EEG trials with

mismatching speech trials as described in Sec. II H. The z-

scores from the long-term and multi-resolution analyses
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were thresholded at zero and then summed at each fre-

quency bin. Then, to obtain a summary metric of neural

envelope coding ENVneural, the average PLV over all mod-

ulation frequency bins was computed after weighting the z-

scores in the bins to compensate for the 1/f power transfer

function that is characteristic of the SNR of EEG measure-

ments (Buzs�aki et al., 2012; Roß et al., 2000; Stinstra and

Peters, 1998). Specifically, the z-score in each frequency bin

was weighted by a factor proportional to the square root of

the bin center frequency, and then the weighted-average z-

score across bins was computed. In this way, a separate

ENVneural metric was quantified for each experimental

condition. Note that although different carrier frequency

bands and modulation frequencies likely differ in their per-

ceptual importance (Drullman et al., 1994; Kryter, 1962),

our ENVneural metric does not assign any importance

weighting to them. This is because of the possibility that the

physiological computations that contribute to our EEG mea-

surements implicitly incorporate such weighting. Figure 2

illustrates the steps used to quantify ENVneural.

G. Testing the hypothesis that the fidelity of target-
envelope coding in the brain predicts intelligibility

The hypothesis that the fidelity (i.e., SNR) with which

envelopes of target speech are coded in the brain relative to

background noise predicts intelligibility (in a quantitative,

statistical sense) was tested using a rigorous two-step

approach. In the calibration step, a logistic/sigmoid function

was used to map the EEG-based ENVneural measurements

to perceptual intelligibility for speech in stationary noise.

This mapping revealed a monotonic relationship between

ENVneural and intelligibility across the three SiSSN condi-

tions [see Fig. 4(B)]. A crucial test of envelope-based pre-

dictions is whether a mapping between ENVneural and

perceptual intelligibility derived from one type of back-

ground noise can be used to estimate intelligibility for

novel backgrounds and linear and non-linear distortions

applied to the input sounds. In the next step, we predicted

intelligibility for speech presented in various novel, realis-

tic backgrounds and distortions from EEG ENVneural
measurements and by using the mapping created with sta-

tionary noise. The following conditions were tested in the

prediction step: SiB at 4 dB SNR, SiB at –2 dB SNR, SiB

at 6 dB SNR subjected to reverberation, SiB at 4 dB SNR

subjected to 64-channel envelope vocoding, and SiB at

–6 dB SNR subjected to non-linear denoising (ITFS).

Figure 3 illustrates the calibration and prediction steps

that were used to test the hypothesis.

H. Statistical analysis

The distributions for the PLV metric (one for the long-

term analysis and another separately for the multi-resolution

approach) under the null hypothesis of zero phase locking

were obtained using a non-parametric shuffling procedure

(Le Van Quyen et al., 2001). Each realization from either

null distribution was obtained by following the same

computations used to obtain the actual PLV measures, but

by pairing EEG response epochs randomly with mismatch-

ing speech epochs. That is, when computing the PLV

between the speech signal and the EEG signal, the order of

epochs for one of the two signals was randomly permuted.

This procedure was repeated with 16 distinct randomiza-

tions for each experimental condition. Samples were pooled

across the 16 randomizations and across all eight conditions

to yield a total of 128 realizations from each null distribu-

tion. This procedure ensured that the data used in the com-

putation of the null distributions had the same statistical

properties as the original speech and EEG signals.

To test the hypothesis that the fidelity of neural enve-

lope coding of target speech relative to that of background

noise (i.e., neural SNR in the envelope domain) predicts

intelligibility, we computed the Pearson correlation between

our EEG-based intelligibility predictions and the actual

intelligibility measurements. The p-value for the correlation

was derived using Fisher’s approximation (Fisher, 1921).

The noise floor parameters used for computing the z-

scores shown in Fig. 8 were derived as described in

Viswanathan et al. (2019).

I. Software accessibility

Stimulus presentation was controlled using custom

MATLAB (The MathWorks, Inc., Natick, MA) routines. EEG

data preprocessing was performed using the open-source

software tools MNE-PYTHON (Gramfort et al., 2014) and

SNAPsoftware (Bharadwaj, 2018). All further analyses were

performed using custom software in PYTHON (Python

Software Foundation, Wilmington, DE) and MATLAB. Copies

of all custom code can be obtained from the authors.

FIG. 3. (Color online) Our rigorous two-step approach to test the hypothesis

that the fidelity of neural envelope coding of target speech relative to back-

ground noise predicts speech intelligibility (in a quantitative, statistical

sense). The first step is a calibration step, where a logistic/sigmoid function

was used to map an EEG-based target envelope-coding metric, ENVneural,
to perceptual intelligibility for speech in stationary noise. In the second

step, we used this mapping to blindly predict speech intelligibility in vari-

ous completely novel realistic background noises and distortions only from

EEG-based ENVneural measurements.
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III. RESULTS

A. Neural envelope-domain SNR in target encoding
predicts speech intelligibility over a variety of realistic
listening conditions novel to the predictive model

Figure 4 shows results from the calibration step of our

two-step approach to test the hypothesis that speech intelli-

gibility can be predicted from the fidelity (i.e., SNR) with

which target-speech envelopes are encoded in the brain rela-

tive to background noise. As described in Sec. II, the fidelity

of target-envelope coding in the brain was estimated from

the phase-locking spectrum (computed using the PLV)

between the EEG response and the target-speech envelope.

Figure 4(A) shows target PLV spectra for three SiSSN con-

ditions, which correspond to different acoustic SNRs.

Comparing the areas under the PLV spectra for –2, –5, and

–8 dB SNR shows that the strength of neural envelope

coding of the target monotonically decreases with increasing

noise. A summary metric of target-envelope coding,

ENVneural, was derived separately for each condition by

pooling the PLV across modulation frequencies (see Sec.

II). Figure 4(B) illustrates the monotonic relationship

between ENVneural and perceptual intelligibility measure-

ments across the different SNRs of SiSSN. We fit this rela-

tionship with a sigmoid/logistic function (shown in the

figure) to map ENVneural to perceptual intelligibility.

The mapping created in the calibration step was used to

predict intelligibility for speech in novel realistic back-

ground noises and with different distortions (i.e., conditions

not used in calibration), purely from EEG measurements.

Figure 5 compares predictions to measured intelligibility for

the novel conditions. A total of five novel conditions were

tested: speech in four-talker babble (SiB) at SNRs of 4 and

–2 dB, SiB at 6 dB SNR subjected to reverberation, SiB at

4 dB SNR subjected to 64-channel envelope vocoding, and

SiB at –6 dB SNR subjected to non-linear denoising (using

ITFS). Predictions match measured performance closely

(R2 ¼ 0:93, p ¼ 0.004), suggesting that envelope coding of

the target (relative to the background) in the central auditory

system predicts intelligibility. Note that the measurement

noise (i.e., background EEG activity unrelated to the target

or masker) would be constant across our comparisons.

FIG. 4. The calibration step: Stationary noise was used to create a mapping between our EEG-based target envelope-coding metric ENVneural and percep-

tual intelligibility. Shown are results from the calibration step of our two-step approach to test the hypothesis that speech intelligibility can be predicted

from the fidelity (i.e., SNR) with which target-speech envelopes are coded in the brain relative to background noise. Target-envelope coding fidelity was

estimated by computing the PLV spectrum between the EEG response and the target-speech envelope. (A) Target PLV spectra (z-scored with respect to a

null distribution that is common across conditions) for three SNRs of SiSSN. The dashed lines indicate z ¼ 1.64, i.e., the 95th percentile of the noise floor

distribution. Neural envelope coding of the target monotonically decreases with increasing noise (compare the areas under the PLV spectra for –2, –5, and

–8 dB SNR). A summary metric of target-envelope coding (i.e., ENVneural) was derived separately for each condition by pooling the PLV across modula-

tion frequencies. (B) ENVneural versus intelligibility measurements (mean and standard error across subjects). The monotonic relationship between

ENVneural and measured intelligibility across the three SNRs of SiSSN allowed us to fit a sigmoid/logistic function mapping ENVneural to intelligibility,

as shown, which can then be used for predicting intelligibility from measured ENVneural for novel conditions.

FIG. 5. (Color online) EEG-based target-envelope coding fidelity predicts

intelligibility for a variety of realistic conditions not used in calibration.

The mapping created using stationary noise [Fig. 4(B)] was used to predict

intelligibility for speech in completely novel realistic background noises

and with various distortions, purely from EEG measurements. A total of

five novel conditions were tested: speech in four-talker babble (SiB) at

SNRs of 4 and –2 dB, SiB at 6 dB SNR subjected to reverberation, SiB at

4 dB SNR subjected to 64-channel envelope vocoding, and SiB at –6 dB

SNR subjected to non-linear denoising (using ITFS). Shown are our intelli-

gibility predictions versus actual measurements (mean and standard error

across subjects) for these conditions. Predictions match measured perfor-

mance closely (R2 ¼ 0:93, p ¼ 0.004), suggesting that neural envelope cod-

ing of target speech (relative to the background) in the central auditory

system predicts intelligibility. Since the measurement noise (i.e., back-

ground EEG activity unrelated to the target or masker) would be constant

across our comparisons, the variation in ENVneural across conditions

should primarily reflect the fidelity of target-envelope coding relative to the

masker’s internal representation (i.e., the neural modulation-domain SNR).

In light of this, the result shown provides neurophysiological evidence for

perceptual modulation masking.
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Hence, the variation in ENVneural across conditions should

primarily reflect the fidelity of target-envelope coding rela-

tive to the masker’s internal representation (i.e., the neural

modulation-domain SNR). In light of this, the finding that

ENVneural predicts intelligibility across a range of novel

realistic conditions provides neurophysiological evidence

for perceptual modulation masking.

B. The modulation frequencies that contribute to the
overall ENVneural metric, which predicts intelligibility,
depend strongly on the envelope spectrum of the
masker

Figure 6 shows target PLV spectra for two distinct lis-

tening conditions, SiSSN and SiB, as well as modulation

spectra for the speech-shaped stationary noise and four-

talker babble maskers. The modulation spectra for the

maskers were generated by computing the multi-tapered

spectral estimates (with five tapers, resulting in a frequency

resolution of 2.4 Hz, and 72 trials) of the 2.5-s-long temporal

envelope (summed across cochlear bands) of those maskers.

Note that the procedure used to generate the masker enve-

lopes was the same as that used to obtain target-speech

envelopes for the PLV computation (see Sec. II).

Comparing the modulation spectrum of speech-shaped sta-

tionary noise to the target PLV spectrum for the –2 dB SNR

SiSSN condition, we find that speech-shaped stationary

noise degrades the representation of high-frequency target

modulations more (and low-frequency modulations less), in

line with the fact that there is greater power for high-

frequency than for low-frequency modulation in stationary

noise. On the other hand, comparing the modulation spec-

trum of four-talker babble to the target PLV spectrum for

the 4 dB SNR SiB condition, we see that four-talker babble

degrades the representation of low-frequency target modula-

tions more (and high-frequency modulations less). This is

consistent with the fact that there is greater power for low-

frequency rather than high-frequency modulation in babble.

These results show that the spectral profile of EEG-based

target-envelope coding fidelity (i.e., the neural envelope-

domain SNR in target-speech encoding) is shaped by the

masker’s modulation spectrum. This result, in combination

with our finding that EEG-based target-envelope coding pre-

dicts intelligibility, provides further neurophysiological evi-

dence for perceptual modulation masking. These results also

suggest that the modulation frequencies that contribute most

to speech intelligibility in realistic listening conditions could

lie anywhere in the full continuum from slow prosodic fluc-

tuations to fast pitch-range fluctuations. Previous studies

that examined electrophysiological responses to speech in

background noise and how those relate to speech perception

focused on either the cortical tracking of low-frequency

envelopes (Ding and Simon, 2014) or on the subcortical

tracking of envelope fluctuations in the pitch range

(Bidelman, 2017; Shinn-Cunningham et al., 2017). Our find-

ings thus suggest that the prominent use of stationary noise

in the previous cortical speech-tracking literature may have

been a contributing factor to their focus on low-frequency

speech envelopes, i.e., in the so-called “delta” and “theta”

ranges.

C. EEG-based envelope coding fidelity and
intelligibility are shaped not just by peripheral
envelopes but also by TFS

Comparing the SiB at 4 dB SNR (intact) condition

with the 64-channel envelope-vocoded SiB at 4 dB SNR in

Fig. 7, we find that intelligibility and target-envelope coding

fidelity in central auditory neurons are both significantly

degraded in the vocoded condition. Note, however, that the

envelopes at the cochlear level are very similar before and

after vocoding (see Sec. II) due to the relatively large

FIG. 6. (Color online) The modulation frequencies that contribute to the overall ENVneural metric, which predicts intelligibility, depend strongly on the

envelope spectrum of the masker. The target PLV spectra shown are z-scored with respect to a null distribution that is common across conditions. The

dashed lines indicate z ¼ 1.64, i.e., the 95th percentile of the noise floor distribution. Comparing the modulation spectrum of speech-shaped stationary noise

(rightmost panel) to the target PLV spectrum for the –2 dB SNR SiSSN condition (A), we find that speech-shaped stationary noise degrades the representa-

tion of high-frequency target modulations more (and low-frequency modulations less), in line with stationary noise containing relatively more high-

frequency modulation power. In contrast, comparing the modulation spectrum of four-talker babble (rightmost panel) to the target PLV spectrum for the

4 dB SNR SiB condition (B), we show that four-talker babble degrades the representation of low-frequency target modulations more (and high-frequency

modulations less), consistent with babble containing relatively more low-frequency modulation power. These results show that the spectral profile of EEG-

based target-envelope coding fidelity (i.e., the neural envelope-domain SNR in target-speech encoding) is shaped by the masker’s modulation spectrum.

This result, in combination with our finding that EEG-based target-envelope coding predicts intelligibility, provides further neurophysiological evidence for

perceptual modulation masking. These results also suggest that the modulation frequencies that contribute most to speech intelligibility in everyday listening

could lie anywhere in the full continuum from slow prosodic fluctuations to fast pitch-range fluctuations.
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number of channels (i.e., 64) used in the vocoding process.

Despite this, intelligibility is far worse for the vocoded con-

dition compared to the intact condition, demonstrating that

the integrity of peripheral envelope cues alone cannot

account for speech intelligibility. Importantly, the neural

representation of the target envelope in these conditions mir-

rors these behavioral differences. Thus, the central represen-

tation of target envelopes is shaped by factors other than just

peripheral envelopes, such as fine-structure-aided segrega-

tion mechanisms and selective-attention mechanisms that

operate on the segregated representations of target and

masker. For example, perceptual cues such as pitch and tim-

bre can aid segregation and selective attention (Darwin,

1997; Micheyl and Oxenham, 2010; Shinn-Cunningham,

2008), but these attributes rely upon stimulus TFS (Smith

et al., 2002). When segregation cues are ambiguous, selec-

tive attention is impaired, as demonstrated by experiments

that engineered conflicting cues (Bressler et al., 2014;

Shinn-Cunningham, 2008). The notion that fine-structure

cues work together with envelopes in facilitating segrega-

tion is consistent with previous psychophysical studies

showing that broadband stimuli produce greater pitch-based

masking release compared to low-pass or high-pass speech

(Oxenham and Simonson, 2009).

Many previous studies show that attentional focus,

manipulated through subject instruction, can alter central

neural envelope coding (e.g., Ding and Simon, 2012;

O’Sullivan et al., 2015). Figure 8 illustrates this for a previ-

ous study from our lab [reanalysis of data from Viswanathan

et al. (2019)]. Phase locking (averaged over 10 cochlear

bands with center frequencies spanning 100–8500 Hz)

between the input speech envelope and EEG response

depends directly on what speech a listener attends. For the

same input speech stream, the speech envelope of a stream

is represented more strongly in the brain when that speech

is attended to rather than when it is ignored. Thus, central

neural envelope coding is shaped by not just peripheral

envelopes, but also fine-structure-dependent segregation and

selective-attention effects. However, no model of speech

intelligibility accounts for this fine-structure contribution.

D. Results support an integrative conceptual model
of speech intelligibility

To summarize, our results show that the strength of

neural tracking of the target envelope relative to that of the

background provides a neural correlate of perceptual inter-

ference from a competing sound. Specifically, the ultimate

strength of the central auditory system’s encoding of the

envelope of target speech relative to other interfering sounds

predicts speech intelligibility in a variety of real-world

FIG. 7. EEG-based envelope coding fidelity and intelligibility are shaped not just by peripheral envelopes, but also by TFS. Comparing the target PLV spec-

tra (z-scored with respect to a null distribution that is common across conditions) for intact and vocoded SiB at 4 dB SNR shows that 64-channel envelope

vocoding significantly degrades envelope coding of the target relative to the background in central auditory neurons, even though the envelopes at the

cochlear level are very similar before and after vocoding. Concomitantly, intelligibility is far worse for the vocoded condition compared to the intact condi-

tion, demonstrating that the integrity of peripheral envelope cues alone cannot account for speech intelligibility. This result shows that central neural enve-

lope coding and intelligibility are shaped by factors other than just peripheral envelopes, such as stimulus TFS, which supports source segregation and

selective attention. Note that the dashed lines indicate z ¼ 1.64, i.e., the 95th percentile of the noise floor distribution.

FIG. 8. For the same input speech stream, attentional manipulations (via

experimental design) alter central neural envelope coding [data reanalyzed

from Viswanathan et al. (2019)]. Subjects were presented with a mixture of

two running speech streams, one to be attended to and the other ignored.

Selective-attention-dependent phase locking was computed between the

input speech envelope and EEG response and averaged over ten cochlear

bands with center frequencies spanning 100–8500 Hz. The data shown are

the mean and standard errors of phase locking across ten subjects. The

dashed line indicates z ¼ 1.64, i.e., the 95th percentile of the noise floor dis-

tribution. Speech envelopes are represented more strongly in the brain when

speech is attended to versus when the same speech is ignored.
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listening conditions. Moreover, we find that the modulation

frequencies that contribute to our overall ENVneural metric,

which predicts intelligibility, depend strongly on the enve-

lope spectrum of the masker and the scene acoustics. Note

that modulation-frequency-specific effects can arise from

within-channel masking where the masker contains elements

that share the same carrier and modulation frequency as

some target elements (Jørgensen and Dau, 2011) or from

cross-channel interference where masker elements that are

coherently modulated with target elements interfere with

target coding and perception (Apoux and Bacon, 2008). Our

EEG-based metric does not distinguish between these dis-

tinct forms of temporal-coherence-based effects. Rather, our

results provide evidence that some combination of the two

shapes scene analysis and speech perception in noise. Our

results also provide direct neural evidence that TFS cues

affect how well neural responses in the central auditory sys-

tem encode the envelope of target speech, likely by aiding in

successful source segregation (Darwin, 1997; Micheyl and

Oxenham, 2010; Oxenham and Simonson, 2009) and selec-

tive attention (which can operate on the internal representa-

tion of segregated target and masker objects to boost the

neural representation of the target relative to the masker;

Ding and Simon, 2012; O’Sullivan et al., 2015; Viswanathan

et al., 2019). Taken together, our neurophysiological results

support the theory that scene analysis and attentive selection

of target speech are influenced by both modulation masking

and TFS, consistent with the broader temporal coherence

theory. These ideas motivate our conceptual model of speech

intelligibility (Fig. 9), which consolidates these elements into

a single framework.

IV. DISCUSSION

The present study systematically examined how neural

encoding of target speech in the central auditory system var-

ied as characteristics of the scene acoustics and background

noise were manipulated and how these neural metrics are

related to speech intelligibility. Our results provide support

for the temporal coherence theory of scene analysis (Elhilali

et al., 2009) in that (i) our EEG-based target-envelope

coding metric, which predicts intelligibility, is strongly

influenced by the envelopes in background noise in a modu-

lation-frequency-specific manner, and (ii) the availability of

intact TFS enhances target-envelope coding.

A key result here is that the neural envelope-domain

SNR in target encoding predicts intelligibility (in a quantita-

tive, statistical sense) for a range of strategically chosen

real-world conditions that are completely novel to the pre-

diction model. Furthermore, the set of target-envelope fre-

quencies that contribute to our EEG-based intelligibility

prediction depends strongly on the envelope frequencies

contained in the background sounds. These results together

suggest that modulation masking may be fundamentally

important for speech perception in noise, thus validating

previous behavioral studies (Bacon and Grantham, 1989;

Stone and Moore, 2014) and current speech-intelligibility

models (Dubbelboer and Houtgast, 2008; Rela~no-Iborra

et al., 2016) with neurophysiological evidence. Note, how-

ever, that our results do not directly provide evidence of

neural modulation filter banks (Jørgensen et al., 2013;

Rela~no-Iborra et al., 2016). Another mechanism by which

modulation masking could occur is through temporal-coher-

ence-based binding across a distributed assembly of neurons

(Eckhorn et al., 1990; Eggermont, 2006). Through this

mechanism, those envelope and fine-structure frequencies of

the target that are temporally coherent with components of

the masker may get bound together (i.e., a failure of source

segregation), which in turn can lead to degraded target rep-

resentation and perceptual modulation masking at those spe-

cific frequencies. Indeed, there is evidence that the

redundancy in temporal pitch information across low-

frequency resolved harmonics and high-frequency enve-

lopes is more effective in facilitating masking release than

what is obtained from either of them individually (Oxenham

FIG. 9. (Color online) Results support an integrative conceptual model of

speech intelligibility. Taken together, our results support this integrative

conceptual model of speech intelligibility in that they clarify what internal

representation is predictive of speech intelligibility and how that representa-

tion is related to the acoustics of the auditory scene and cognitive variables.

Our results show that the strength of the net envelope (ENV) coding of tar-

get speech relative to other interfering sounds in the central auditory system

predicts intelligibility in a variety of real-world listening conditions (arrow

A). The modulation frequencies that contribute to these EEG-based intelli-

gibility predictions depend strongly on the envelope spectrum of the masker

and the scene acoustics. TFS cues (arrow B) also affect how well neural

responses in the central auditory system encode the envelope of target

speech, likely by aiding in source segregation (Darwin, 1997; Micheyl and

Oxenham, 2010; Oxenham and Simonson, 2009). Selective attention can

then operate effectively on the distinct representations of segregated target

and masker objects (arrow C) to boost the neural representation of the target

relative to the masker (Ding and Simon, 2012; O’Sullivan et al., 2015;

Viswanathan et al., 2019). Taken together, our results support the theory

that scene analysis and attentive selection of target speech are influenced by

both modulation masking and TFS, consistent with the broader temporal

coherence theory.
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and Simonson, 2009). Our findings underscore the need for

further research into the neural circuit-level computations

that support such complex integration of various temporal

cues during active listening.

Previous psychophysical studies with carefully processed

speech stimuli in quiet (Elliott and Theunissen, 2009;

Shannon et al., 1995; Smith et al., 2002) and the success of

envelope-based cochlear implants in quiet backgrounds

(Wilson and Dorman, 2008) suggest that envelope coding is

fundamental for speech perception. However, a more general

and rigorous test of this hypothesis requires an examination

of whether or not envelope coding predicts intelligibility for

the average listener over a range of realistic listening condi-

tions not used by the predictive model. Some prior studies

compared individual variations in envelope coding to intelli-

gibility; these used just one type of masker, such as stationary

noise (e.g., Ding and Simon, 2013; Vanthornhout et al.,
2018) or a multi-talker interferer (e.g., Bharadwaj et al.,
2015). In contrast, we were able to predict intelligibility in a

variety of novel ecologically relevant conditions from just

average neural metrics, learning the prediction model from

the independent stationary-noise condition. Despite EEG

measurement noise or any errors introduced due to variability

in intelligibility measurements in the calibration step, our

EEG-based predictions closely track (R2 ¼ 0:93, p ¼ 0.004)

the overall pattern in measured intelligibility across condi-

tions [Fig. 5(C)]. This is in fact stronger evidence that neural

envelope coding is a correlate of speech intelligibility than

being able to correlate individual differences in neural coding

and behavior, both because pooling across subjects (who dif-

fer in performance) adds noise to the metrics we computed

and, more importantly, because correlated individual differ-

ences in EEG and behavior could easily arise from extrane-

ous factors such as motivation, attention, level of arousal,

etc., that are unrelated to envelope coding (Bharadwaj et al.,
2019).

Another fundamental insight from the present study is

that central neural envelope coding depends not only on

envelopes conveyed by the inner ear, but also on the TFS.

Although this result was reported by Ding et al. (2014), they

used four- and eight-channel envelope vocoding to degrade

the TFS; this broadband vocoding is in contrast to the high-

resolution (64-channel) envelope vocoding that we used

here. As demonstrated in Sec. II, low-resolution vocoding

introduces spurious envelopes (not present in the original

stimuli) during cochlear filtering of the noise carrier used in

vocoding (Gilbert and Lorenzi, 2006). These spurious enve-

lopes introduced within individual frequency channels are

large enough to degrade neural envelope coding in a way

that is easily perceptible (Swaminathan and Heinz, 2012)

and could account for the reduced cortical target-envelope

coding they observed (Fig. 1). Previous behavioral work

(Dorman et al., 1998; Qin and Oxenham, 2003) also shows

that increasing the number of noise-vocoding channels

beyond eight considerably improves speech intelligibility in

noise, despite the fact that the TFS is uninformative regard-

less of the number of channels used in vocoding. Together,

these results demonstrate that it is necessary to use high-

resolution vocoding, as we do here, to unambiguously attri-

bute effects to TFS cues rather than spurious envelopes. Our

64-channel vocoding procedure leaves place coding and

cochlear-level envelopes largely intact (Fig. 1), not only at

filters with center frequencies matching the vocoder sub-

bands, but also at filters that are midway between adjacent

subbands. Thus, it is unlikely that peripheral envelope distor-

tion can account for degraded central neural envelope coding

and intelligibility in the present study. These neurophysiologi-

cal results are consistent with previous behavioral studies

showing that fine-structure cues aid in scene segregation and

selective processing of target speech (Darwin, 1997;

Oxenham and Simonson, 2009; Shinn-Cunningham, 2008).

The present study also points to a need for more sophisticated

speech-intelligibility models that account for the various

scene-analysis mechanisms in play to better predict perfor-

mance across a wider range of conditions (including vocoded

speech-in-noise; Steinmetzger et al., 2019).

Our EEG-based two-step approach can be used to test

and refine speech-intelligibility models. A major strength of

this approach is that it intrinsically factors in listener attrib-

utes (e.g., hearing-loss profile, language experience) and lis-

tening state (e.g., focus of attention) in addition to purely

stimulus-dependent aspects of coding. How different factors

contribute to speech perception can be systematically inves-

tigated by characterizing how much each factor contributes

to the neural response and how the respective contributions

are weighted to best predict intelligibility across various

conditions. For instance, here we studied how an acoustic

aspect of the stimulus (temporal envelope) is coded in the

central auditory system by deriving EEG metrics from scalp

locations that strongly reflect auditory cortex and brainstem

contributions. In addition, higher-order stimulus features,

such as phonemic (categorical) processing (Di Liberto et al.,
2018a) and semantic composition (Brodbeck et al., 2018),

may be studied in future experiments, perhaps by extending

our analyses to other brain regions (Di Liberto et al., 2018b;

Du et al., 2014; Kim et al., 2020). Similarly, by studying

individuals with different peripheral pathophysiologies, the

effects of various forms of hearing loss on neural coding

and intelligibility can also be characterized (Rallapalli and

Heinz, 2016; Swaminathan and Heinz, 2011).

One limitation of our approach is that stimulus-related

responses in the EEG can be captured and separated from

background brain activity only by virtue of their temporal

signature. If certain features are encoded through abstract

rate-based representations or through different activation

profiles within a spatially distributed organization of recep-

tive fields, our approach cannot readily account for them.

For example, cortical neurons represent temporal envelopes

not only through phase locking, but also through rate-based

tuning (Wang et al., 2008). Furthermore, place/spectral cues

are important for speech recognition (Boothroyd et al.,
1996; Elhilali et al., 2003; Shannon et al., 1998), whereas

EEG measurements are not place specific but instead reflect

population neural activity. One consequence of this fact is
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that our metrics cannot distinguish between within-channel

modulation masking where the masker contains elements

that share the same carrier and modulation frequency as

some target elements (Jørgensen and Dau, 2011) and cross-

channel modulation interference where masker elements

that are coherently modulated with target elements interfere

with target coding and perception (Apoux and Bacon,

2008). Future EEG studies should attempt to delineate

cross-channel versus within-channel effects in scene analy-

sis and speech perception, perhaps by employing frequency-

separated target speech and masking sounds. Despite these

issues, we find that neural encoding of temporal envelopes

can account for much of the intelligibility variations seen

across the stimulus conditions tested in this study. This may

be because (i) although EEG signals cannot be readily used

to decode the perceived phonemes, they can adequately cap-

ture the overall fidelity with which envelopes are coded

despite the lack of tonotopic specificity, and (ii) at slow

modulation frequencies, temporal coding may be a promi-

nent mechanism in the cortex (Wang et al., 2008), and at

faster modulation frequencies (e.g., in the pitch range), our

metric also includes a small contribution from subcortical

portions of the auditory pathway where the coding of enve-

lopes is largely temporal (Joris et al., 2004).

V. CONCLUSION

By combining human EEG with simultaneous speech

intelligibility measurements, we find that the neural repre-

sentation of target-speech envelopes is shaped by masker

modulations and that this net target-to-masker envelope-

domain SNR in central auditory neurons predicts intelligi-

bility over a variety of ecologically relevant conditions

novel to the predictive model. Moreover, TFS cues can

influence this envelope encoding in the brain, likely by sup-

porting source segregation and selective attention. Finally, a

conceptual model of speech intelligibility that integrates

these ideas is proposed.
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