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Abstract

The global burden of diabetes is rapidly increasing, from 451 million people in 2019 

to 693 million by 20451. The insidious onset of type 2 diabetes delays diagnosis and 

increases morbidity2. Given the multifactorial vascular effects of diabetes, we hypothesized 

that smartphone-based photoplethysmography (PPG) could provide a widely-accessible digital 

biomarker for diabetes. Here, we developed a deep neural network (DNN) to detect prevalent 

diabetes using smartphone-based PPG from an initial cohort of 53,870 individuals (the “Primary 

Cohort”), which was then validated in a separate cohort of 7,806 individuals (the “Contemporary 
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Cohort”), and a cohort of 181 prospectively-enrolled individuals from three clinics (the “Clinic 

Cohort”). The DNN achieved an area under the curve (AUC) for prevalent diabetes of 0.766 

in the Primary Cohort (95% confidence interval (CI): 0.750–0.782; sensitivity 75%, specificity 

65%) and 0.740 in the Contemporary Cohort (95% CI: 0.723–0.758; sensitivity 81%, specificity 

54%). When the output of the DNN, called the DNN Score, was included in a regression analysis 

alongside age, gender, race/ethnicity, and body mass index, the AUC was 0.830 and the DNN 

Score remained independently predictive of diabetes. The performance of the DNN in the Clinic 

Cohort was similar to that in other validation datasets. There was a significant and positive 

association between the continuous DNN Score and hemoglobin A1c (HbA1c) (p≤0.001) among 

those with HbA1c. These findings demonstrate that smartphone-based PPG provides a readily 

attainable, noninvasive digital biomarker of prevalent diabetes.
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Globally, half of all people living with diabetes are undiagnosed (~224 million), and 

79% live in low and middle-income countries1. Diabetes causes both macrovascular and 

microvascular multi-organ disease, including coronary heart disease, stroke, neuropathy 

and kidney disease, among others3. A readily attainable, non-invasive digital biomarker of 

diabetes could facilitate disease detection by making it easier to identify at-risk individuals 

who would benefit from confirmatory diagnostic testing using HbA1c. Such a tool would 

have particular impact in underserved populations and those out of reach from traditional 

medical care.

PPG is a noninvasive optical technique which detects blood flow changes through a vascular 

bed4. It is measured by shining light into tissue, such as the fingertip or wrist, and 

quantifying the backscattered light that corresponds with changes in blood volume4. PPG 

has long been used clinically to measure heart rate (HR) and peripheral blood oxygen 

saturation4, and research applications have ranged from detection of hypertension5 to 

various cardiovascular abnormalities6,7. Until recently, PPG recording required specialized 

equipment, however technological developments have enabled PPG measurement from 

sensors on smart-devices, like smartphones and fitness trackers. The rapid worldwide 

adoption of smart-devices over the past decade8 provides an opportunity to develop non

invasive, widely-scalable digital biomarkers for diseases like diabetes9.

PPG is uniquely positioned to capture the multifactorial sequelae of diabetes resulting 

from a variety of pathophysiologic mechanisms. PPG readily captures sequential heartbeats, 

enabling not only its longstanding use for HR measurement, but also heart rate variability, 

which is impacted by diabetic autonomic and neural-regulatory effects10-12. Recently, 

a shared genetic etiology between resting HR and diabetes was identified, implicating 

mechanisms ranging from metabolism to endothelial aging13. Indeed, endothelial 

dysfunction is an early hallmark of diabetic vascular disease, and is readily detectable 

in the PPG waveform14. Similarly, diabetes-related microvascular arteriosclerosis6,15 and 

neuropathy can affect PPG16. Given the multitude of mechanisms by which diabetes impacts 
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PPG, algorithmic analysis of PPG should ideally leverage the complete PPG recording 

and all the morphologic and temporal information contained therein. DNNs are a class 

of algorithms17 which have successfully achieved complex pattern recognition for various 

medical tasks18-20. DNNs provide the advantage of being agnostic to specific sets of 

predetermined PPG features suspected to predict diabetes, and instead detect patterns using 

the full PPG record. We therefore hypothesized that PPG obtained from commercially 

available smartphones and analyzed using a DNN could identify individuals with and 

without diabetes.

In this study, we first developed and validated a DNN to detect prevalent diabetes in a 

“Primary Cohort,” comprised of 53,870 Health eHeart study21 participants who contributed 

2,589,448 PPG recordings between April 1, 2014 and April 30, 2018 (Figure 1a). 

Participants self-reported diabetes status and measured PPG by placing an index fingertip 

on the smartphone camera using the Azumio Instant Heart Rate iOS application (Azumio, 

Inc; Figure 1b). The Primary Cohort was randomly split into training (70%, n=37,709) and 

development (10%, n=4,848) datasets—used to train and tune the DNN, respectively—and a 

Test Dataset (20%, n=11,313), used for DNN validation. The DNN outputs a “DNN Score” 

between 0 and 1, with higher scores suggesting greater likelihood of diabetes (see Methods). 

Since many participants contributed >1 recording, we reported DNN performance using 

AUC22 at both the ‘recording-level,’ which treats each recording independently, and the 

‘user-level,’ which averages the DNN Score for all recordings provided by a user; user-level 

assessment was preferred when possible since clinical application calls for classifying a user 

as having diabetes or not.

In the Primary Cohort, 3,564 participants (6.6%) had self-reported diabetes and 50,306 

(93.3%) did not (Extended Data Figures 1-2). Compared to those without diabetes, those 

with diabetes were older, male, had higher HR and body mass index (BMI), and were less 

likely to be non-Hispanic white. In the hold-out Test Dataset, the DNN’s AUC to detect 

diabetes was 0.766 at the user-level (95% CI: 0.750–0.782; recording-level AUC=0.680, 

95% CI: 0.678–0.683; Table 1 and Figure 2a). At the chosen cut-off threshold (DNN 

Score=0.427), user-level sensitivity was 75% and specificity was 65%. Due in part to the 

low prevalence of diabetes in our cohort (6.6%), the positive predictive value (PPV) of the 

DNN Score at the user-level and recording-level was 13% and 10%, while the negative 

predictive value (NPV) was 97% and 96%, respectively (Table 1). DNN performance in 

the development dataset was not significantly different from the Test Dataset (user-level 

AUC=0.766, 95% CI: 0.740–0.792; recording-level AUC=0.694, 95% CI: 0.691–0.698).

In addition to validating DNN performance in the Primary Cohort Test Dataset, we 

employed 2 additional validation cohorts (Figure 1a), providing 3 total examples of 

algorithm generalizability to datasets distinct from the training dataset23. The first was 

the “Contemporary Cohort,” composed of PPG recordings from 7,806 participants newly

enrolled into Health eHeart from May 1 to December 31, 2018. This temporally-distinct 

validation cohort exhibits the DNN’s robustness to secular changes, such as new smartphone 

models and cameras, that could affect PPG recording. Then, to validate our approach 

in a real-world clinical setting, we prospectively enrolled an in-person “Clinic Cohort” 

comprised of 181 consecutive patients referred to 3 cardiovascular prevention clinics 
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(2 in San Francisco, one in Montreal) between November 1, 2018 and July 30, 2019 

(Figure 1a, Extended Data Figure 3). The DNN’s user-level AUC to detect diabetes in 

the Contemporary Cohort was similar to that in the Primary Cohort: 0.740 (95% CI: 0.723–

0.758; recording-level AUC=0.661, 95% CI: 0.664–0.667); the DNN had higher sensitivity, 

but lower specificity, versus the Primary Cohort (Table 1).

In the prospectively enrolled in-person Clinic Cohort, 38 patients (21.0%) had medical 

record-confirmed diabetes (Extended Data Figure 3). Compared with the Primary Cohort, 

the Clinic Cohort was substantially older, more male, and had more comorbidity. The Clinic 

Cohort recording-level AUC (0.682, 95% CI 0.605–0.755) was similar to the recording-level 

AUC in the Test Dataset and Contemporary Cohorts (Table 1). Compared with the Test 

Dataset, there was higher sensitivity and PPV, but lower specificity and NPV. When Clinic 

Cohort patients with a prior diabetes diagnosis were excluded (n=17), 21 patients remained 

who were newly diagnosed by HbA1c during the clinic visit. In this subset of patients with 

newly diagnosed diabetes, the DNN AUC was 0.644 (95% CI: 0.546–0.744; Table 1); the 

DNN correctly identified 16 out of 21 patients with newly diagnosed diabetes (Extended 

Data Figure 4f).

To investigate whether PPG was predictive of diabetes independently of other predictors and 

comorbidities, we built nested logistic regression (LogReg) models in the Test Dataset with 

and without the inclusion of the DNN Score (Table 2). After adjustment for age, gender, race 

and BMI, the DNN Score remained independently and significantly predictive of prevalent 

diabetes (Table 2, Supplemental Table 1); the AUC for this prediction model was 0.830 

(95% CI: 0.787–0.873; Figure 2a). The DNN Score was also strongly predictive of diabetes 

independently of all examined comorbidities, including hypertension, hypercholesterolemia 

and coronary artery disease, among others (Table 2; LogReg-Model 5); the AUC for this 

prediction model was 0.830 (95% CI: 0.815–0.844; Figure 2a). In all models, the DNN 

Score was a strong diabetes predictor and was only slightly attenuated after adjustment 

(Table 2, Supplemental Table 1). Heart rate variability was no longer a significant predictor 

of diabetes after the DNN Score was added, while HR was attenuated (Table 2, LogReg

Model 4). Compared to participants with a DNN Score below the cutoff (<0.427), those with 

a DNN Score above the cutoff differed demographically and were nearly twice as likely to 

have any medical condition (69.4% vs 37.3%; p<0.001; Supplemental Table 2).

We performed several sensitivity analyses for hypertension specifically, since it is co-morbid 

with diabetes and may directly cause PPG-measurable vascular changes. A subset of Test 

Dataset participants provided Bluetooth-linked, home-measured blood pressures within 3 

months of a PPG recording, totaling 13,007 PPG-blood pressure recording pairs (55 patients 

with diabetes, 527 patients without diabetes). Though the systolic (but not diastolic) value 

was a significant univariate predictor of diabetes, after the DNN Score and other (non

hypertension) comorbidities were added into a multivariable model, systolic blood pressure 

was no longer a significant diabetes predictor; the DNN Score, however, remained strongly 

independent (odds-ratio: 3.53, 95% CI: 2.20–5.67; p<0.001). Furthermore, after excluding 

those with self-reported hypertension from the Test Dataset, DNN performance remained 

similar to that in the full Test Dataset at both user and recording-levels.
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Due to the limitations of relying on self-reported diabetes in our primary analysis, we 

performed additional sensitivity analyses aimed at addressing this. We identified Health 

eHeart participants who had laboratory-confirmed diabetes based on fasting glucose 

or HbA1c drawn within 180 days of diabetes self-report (n=12,073). In this subset, 

the PPV of self-reported diabetes was 81.8% (1,816/2,220) and the NPV was 88.9% 

(8,767/9,853). We additionally examined the performance of the DNN amongst participants 

who had laboratory-confirmed diabetes within 180 days of a PPG measurement in the Test 

Dataset (n=152 users; 9,327 measurements) and Contemporary Cohort (n=94 users; 3,659 

measurements). Sampling up to 5 measurements per participant, the DNN’s recording-level 

AUCs were similar when using laboratory-confirmed diabetes or self-reported diabetes in 

both the Test Dataset (0.670, 95% CI: 0.629–0.710; vs 0.650, 95% CI: 0.606–0.694) and the 

Contemporary Cohort (0.669, 95% CI 0.618–0.719; vs 0.705, 95% CI: 0.657–0.754).

In these laboratory-confirmed diabetes subsets (n=246), there was also evidence for a 

significant linear association between the continuous DNN Score and both HbA1c and 

fasting glucose: one standard-deviation increase in DNN Score was associated with 0.32% 

increase in HbA1c (beta-coefficient=2.28, 95% CI: 1.27–3.29; p≤0.001) and 0.11 mmol/L 

increase in fasting glucose (beta-coefficient=0.82, 95% CI: 0.30–1.34; p≤0.001). Similarly, 

among Clinic Cohort patients with an HbA1c measured within 7 days of the visit (n=93), 

there was a positive, borderline association between the DNN Score and HbA1c values 

(beta-coefficient=1.58, 95% CI: −0.021–3.187; p=0.053). Since longstanding poor glycemic 

control can adversely affect the vasculature and therefore PPG, we also performed a 

sensitivity analysis comparing DNN performance between HbA1c strata. Among Test 

Dataset participants with an HbA1c 7.0–8.0% within 6 months of a PPG measurement, we 

observed similar recording-level AUC=0.636 (95% CI: 0.587–0.686) to that in those with an 

HbA1c >8.0%, AUC=0.632 (95% CI: 0.585 – 0.679), suggesting similar DNN performance 

regardless of glycemic control. We also examined the diagnostic odds-ratio for a positive 

DNN prediction across different Test Dataset strata of gender, age, time of day, recording 

length and HR (Figure 2b, Extended Data Figure 5). DNN performance was the highest in 

those with >6 recordings and HR <100 BPM.

Finally, we performed several analyses to help illuminate the mechanisms by which PPG 

may capture diabetes-related information. We plotted activation maps from inner DNN 

layers that illustrate how it encodes input PPG recordings, and its behavior in the presence 

of artifact (Extended Data Figures 6-7). To investigate the role of PPG morphology to 

predict diabetes in isolation, we trained a separate DNN using a single cardiac cycle PPG 

waveform as the sole input; user-level AUC=0.691 (95% CI: 0.680–0.700) and recording

level AUC=0.605 (95% CI: 0.600–0.610). To investigate the role of HR and its derivatives 

in isolation, we trained a separate DNN using only peak-to-peak PPG intervals as the sole 

input (which removes all PPG morphology information); user-level AUC=0.721 (95% CI: 

0.703–0.740) and recording-level AUC=0.645 (95% CI: 0.642–0.647).

Discussion

In this large-scale study and validation across 3 distinct cohorts, we show that smartphone

measured PPG, analyzed with deep learning, can serve as an independent, noninvasive 
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digital biomarker of prevalent diabetes. Importantly, the ability of this PPG biomarker 

to predict diabetes was independent of standard risk factors and comorbidities, and 

discrimination further improved when adding easily obtainable covariates such as age, 

gender, race/ethnicity and BMI. Our validation of this digital biomarker in 3 cohorts 

demonstrated that the DNN generalizes to prospectively enrolled and real-world clinical 

populations. This digital biomarker of diabetes could serve as a readily attainable 

complement to other established tools, providing novel information about vascular and 

autonomic sequelae of diabetes for clinical applications ranging from screening to 

therapeutic monitoring. However additional research will be needed to determine its utility 

in these scenarios.

Our work effectively helps to expand the clinical utility of the PPG modality, since 

physicians do not currently interpret PPG in the context of diabetes. Prior work has 

reported associations between individually derived PPG features and diabetes-related 

physiologic changes, mostly using clinic-based pulse oximeters. The physiologic changes 

most commonly invoked include heart rate variability24, endothelial dysfunction14, arterial 

stiffness15 and combinations thereof24,25, providing important early indications that aspects 

of the PPG waveform contain diabetes-related information. Our study extends these 

findings, demonstrating that it is not necessary to derive (and be limited to) particular pre

defined PPG features; rather, the complete PPG recording—containing all the physiologic 

information—can be analyzed using a DNN to detect diabetes with strong predictive 

performance. This PPG-derived DNN biomarker is independent of comorbidities and can 

be augmented with clinical data, when available, to further improve performance. One 

of the real-world challenges of using remote sensor data to identify disease biomarkers 

in ambulatory patients is the multiple potential sources of environmental noise, user 

error and demographic heterogeneity. Our study makes this crucial translational step by 

using remotely-measured PPGs from commercially available smartphones in a free-living 

population.

There are various potential applications for a PPG-based digital biomarker of diabetes. 

Diabetes has numerous characteristics that make it an ideal candidate for screening, such 

as a prolonged asymptomatic period and the availability of disease modifying therapy. 

But since population-wide screening is not currently recommended, a widely accessible 

smart-device-based tool could be used to identify and encourage individuals at higher-risk of 

having prevalent diabetes to seek medical care and obtain a low-cost confirmatory diagnostic 

test like HbA1c26-28. Leveraging smart-devices to perform diabetes risk prediction without 

requiring clinic visits would significantly lower barriers to access given the widespread 

ownership of smartphones, facilitating measurement amongst many of the 224 million 

people living globally with undiagnosed diabetes1. The discriminative performance of our 

PPG biomarker is comparable to other commonly used tests such as mammography for 

breast cancer (AUC range 0.67–0.74)29 or cervical cytology for cervical cancer (AUC 

range 0.81–0.86)30. It compares favorably to existing diabetes-specific risk scores that have 

AUCs between 0.74–0.85, some of which require serum glucose measurement and none of 

which is in common clinical use23. Reported AUCs of serum-based diagnostic tests like 

HbA1c or fasting plasma glucose depend on the gold-standard comparator used, but for 

prevalent microvascular complications range from 0.82–0.9631. Comparatively, the ease and 
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noninvasiveness of PPG make it widely scalable, and its painlessness makes it attractive 

for repeated testing. Furthermore, since the PPG biomarker is predictive independently of 

the demographic and comorbidity components comprising most risk scores, it could also 

be used to supplement existing scores by capturing complementary vascular and autonomic 

information.

Of the various mechanisms by which PPG may detect diabetes, PPG likely captures the 

majority of the HR and heart rate variability information as relates to diabetes10-13,32. 

Both predictors were attenuated in the presence of the DNN Score, and peak-to-peak PPG 

interbeat intervals had only modestly lower AUC (0.721) than the full PPG record (0.766). 

While interbeat intervals likely contain the predominant predictive information for diabetes, 

waveform morphologies likely additionally capture information on diabetic vascular changes 

ranging from endothelial dysfunction14 to arterial stiffening15.

Our study has several limitations. Participants elected to download the iOS smartphone 

app and therefore may have higher socioeconomic status, technological competence, or 

health literacy relative to the general population. Our reliance on self-reported diabetes is 

another limitation. However, our results generalized to the unselected Clinic Cohort, which 

had medical-record confirmed diabetes, and sensitivity analysis suggested high PPV/NPV 

against laboratory-confirmed diabetes. Also, misclassification due to self-report at the 

algorithm training stage would be expected to bias DNN performance toward the null 

during validation. In analyses that employed laboratory or blood pressure measurements, 

the time-windows we employed were large and mainly informative as sensitivity analyses. 

Future studies are needed to confirm this, and whether PPG signals from other sources, 

like smartwatches, or obtained from anatomic locations like the toe or ear would perform 

similarly. Given the lower overall prevalence of diabetes, the PPV of our PPG biomarker 

ranged from 10–32%, which is similar to existing diabetes risk scores whose PPVs 

mostly range between 10–25% depending on the population and threshold used23,33. While 

false positives are a concern, confirmatory HbA1c is relatively cost-effective; and since 

individuals with positive DNN predictions were also more likely to have cardiometabolic 

conditions, they would likely benefit from medical contact. Depending on the intended use 

of the biomarker, the DNN Score threshold can also be altered to maximize sensitivity 

or specificity for the intended application. The cross-sectional nature of our study design 

limited direct investigation of PPG as a diabetes screening tool, or prediction of incident 

diabetes. We also did not have sufficient data in the Primary Cohort on the type, severity, 

or medication use for diabetes. The DNN Score did perform similarly, however, in Clinic 

Cohort subsets with newly diagnosed diabetes and between HbA1c strata. Finally, we were 

limited in our attempts to compare our approach against standard diabetes risk scores 

due to the lack of necessary variables in our cohort. These data availability limitations, 

however, serve to illuminate the difficulty providers also encounter when deploying existing 

questionnaire-based prediction models, underscoring a strength of noninvasive, objective 

PPG-based diabetes detection.

In summary, we demonstrate that PPG recorded using consumer-owned smartphones can 

provide a readily attainable digital biomarker of prevalent diabetes that is independent 

of standard risk factors and comorbidities. Remote capture of diabetes-predictive PPG 
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information from ambulatory users is feasible and provides an easily scalable, noninvasive 

complement to diabetes risk prediction. The linear association of the DNN Score with 

HbA1c suggests that PPG may additionally capture information about diabetes severity and 

control, but this requires further investigation. Though this study leverages a large dataset, 

additional research is needed ideally in targeted intended-use populations to determine 

how to best incorporate this digital biomarker into existing practice recommendations for 

diabetes screening and care—particularly in light of the potential for its wide deployment 

using existing smart-devices outside of the purview of traditional medical care.

Methods

Data sources and study population

The Primary Cohort: The Primary Cohort was derived from 55,433 Health eHeart 

participants age ≥18 years, who self-reported a diabetes diagnosis by a healthcare provider 

and made at least one PPG recording between April 1, 2014 and April 30, 2018 (Figure 

1a). Health eHeart is a worldwide, internet-based, longitudinal electronic cohort of English

speaking adults21. PPG waveforms were obtained by placing an index fingertip on the 

smartphone camera (Figure 1b, Extended Data Figure 8). To assess self-reported diabetes 

status, participants were asked, “Have you ever been told by a doctor, nurse or other 
healthcare provider that you have diabetes?” and provided the answer options of “Yes,” 

“No” or “Don’t know/prefer not to state.” Participants who answered “Don’t know/prefer 
not to state” were excluded from our analysis. Participants completed additional surveys 

regarding demographics, anthropometrics and medical history to varying degrees. We 

have demonstrated previously21 that self-reported past medical history in Health eHeart 

is strongly correlated with the medical record.

The Primary Cohort was randomly split into training (70%, n=37,709), development (10%, 

n=4,848) and Test (20%, n=11,313) datasets (Extended Data Figure 2; Life Sciences 

Reporting Summary). The training dataset was used for DNN development and training, 

and DNN hyperparameters were tuned in the development dataset. Final model performance 

is reported in the Test Dataset, which was kept completely separate until the final evaluation 

step.

Two Additional Validation Cohorts: In addition to validating the performance of 

the DNN algorithm in the Primary Cohort Test Dataset, we additionally reported DNN 

performance in 2 validation cohorts (Figure 1a), providing 3 examples of validation in 

datasets separate from training data23. The first was the “Contemporary Cohort” which was 

composed of PPG recordings from 7,806 participants newly enrolled into Health eHeart 

between May 1, 2018 and December 31, 2018 (Extended Data Figure 3, Supplemental Table 

3). This temporally distinct validation cohort helps to account for secular changes, such as 

changes in smartphone models and cameras, that could affect PPG recording. Then, to test 

the validity of our approach in a real-world clinical setting, we prospectively enrolled an 

in-person “Clinic Cohort” comprised of 181 consecutive patients referred to 3 cardiovascular 

prevention clinics (2 in San Francisco, one in Montreal) between November 1, 2018 and July 

30, 2019 (Extended Data Figure 3, Supplemental Table 4). Clinic Cohort participants were 
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consented, assessed for height, weight, body mass index (BMI), and a trained coordinator 

obtained at least 15 seconds of a single PPG recording using an iPhone and determined 

diabetes status by medical chart review. For the subset of Clinic Cohort patients who also 

had fasting glucose and HbA1c obtained within 7 days of the in-clinic visit, we used 

the American Diabetes Association diagnosis criteria to classify participants as having/not 

having diabetes34.

The UCSF Institutional Review Board approved the study and all participants gave informed 

consent.

PPG Waveform Acquisition and Preprocessing

PPG waveforms were obtained by placing the index fingertip35 on the smartphone camera 

using the Azumio Instant Heart Rate iOS smartphone application (Azumio, Inc). Though 

the app is available for Android and iOS operating systems, data was limited to iOS app 

versions in this study due to data availability in Health eHeart. Changes in reflected light 

intensity recorded by the smartphone camera are interpreted as pulsatile blood volume 

change. The waveforms were pre-processed by the Azumio algorithm for camera artifact 

removal, utilizing standard de-trending and low pass filter techniques (Figure 1). A Low pass 

~0.4Hz, 2nd order, zero phase shift IIR filter is used to find the trend, the trend is subtracted 

to get the detrended signal. Another Low pass ~10Hz, 2nd order, zero phase shift IIR filter is 

used to remove high frequency noise. Individual beats corresponding to cardiac cycles were 

identified using the rising-edge of the PPG signal. If the recording does not have at least 

5 seconds of continuous discernable peak-to-peak intervals, it was removed. Waveforms 

with a length under 5 seconds or with an amplitude of “0”, indicating a null signal, were 

also removed. We excluded outlier PPG measurements defined as HR values of outside of 

the biologically plausible range of 20–220 bpm. We limited waveforms in our dataset to 

those collected at either 100Hz or 120Hz, and upsampled recordings of 100 Hz to 120 Hz 

using the standard polyphase method36 to minimize variance due to sampling frequency. 

We derived the onset of each cardiac cycle by identifying the rising-edge of the waveform, 

used to determine HR and heart rate variability (using Root Mean Square of Successive 

peak-to-peak interval differences).

DNN Development and Performance

We built a 39-layer convolutional DNN to detect prevalent diabetes (Extended Data Figure 

9). The DNN takes the PPG-waveform as the sole input, which consists of 2,560 samples 

equivalent to ~21.3 seconds (approximately the mean signal duration), and outputs a DNN 

Score between 0 and 1 per signal; higher scores suggest greater likelihood of diabetes. 

Shorter signals were zero-padded up to the fixed-length and longer examples were cropped. 

All PPG waveforms were standardized using the mean and standard deviation values of the 

entire training dataset. The network architecture had 39 layers organized in a block structure, 

consisting of convolutional layers with an initial filter size of 15 and filter number of 16. 

The size of the filters decreased, and the number of filters increased, as network depth 

increased. After each convolutional layer, we applied batch normalization37, rectified linear 

activation38 and dropout 39 with a probability of 0.2. The final flattened and fully connected 
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softmax layer produced a distribution across the classes of diabetes/no diabetes40. Weights 

were initialized randomly as described by He et al41.

We used grid-search to tune the network hyperparameters by searching over the best 

optimizer, best initializer, number of convolutional layers, the stride size, the filter length, 

the number of filters, the class weight, the learning rate, the input length of the signal, 

the batch size, the dropout, the early stopping criteria and the amount of cropping of the 

start/end of the signal, based on the recording-level development dataset performance. The 

best performance was achieved by cropping 2 beats from the beginning and 1 beat from 

the end of the signal; this was applied to all PPG records. For all the models presented, 

we used the Rectified ADAM optimizer with the default parameters42, and a mini-batch 

size of 512. The learning rate was initialized at 1 × 10−3 and was adjusted based on the 

effects of variance and momentum during training42. We halted training after an absence 

of improvement in the loss within the development set for 8 consecutive epochs. A class 

weight of 10:1 for diabetes to non-diabetes recordings was applied to our loss function. 

The best performing model was chosen based on the development dataset recording-level 

AUC performance and was then applied to all validation sets. We explored different 

architectures involving recurrent layers, such as long-short-term memory cells and residual 

blocks (ResNet), and with age or hour of the day added as additional inputs to the DNN, 

but found no improvement in AUC despite substantial increases in model complexity and 

runtime. The DNN was trained for 18 epochs.

Grid-search of hyperparameters

We performed systematic search of hyperparameters among these values:

• Model architecture: Convolutional neural network, ResNet, LSTM

• Number of convolutional layers: 7, 15, 19, 25, 29, 35, 39

• Filter length: 5, 7, 9, 11, 13, 15

• Number of filters to start: 8, 16, 32, 64

• Optimizer: Adam, Rectified Adam

• Class weight for ‘diabetes’: 5, 10, 15, 20

• Initializer: Glorot, He

• Learning Rate: 10e-1 10e-2, 10e-3, 10e-4, 10e-5

• Input shape [2560, 1]; [2048, 1]

• Batch size: 64, 128, 256, 512

• Dropout: 0.2, 0.4, 0.6

• Early stopping criteria: 6, 8, 12, 20

• (Preprocessing) Number of beats cropped at the start of the signal: 0, 1, 2, 3

• (Preprocessing) Number of beats cropped at the end of the signal: 0, 1, 2, 3
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We reported DNN performance using the area under the receiver operating characteristic 

curve (AUC)22 in 3 separate test datasets: 1) the Primary Cohort Test Dataset, 2) 

the Contemporary Cohort, and 3) the in-person Clinic Cohort. Since many participants 

contributed >1 recording, we assessed model performance both at the ‘recording-level,’ 

which treats each recording independently, and at the ‘user-level,’ which averages the DNN 

Score for all recordings provided by an individual user. Our primary aim was to evaluate 

the user-level DNN Score, since the clinical goal would be to classify a patient as having 

diabetes or not. Clinic cohort patients have only recording-level performance since only a 

single recording was obtained per patient during their visit. We also plotted the activation 

maps of several hidden convolutional layers of the trained DNN43 from an example PPG 

record to help illuminate some of the higher-level PPG features derived by the DNN 

(Extended Figures 8-9).

Sensitivity Analyses

To better ascertain the reliability of self-reported diabetes in the Primary Cohort, we 

described the PPV and NPV of self-reported diabetes in the larger Health eHeart study21 

using fasting glucose or HbA1c drawn within 180 days of self-reported diabetes; if >1 lab 

value was available the value closest in time to self-report was used. Laboratory-confirmed 

diabetes was defined according to the ADA guidelines: HbA1c≥7.0%, fasting glucose 

(fasting glucose≥126 mg/dl or 7.0 mmol/L)34 or non-diabetic range of HbA1c/fasting 

glucose but self-report of taking diabetes medications. We also examined DNN performance 

among the subset of Test Dataset and Contemporary Cohort participants who had laboratory

confirmed diabetes using laboratory values drawn within 180 days of a PPG measurement. 

For those with multiple measurements, we randomly sampled up to 5 measurements. To 

understand the performance of the DNN according to glycemic control in the laboratory

confirmed diabetes cohort, we examined DNN performance in strata of HbA1c above and 

below 8.0%. Additionally, in the Clinic Cohort, we examined DNN performance after 

excluding those with a prior diagnosis of diabetes. Linear regression models were fit with 

the DNN Score as the predictor and either HbA1c or glucose value as the dependent variable 

in the Test Dataset and Contemporary Cohort. To investigate the role of HR in isolation, we 

trained a separate DNN to detect diabetes using only peak-to-peak intervals as input and the 

same architecture and training data as the primary DNN. To investigate the role of the PPG 

waveform in isolation, we trained a separate DNN using the PPG waveform from a single 

cardiac cycle, removing the time-domain contribution from consecutive cardiac cycles. In 

the Clinic Cohort, we also modeled the DNN Score against HbA1c as the dependent variable 

with linear regression.

Statistical Analysis

Basic demographics and previous medical conditions are presented for each dataset, and 

continuous data are presented as mean ± standard deviation. The “DNN Score” is the final 

layer of the DNN, which is an output distribution for diabetes based on the PPG input. We 

identified a discrimination threshold for the DNN Score that maximized the macro average 

sensitivity between the ‘diabetes’ and ‘no-diabetes’ classes in the training dataset44; this 

threshold is applied to all relevant performance metrics. We present sensitivity, specificity, 

positive predictive value (PPV) and negative predictive value (NPV) for each of our test 
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datasets22. Confidence intervals for these metrics were derived by bootstrapping 80% of 

the test data over 1000 iterations to obtain 5th and 95th percentile values. The diagnostic 

odds-ratio (odds-ratio) is a measure of the effectiveness of a diagnostic test and is defined as 

the ratio of the odds of the DNN Score being positive for diabetes if the subject has diabetes, 

relative to the odds of the DNN Score being positive if the subject does not have diabetes45. 

Odds-ratios, 2-sided p-values for interaction (between the DNN Score, the covariates and 

diabetes, calculated by the Wald test), sensitivity and specificity were calculated separately 

between different strata of age, gender and PPG recording characteristics.

To understand the incremental contribution of PPG-based predictions alongside commonly 

available demographic and clinical predictors of diabetes, we built nested logistic regression 

(LogReg) models for prevalent diabetes both with and without the inclusion of the 

standardized DNN Score. LogReg-Model-1 included age as a covariate; LogReg-Model-2 

additionally included gender and race/ethnicity; LogReg-Model-3 additionally included 

BMI. Since HR12,13 and heart rate variability46 are known independent predictors of 

diabetes and can be derived from the PPG signal, we examined the specific role of 

HR in the PPG-based prediction of diabetes by including the per-record average HR 

and heart rate variability (calculated using the root mean square of the successive peak

to-peak differences) as covariates in LogReg-Model-4. Finally, in LogReg-Model-5 we 

included clinical comorbidities commonly known to co-occur with diabetes, to ascertain the 

independent value of the PPG DNN Score for identifying diabetes. All continuous logistic 

regression variables were standardized using the Z-score to allow comparison between odds

ratios and we used complete-case analysis, excluding individuals with missing covariates. 

Tests for normality were performed and met by all continuous predictors, and there were no 

adjustments made for multiple comparisons.

A 2-sided p-value <0.05 was considered significant. The convolutional neural network 

was built in Python 2.7 using Keras (version 2.0.3) and TensorFlow (version 1.13.2). The 

LogReg models and AUC were derived in SPSS v24.0 (IBM).

Code Availability: The code that supports this work is copyright of the Regents of the 

University of California and can be made available through license.
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Extended Data

Extended Data Fig. 1. Baseline characteristics of the Primary Cohort by Diabetes Status
Primary Cohort sample size was 53,870 individual people. Where data was only available 

for subgroups of the full cohort, subgroup sample size is denoted by N. Differences in 

means of continuous variables between 2 groups were compared using the two-sample 

t-test. Differences in proportions of categorical variables between 2 groups were compared 

using the Chi-Squared test. Tests of significance were 2 sided. Abbreviations: bpm: beats 

per minute; CAD: Coronary artery disease; CHF: Congestive heart failure; COPD: Chronic 

obstructive pulmonary disease; HR: Heart rate, MI: Myocardial Infarction; PVD: Peripheral 

Vascular Disease.
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Extended Data Fig. 2. Baseline Characteristics in the Primary Cohort Training, Development 
and Test Datasets
Primary cohort sample size was 53,870 individual people. Where data was only available 

for subgroups of the full cohort, subgroup sample size is denoted by N. Differences in 

means of continuous variables between 2 groups were compared using two-sample t-test. 

Differences in means of continuous variables between 3+ groups were compared using 

one-way ANOVA. Differences in proportions of categorical variables between the 2+ 

groups were compared using Chi-Squared. Tests of significance were 2 sided. a, b, c: Each 

subscript letter denotes a subset of dataset categories whose column proportions do not 

differ significantly from each other at the 0.05 level. Post-hoc analysis was performed 

using Fisher’s least significant differences to compare means of continuous variables 

between groups. Abbreviations: SD: Standard deviation; CAD: Coronary artery disease; 

CHF: Congestive heart failure; COPD: Chronic obstructive pulmonary disease; HR: Heart 

rate, MI: Myocardial Infarction; PVD: Peripheral Vascular Disease.
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Extended Data Fig. 3. Baseline Characteristics of the Primary, Contemporary and Clinic 
Cohorts
Where data was only available for subgroups of the full cohorts, subgroup sample 

size is denoted by N. Differences in means of continuous variables between 2 groups 

were compared using two-sample t-test. Differences in means of continuous variables 

between 3+ groups were compared using one-way ANOVA. Differences in proportions of 

categorical variables between the 2+ groups were compared using Chi-Squared. Tests of 

significance were 2 sided. a, b, c: Each subscript letter denotes a subset of dataset categories 

whose column proportions do not differ significantly from each other at the 0.05 level. 

Post-hoc analysis was performed using Fisher’s least significant differences to compare 

means of continuous variables between groups. Abbreviations: SD: Standard deviation; 

CAD: Coronary artery disease; CHF: Congestive heart failure; COPD: Chronic obstructive 

pulmonary disease; HR: Heart rate, MI: Myocardial Infarction; PVD: Peripheral Vascular 

Disease.
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Extended Data Fig. 4. Data Figure 4. Confusion matrices for DNN performance in 3 validation 
datasets.
Confusion matrices for the predictions of the DNN in the Test Dataset (a-b), Contemporary 

Cohort (c-d), and Clinic Cohort (e-f), at both the recording and user-level. Total number of 

patients are presented in parentheses. The DNN Score cutoff used was 0.427.
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Extended Data Fig. 5. DNN performance to predict diabetes according to time of day, recording 
length and heart rate in the Test dataset.
DNN sensitivity, specificity, diagnostic odds-ratio and AUC to detect prevalent diabetes are 

presented across strata of age, gender and number of recordings. The Test Dataset sample 

size is 11,313 individuals. Counts are provided in parentheses for all subgroup metrics. The 

diagnostic odds-ratio is the ratio of positive likelihood ratio (sensitivity / (1–specificity)) 

to the negative likelihood ratio ((1–sensitivity)/specificity). The diagnostic odds-ratio is 

presented at the recording-level with the associated 95% confidence interval. Interaction 

p-values are two-sided Wald tests for interaction between the DNN Score and the respective 

covariates for diabetes. Abbreviations: DNN: deep neural network; OR: diagnostic odds 

ratio; AUC: area under the curve; CI: confidence interval; BPM: beats per minute.
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Extended Data Fig. 6. Activation maps from several hidden convolutional layers of the trained 
Deep Neural Network (DNN) for one photoplethysmography (PPG) record.
a. An example of a PPG recording which serves as the input into the DNN. b. The activation 

map of one example filter (out of 16) from the first convolutional layer of the neural 

network. This activation map is obtained after the example PPG recording is fed into the 

trained DNN. Each lighter colored band illustrates “activation” of a model parameter. At 

this early layer of the neural network, the lighter colored bands correspond directly to each 

cardiac cycle of the PPG waveform. Thicker lines likely indicate morphological features 

of the waveform. c. Visualization of the activation maps of the 16 filters from the first 

convolutional layer of the neural network, obtained after the input PPG is fed into the 

trained DNN. Each of the 16 filters can learn different sets of “features” from the input PPG 

recording. Filters with more purple bands have more inactive neurons, as compared to those 

with lighter colors (green being the strongest activation and dark purple being the weakest 

activation). Six filters appear completely inactivated (all purple), suggesting that the features 

these filters focus on are not present in this example input PPG. d. Visualization of the 

activation maps of the 7th convolutional layer of the DNN, comprised of 32 filters. Broadly, 

these activation maps from the 7th layer of the DNN are more complex compared to those 
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from the 1st layer (b-c), demonstrating how deeper layers of the DNN encode increasingly 

abstract information representing higher level interactions and complex features.

Extended Data Fig. 7. Activation maps from hidden convolutional layers of the trained Deep 
Neural Network (DNN) for an example photoplethysmography (PPG) recording with artifacts.
a. An example PPG recording with 2 artifacts (blue and orange rectangles) which serves 

as the input into the DNN. b. Activation maps of the 16 filters from the first convolutional 

layer of the DNN. Each lighter colored band illustrates “activation” of a model parameter. 

Orange and blue arrow are placed on filters denoting the location of artifacts, highlighted 

by orange and blue rectangles (a), respectively. Some filters, such as the 4th image in the 

top row, seem to not have activation at the location of the artifactual beats (hollow orange 

and blue arrows), suggesting that the DNN is “ignoring” data from these artifact locations. 

Whereas other filters are have activation, suggested by lighter color bars, in the locations 

of the artifacts (full orange and blue arrows), such as the 2nd filter from the left in the top 

row, suggesting that the DNN is using data from these artifact locations. Some filters, such 

as the 2nd from the left in the bottom row “ignore” the artifactual beats by having uniform 

activation throughout the signal length (except where there are artifacts) likely representing 
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the cardiac cycle. These findings suggest that the DNN is able to identify artifactual beats 

and differentiate them from good quality waveforms.

Extended Data Fig. 8. Example photoplethysmography (PPG) waveforms.
a. Examples of raw PPG recordings from individuals with and without diabetes (red/green 

recordings, respectively), which serve as inputs to the deep neural network. DNN Scores 

predicted for each recording are shown. PPG recordings are either cropped or zero-padded 

to the same fixed length (~20.3 seconds) before being input into the DNN. The “flat line” in 

three examples is a demonstration of zero-padding shorter records to the fixed length. DNN: 

Deep Neural Network; ms: milliseconds.
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Extended Data Fig. 9. Deep Neural Network architecture.
The neural network had 39 layers organized in a block structure, consisting of convolutional 

layers with an initial filter size of 15 and filter number (N) of 16. The size of the filters 

decreased, and the number of filters increased as network depth increased, as shown. After 

each convolutional layer, we applied batch normalization, rectified linear activation and 

dropout with a probability of 0.2. The final flattened and fully connected softmax layer 

produced an output distribution across the classes of diabetes/no diabetes. This output 

distribution is referred to as the DNN Score. PPG: photoplethysmography; DNN: Deep 

Neural Network; Hz: Hertz.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Consort diagram describing the study cohorts and screenshots from the smartphone 
app used for PPG acquisition
a. Description of the datasets used for algorithm development and validation. The deep 

neural network (DNN) was trained using the training and development dataset of the 

Primary Cohort (left), and validated using the test dataset of the Primary Cohort. We 

additionally validated the DNN in the temporally-distinct Contemporary Cohort (middle) 

and the prospectively enrolled, in-person Clinic Cohort (right). Blue outlines indicate 

datasets used for model development and training. Yellow outlines indicate datasets used 

for model validation. All datasets are completely separate and do not contain overlapping 

participants. b. Screenshots from the smartphone app used to acquire user-measured PPG 

recordings using a smartphone app and camera. PPG: photoplethysmography; BPM: beats 

per minute. DNN: Deep Neural Network; Hz: Hertz.
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Figure 2: Comparison of model performance to detect diabetes in the Test Dataset.
a. Receiver operating characteristic curves for detection of diabetes, as assessed for the DNN 

score alone or for the output of LogReg Model 5, which includes comorbidities, with and 

without the DNN Score. This is calculated at either the recording-level, which treats each 

recording independently, or at the user-level, which is averaged across all recordings of an 

individual user. The DNN Score cutoff used (0.427) is indicated by a black dot on each 

curve. Inset: Bar chart showing the area under the receiver operating characteristic curve 

(AUC) point estimate values for diabetes in the test dataset by the indicated models; 95% 

confidence intervals are shown as error bars. b. DNN sensitivity, specificity, diagnostic odds

ratio and AUC to detect prevalent diabetes in the Test Dataset, as reported across ranges of 

age, gender and number of recordings. The Test Dataset sample size is 11,313 individuals. 

Counts are provided in parentheses for all subgroup metrics. The diagnostic odds-ratio was 

quantified as the ratio of positive likelihood ratio (sensitivity / (1–specificity)) to the negative 

likelihood ratio ((1–sensitivity)/specificity), with the associated 95% CI. The diagnostic 

odds-ratio is presented at the user-level for strata of age, gender and number of recordings. 

Interaction p-values are two-sided Wald tests between the DNN Score and the respective 
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covariates for diabetes. Abbreviations: DNN: deep neural network; AUC: area under the 

receiver operating characteristic curve; OR: diagnostic odds ratio; CI: confidence interval.
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Table 2.
Performance of logistic regression models for prediction of prevalent diabetes with and 
without the DNN score in the Test Dataset.

All models are shown without (“a”) and with (“b”) inclusion of the DNN score as a predictor. Models 1-3 are 

nested models, containing incrementally more demographic predictors and BMI. Model 4 adjusts for heart rate 

and heart rate variability. Model 5 adjusts for common cardiovascular comorbidities. Sample sizes reported 

indicate individual people.

Predictor Multivariable-adjusted
OR without DNN Score
(95% CI)

p-
value†

Multivariable-
adjusted OR with
DNN Score
(95% CI)

p-value†

LogReg Model 1a: Age: AUC=0.691 (95% CI: 0.672–0.710) (n=11,313) LogReg Model 1b: 1a + DNN score: AUC=0.770 
(95% CI: 0.754-0.786) (n=11,313)

Age, years 1.04 (1.04–1.05) <0.001 1.01 (1.01–1.02) <0.001

DNN Score, per SD - - 2.69 (2.41-2.99) <0.001

LogReg Model 2a: Age, gender and race: AUC=0.698 (95% CI: 0.674 – 0.722) 
(n=7,851)

LogReg Model 2b: 2a + DNN score: AUC=0.777 
(0.757 – 0.798) (n=7,851)

Age, years 1.04 (1.04–1.05) <0.001 1.01 (1.00–1.02) 0.013

Gender

Males Ref. - Ref. -

Females 0.99 (0.82-1.21) 0.996 0.65 (0.53–0.79) <0.001

Race/Ethnicity 0.003 0.17

Non-Hispanic White, n (%) Ref. - Ref. -

Black or African American, n (%) 1.87 (1.11-3.15) 0.001 1.40 (0.82 - 2.38) 0.213

Hispanic, Latino or Spanish origin/
ancestry, n (%)

0.73 (0.49-1.07) 0.106 0.69 (0.46 – 1.01) 0.058

Asian, n (%) 1.86 (1.30-2.67) 0.001 1.46 (1.01 – 2.12) 0.047

Multi-ethnic, n (%) 1.27 (0.78-2.07) 0.344 1.29 (0.78 – 2.13) 0.314

Other, n (%) 0.974 (0.49-1.95) 0.941 0.86 (0.42 – 1.74) 0.674

DNN Score, per SD - - 2.88 (2.51-3.31) <0.001

LogReg Model 3a: Age, gender, race and BMI: AUC 0.801 (95% CI: 0.752 – 0.850) 
(n=1,033)

LogReg Model 3b: 3a + DNN score: AUC: 0.830 
(95% CI: 0.787 – 0.873) (n=1,033)

Age, years 1.04 (1.02 - 1.06) <0.001 1.01 (0.99 – 1.04) 0.189

Males Ref. - Ref. -

Females 0.67 (0.39–1.13) 0.130 0.51 (0.30 – 0.88) 0.015

Race 0.232 0.415

Non-Hispanic White Ref. - Ref. -

Black or African American 0.33 (0.04 –2.63) 0.294 0.32 (0.04 – 2.63) 0.291

Hispanic, Latino or Spanish origin or 
ancestry

1.22 (0.45 –3.35) 0.696 1.08 (0.38 – 3.05) 0.884

Asian or Pacific Islander 2.82 (0.97-8.22) 0.058 2.36 (0.77 – 7.24) 0.135

Multi-ethnic 0.416(0.12-1.45) 0.168 0.46 (0.13 – 1.59) 0.218

Other/prefer not to disclose 0 (0) 0.999 0 (0) 0.999

BMI 1.15 (1.11–1.19) <0.001 1.08 (1.04-1.12) <0.001

DNN Score, per SD - - 2.12 (1.53 – 2.94) <0.001
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Predictor Multivariable-adjusted
OR without DNN Score
(95% CI)

p-
value†

Multivariable-
adjusted OR with
DNN Score
(95% CI)

p-value†

LogReg Model 4a: Heart Rate and Heart Rate Variability: AUC 0.586 (95% CI: 
0.565 – 0.606) (n=11,313)

LogReg Model 4b: 4a + DNN score: AUC: 0.765 
(0.748 – 0.782) (n=11,313)

HR, bpm 1.02 (1.01–1.02) <0.001 1.01 (1.00–1.01) 0.024

HRV - RMSSD, per 10 ms 0.97 (0.94-0.99) 0.027 1.02 (1.00 – 1.05) 0.068

DNN Score, per SD - - 2.92 (2.65 – 3.21) <0.001

LogReg Model 5a: Comorbidities: AUC 0.784 (0.766 – 0.802) (n=11,313) LogReg Model 5b: 5a + DNN score: AUC 0.830 
(0.815 – 0.844) (n=11,313)

Hypertension, n (%) 3.49 (2.93-4.16) <0.001 2.57 (2.15 – 3.07) <0.001

Hypercholesterolemia, n (%) 2.44 (2.05-2.89) <0.001 1.97 (1.66 – 2.34) <0.001

Coronary artery disease, n (%) 1.35 (1.04-1.76) 0.024 1.22 (0.94 – 1.59) 0.144

Prior MI, n (%) 1.04 (0.74-1.48) 0.815 1.06 (0.74 – 1.50) 0.765

CHF, n (%) 2.39 (1.67-3.42) <0.001 2.09 (1.46 – 2.98) <0.001

PVD, n (%) 1.49 (1.00 -2.21) 0.051 1.43 (0.97 – 2.11) 0.075

Prior Stroke, n (%) 1.91 (1.39-2.61) <0.001 1.74 (1.27 – 2.38) 0.001

Sleep apnea n (%) 2.06 (1.72-2.46) <0.001 1.85 (1.54 – 2.22) <0.001

DNN Score, per SD - - 2.22 (2.00 – 2.46) <0.001

Abbreviations: LogReg: logistic regression; OR: diagnostic odds-ratio; BMI: body mass index; CI: Confidence Interval; DNN: Deep neural 
network; SD: standard deviation; AUC: area under the receiver operating characteristic curve; HR: Heart Rate; HRV: Heart Rate Variability; 
RMSSD: Root Mean Square of Successive RR interval differences; y: years. Independent variables were standardized using the Z-score.

†
p-value is calculated using the Wald test for the multivariable adjusted odds ratio (two-sided).
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