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ABSTRACT

Obesity is routinely considered as a single disease state, which drives a “one-size-fits-all”approach to treatment. We recently convened the first annual
University of North Carolina Interdisciplinary Nutrition Sciences Symposium to discuss the heterogeneity of obesity and the need for translational
science to advance understanding of this heterogeneity. The symposium aimed to advance scientific rigor in translational studies from animal to
human models with the goal of identifying underlying mechanisms and treatments. In this review, we discuss fundamental gaps in knowledge of
the heterogeneity of obesity ranging from cellular to population perspectives. We also advocate approaches to overcoming limitations in the field.
Examples include the use of contemporary mouse genetic reference population models such as the Collaborative Cross and Diversity Outbred mice
that effectively model human genetic diversity and the use of translational models that integrate -omics and computational approaches from pre-
clinical to clinical models of obesity. Finally, we suggest best scientific practices to ensure strong rigor that will allow investigators to delineate the
sources of heterogeneity in the population with obesity. Collectively, we propose that it is critical to think of obesity as a heterogeneous disease with
complex mechanisms and etiologies, requiring unique prevention and treatment strategies tailored to the individual. Adv Nutr 2021;12:2023–2034.
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Introduction
Like cancer decades ago, obesity is considered by many as
a single disease state with universal treatment, rather than
as a fundamentally heterogeneous process varying in mech-
anisms and etiologies, each requiring unique prevention
and treatment strategies. This “one-size-fits-all” approach
has not served patients or communities well; obesity and
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its complications continue to rise with significant health-
care burden. This article, the result of the first annual
University of North Carolina Interdisciplinary Nutrition
Sciences Symposium, focuses on a set of factors important
to translational science in studies aiming to synergize human
and animal models of obesity heterogeneity. In addition,
we provide suggestions for best practices to delineate the
sources of heterogeneity that will ultimately lead to a better
understanding of underlying mechanisms and precision
medicine/precision nutrition treatment approaches.

Obesity is Highly Heterogeneous with Many
Underlying Sources
Obesity is defined as excess body fat. The most common
clinical practice for adults is to use body mass index [BMI;
wt (kg)/ht (m)2] to screen and diagnose overweight/obesity
to identify cardiometabolic risks (1). However, it is important
to recognize that the BMI does not distinguish lean and
fat body compartments, as such BMI is problematic on its
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TABLE 1 Potential sources of heterogeneity in obesity that should be further integrated between rodent and human studies

Sources of heterogeneity Description

Sex • Sex differences are well established in human and rodent metabolism in the context of obesity. However, more work
is needed in integrating sex-specific studies, particularly at the rodent level, with human studies.

Race/ethnic background • It is critical to incorporate race/ethnic differences in human studies as they give rise to heterogeneity in the human
population. These results can then guide mechanistic experiments at the rodent level.

Age at onset of obesity • Rodent studies that compare outcomes with humans need to account for differences in the age of onset of obesity.
• Furthermore, comparing data within the human population also needs to account for the age of onset and duration

of obesity.
Genetic background • Host genetics are a well-established source of heterogeneity in the human population. Pre-clinical studies could

increasingly incorporate the use of CC and DO mouse models to better understand the role of host genetics in
obesity heterogeneity. The next steps will be to integrate these data with human studies.

Tissue/cellular heterogeneity • As an example, adipose tissue depots are not uniform within a human or a mouse. Thus, dissecting the role of
specific adipose tissue depots on metabolic outcomes is of significance.

• The abundance and function of differing cell types (e.g., adipocytes, immune cells) within a given tissue can vary
considerably. Thus, there is a need to understand how heterogeneity at the tissue and cellular levels gives rise to
variation in humans with obesity and rodent models.

CC, collaborative cross; DO, diversity outbred.

own for clinical use at the individual level for estimating
body fat and lean mass (2). In addition, at any given BMI,
there is heterogeneity in body fat distribution as well as
differential association with cardiometabolic disease risk (1).
For this reason, recent clinical guidance suggests including
measures of waist circumference at given BMI values to
improve risk stratification across age, sex, and ethnicity (3).
Indeed, The International Diabetes Federation recommends
sex- and ethnic-specific waist circumference cut points (e.g.,
for Asian populations) to allow for the differential risk across
populations (4).

The complex disease of obesity results from a range
of individual predisposition factors (including genetic, epi-
genetic, biologic, hormonal, microbial, early life events)
as well as a range of environment (geography, nutritional
status, contaminant exposures) and lifestyle factors (in-
cluding built/physical environment, cues/social habits, food
cost/availability, taste/smell/palatability) (5, 6). Individual
predispositions shape responses to environment and lifestyle
factors; derangements in this system lead to obesity. This
complex multifactorial etiology makes it challenging to iden-
tify the mechanisms and causes of obesity heterogeneity. In
addition, there is a paucity of well-characterized, population
representative datasets that have information on individual
predisposition factors as well as the range of obesity-
relevant environment and lifestyle factors. Furthermore, the
computational and methodological complexity of analyzing
multi-omic and multilevel data in large population datasets
cannot be understated.

It is beyond the scope of this review to discuss the intricate
details of each source of heterogeneity in the population
with obesity (7–9). Herein, we focus on key factors that are
critical in synergizing human and animal models of obesity
heterogeneity, which are summarized in Table 1. One notable
factor in the heterogeneity of obesity is sex. At the same
BMI, females tend to have more body fat than men. Body
composition tends to be sexually dimorphic with central
adiposity a strong indicator of cardiometabolic risk. People

with a pear shape tend to carry weight in the hip area,
while people with an apple shape tend to have excess fat
in the abdominal area, a more cardiometabolically adverse
patterning due to metabolically active adipose as energy
metabolism and endocrine functions vary with locations of
fat deposition (10). There is suggestion that central adiposity
may confer higher cardiovascular risk among women than
men (11). Understanding such sex differences may shed light
on the pathophysiology of adiposity and offer insight for
potential interventions aimed at women versus men.

Even within a given sex, there are additional factors that
must be considered such as race. For example, gay, lesbian, or
gender queer adults may have differential patterns of cardio-
vascular risk with obesity (12). Further, there are established
differences in BMI cut points for Asians given higher cardio-
vascular risk at lower BMI (4). Similar differences are likely
for other race/ethnic groups (13–15) and may result from
a combination of biological and structural societal factors
such as racism (16). As one example, gluconeogenesis in
premenopausal black women is lower than in white women,
which has strong implications for diagnosis of pre-diabetes
(17). This research gap is increasingly being addressed with a
recent requirement, when possible, by the NIH for inclusion
of women and populations underrepresented in research
involving human subjects and the requirement for address-
ing sex as a biological variable in research using rodent
models.

Besides sex, race, and ethnicity, age at onset of obesity
may give rise to obesity heterogeneity. Childhood obesity is
associated with increased risk of numerous complications,
including but not limited to type 2 diabetes, malignancies,
autoimmunity, psychiatric problems, reproductive complica-
tions, etc. (18, 19). Of course, more work is needed in this
area of research as there is also some discrepancy in the field
as many have failed to disentangle duration of obesity with
age at onset or have not adequately addressed the complex
multifactorial nature of obesity. For instance, one study that
focused on adult candidates for bariatric surgery showed that
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lower age at onset of obesity predicted higher BMIs; however,
these same individuals were less prone to hypertension and
type 2 diabetes compared with those with adult-onset obesity
(18). Nevertheless, the age at onset, duration of obesity, and
other complex factors are critical research gaps to consider in
studies of obesity and its complications from the pre-clinical
to clinical level. Furthermore, when comparing mouse and
human data, the age at onset of obesity may be a factor
that is routinely ignored and could be a factor that can
improve synergizing mouse and human studies of obesity
(20).

Genetics is a major source of heterogeneity in the human
population. Most genetic studies of obesity susceptibility
have failed to utilize quantitative diet data to interrogate
gene variations in obesity that may only be revealed when
considering diet. For example, a gene polymorphism that
decreases thermogenesis (i.e., rate at which calories are
burned) may be of no consequence in people with a
low-calorie diet but will influence weight in high calorie
consumers. In studies that ignore differential exposures (e.g.,
pooling responders and non-responders), gene susceptibility
is missed. Similarly, few obesity interventions are tailored to
individual susceptibility, even to well-established susceptibil-
ity factors such as glycemic status. Furthermore, few collect
genetic, metabolomic, or microbial data, prohibiting investi-
gation of differential treatment effects and identification and
characterization of underlying biologic pathways. We discuss
these issues in greater detail below on how to potentially
bridge this gap with the integration of newer mouse models
for obesity and systems approaches for human research.

While obesity is typically associated with metabolic ab-
normalities and cardiometabolic diseases, there is individual
variation in this risk with differences in patterning of disease
risk across obesity, including some individuals with obesity
with few cardiometabolic complications. It is well known that
obesity perturbs metabolic pathways (21), thereby affecting
cardiovascular disease (CVD) risk factors (e.g., cholesterol,
blood pressure, and glycemic phenotypes) and their sequelae
(22–28) as well as heterogeneity in association with a
range of other diseases, from cancers (29) to infections
(30). In fact there are many papers classifying people with
metabolically healthy obesity, albeit with a large range in
definitions and classifications (31). Yet it is important to
note that a range of modifiable lifestyle factors, adipose
tissue biology, or differential mechanisms (in addition to
methodological differences in classification and temporal
effects) may underlie differences in metabolic health within
the population with obesity (32–35). These differences can
point to subtypes of obesity and shed light on mechanisms
underlying the heterogeneity of obesity.

We know little about exactly how obesity stresses
metabolic pathways during younger adulthood when CVD
risk accelerates; the specific biologic mechanisms remain
poorly understood (36, 37). Such research gaps reflect several
challenges, including a preponderance of studies evaluating
lifecycle period after CVD is established (38–42). There is
a clear need to better understand the evolution of CVD

in the context of unremitting metabolic stress induced by
obesity (43, 44) and CVD risk factors (45–48). The “expressed
genome”—factors beyond DNA such as epigenomics and
metabolomics—offers innovative opportunities to fill this
major research gap (49–52).

Tissue and Cellular Heterogeneity May Drive
Heterogeneity in the Population with Obesity
We have addressed several issues such as sex, race, ethnicity,
age at onset of obesity, and genetics as they relate to het-
erogeneity at the population level. However, heterogeneity of
obesity is often ignored at the tissue and cellular level in pre-
clinical- and population-level studies. Here we use adipose
tissue as a case in point (53, 54). Adipose tissue presents
several levels of heterogeneity with distinct properties and
functions, especially in white adipose tissue (WAT) (53), as
illustrated by 1) different types of adipose tissues known
as brown, white, and beige adipose tissues, with different
locations within the body, and 2) cellular heterogeneity in cell
types and cell size, as adipose tissue is composed of several
cell types, including pre-adipocytes, stem cells, immune cells,
and adipocytes among other cells.

WAT is a primary storage organ of triglycerides during
energy excess. WAT influences systemic metabolism not
only through availability of these stores that can be released
as fatty acids when needed, but also through secretion of
numerous hormones and adipokines secreted by adipose
tissue (55). In contrast, brown adipose tissue (BAT) is a major
driver of thermogenesis and energy expenditure through
a specialized mitochondrial protein—uncoupling protein 1
(UCP-1)—and heat generation in both humans and rodents
(56, 57). Over the past decade, beige adipose tissue emerged
as a third type of adipose tissue. Beige adipocytes are brown
like adipocytes and positive for UCP-1 and arise within
white fat (also named brite for “brown in white”). Published
research shows that these tissues not only differ in metabolic
functions, but they also exhibit distinct molecular differences
(58).

Adipose tissue expands through hyperplasia (proliferation
then differentiation of adipose stem cells or pre-adipocytes)
and/or through hypertrophy (increased mature adipocyte
cell size). The latter, especially for WAT, has significant
implications on obesity-related diseases. Indeed, the inability
of adipocytes to expand and continue storing energy leads
in part to “spillover” of lipids into non-adipose tissues
such as liver, muscle, and pancreas, causing lipotoxicity and
associated metabolic dysfunctions, including insulin resis-
tance (59, 60). Moreover, adipocytes come in different sizes
(61), and it is generally recognized that smaller adipocytes
are associated with insulin-sensitive phenotypes while large
adipocytes are associated with insulin resistance. This has
been well illustrated in several animal models—specifically,
insulin receptor knockout models as well as angiotensinogen
and angiotensin II receptor transgenic/knockout models
(62, 63).

It is important to recognize that differing cell types,
notably adipocytes, found in various adipose tissue depots
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are developmentally distinct. Thus, differences in fat dis-
tribution across depots are driven, in part, by the ability
of each unique progenitor cell to grow and differentiate.
This developmental programming is under the control of a
unique transcriptome, which is likely further regulated by sex
hormones (58). Furthermore, there is a strong appreciation
for heterogeneity in numerous immune cell populations,
each with their own specialized metabolic profile, within
differing WAT depots that control the inflammatory tone
(64).

Understanding the aforementioned heterogeneity of adi-
pose tissues and adipose tissue distribution, in addition to
the heterogeneity of adipocytes and immune cells, using
mouse models and well-defined human fat samples may help
stratify the different types of “obesities,” which will ultimately
result in designing better targeted interventions for metabolic
diseases. Specifically, given the limited amount of BAT in
humans, a promising target is WAT, including understanding
mechanisms and interventions that can reduce it and/or
increase potential conversion of white into brite adipocytes.
Moreover, development of animal models that better mirror
heterogeneity in metabolism and distribution of adipose
tissues may shed light on how adipose tissues impact whole
body metabolism and lead to different metabolic outcomes
of obesity.

Collaborative Cross and Diversity Outbred
Mouse Populations Are Powerful for Modeling
Complex Diseases and May Increase
Understanding of the Heterogeneity of Obesity
Diverse populations are key to understanding heterogeneity
in obesity. Our major breakthrough in understanding the ge-
netic underpinnings of obesity’s complexity have come from
large, population-based genetic consortia (65–75). Yet even
among these large studies, there is generally a historic gap in
studies in multiethnic human populations, with most work in
European Americans (76–78). This is a problem because of
poor transferability of European-American trait-associated
variants to multiethnic populations (79, 80). Of course, new
data are starting to emerge from multiethnic populations,
which are critical for investigating the heterogeneity of
obesity. As one example, a genome-wide association study
(GWAS) from 100,418 adults from the multiethnic Genetic
Epidemiology Research on Adult Health and Aging (GERA)
cohort identified 30 novel BMI autosomal loci (81). For
instance, KDM4C was identified, which is a transcription
factor involved in regulating adipogenesis (81). Some of these
data are publicly available and are a rich resource for further
investigation (82).

Most animal studies have capitalized upon standardized
genomic backgrounds that are homogeneous (homozygous
inbred). Further, animal studies have typically only inter-
rogated variation at a single locus. Thus, these types of
studies provide a poor model for human variation relative to
complex multigenic diseases, like obesity. In contrast, novel
heterogeneous mouse populations, like the collaborative
cross (CC) and diversity outbred (DO), better approximate

human populations in terms of genetic diversity and thus
are excellent for investigating complex disease biology
(83).

Homozygous inbred lines of mice have been a useful
pre-clinical experimental research model with success in
basic and biomedical research with qualifications (84). To
aid quantitative research similar to human GWAS, new
mouse models and approaches have been created and used
for genetic analysis (85–90). Hybrid mouse diversity panels,
the collaborative cross recombinant inbred lines (CCRIL)
and DO mice, are representative of haplotype association
mapping and linkage analysis approaches in pre-clinical ex-
perimental population-based mouse models. Hybrid mouse
diversity panels are a powerful tool with more than 8 million
single nucleotide polymorphisms (SNPs) but are limited by
significant intervals that are identical by descent (IBD) in
some or all laboratory-derived homozygous inbred lines (91,
92). This approach may be limited for robust quantitative
trait loci (QTL) analysis for some phenotypes.

The CCRIL and the DO mice have different strengths
and potential limitations. The CCRIL mice were created
through a multiple advanced generation intercross using 8
homozygous inbred lines of mice selected based on particular
attributes (93). The DO mice were created from early
progenitors of the established CCRIL in 2 steps starting
from a founding population of 150 sister–brother pairs of
partially inbred CC lines sampled at the sixth filial generation
from the second generation (G2F6) (94). Simulated rounds
of mating in which females and males were paired at
random with the constraint that sib-mating was prohibited
were used (94). The final inbred lines of the CCRIL and
the randomized DO mating project contain approximately
45 million single nucleotide polymorphic and structural
variants and a 12% minor allele frequency (MAF). Together,
they represent powerful tools for quantitative genetics and
identifying QTL based on the variance contributed by one
or more founder haplotype of origin (95, 96). The 8 founder
lines contributed significant genetic diversity and a high
MAF for genetics to aid quantitative trait analysis to identify
genes, and bioinformatic analysis to explain significant
variance associated with phenotype. These discovery tools
further enable reverse genetics studies to demonstrate causal
relationships using the founder lines or the CCRIL. The
genetic sequence and identification of phenotype-associated
QTL identified candidate gene SNP or structural variants
and tools to aid mouse to human translation are available
on the Mouse Genome Informatics database at The Jackson
Laboratories (97, 98). For further information, please refer
to The Jackson Laboratory Mouse Genome Informatics
(MGI; http://www.informatics.jax.org) and Mouse Phenome
Database (MPD; https://phenome.jax.org/).

It is important to note that the creation of loss and/or
gain of function mutants based on “single locus” of origin
(homozygous inbred strain) used in genetically altered
mouse models for pre-clinical research does not apply to the
CCRIL and DO mice models. Each CCRIL or DO mouse
has 8 different alleles (haplotype) at each genetic locus.
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Each CCRIL is isogenic (>95% homozygosity at each locus)
allowing for co-isogenic controls in experimental balanced
block design.

Many homozygous inbred strains derived in the lab-
oratory, principally from the Mus musculus domesticus
subspecies, have significant IBD. IBD limits genetic diversity
at specific loci and significantly decreases the statistical
ability to identify phenotype-specific protocol-driven QTLs
based on non-synonymous SNPs and/or copy number
variations. Thus, our understanding and accounting for the
multigenic basis of the phenotypic trait to explain phenotype
variance can be decreased. Depending upon study design, the
randomly bred genetically diverse DO mice and the isogenic
inbred CCRILs capture a similar magnitude of genetic
diversity. Together, they provide increased opportunities to
develop methods necessary to extrapolate between these
genetically diverse mouse models and humans based on
similar phenotype and genotype.

Weight gain and loss risk variants identified in DO mice
studies can be tested in selected CCRIL lines mice with
CRISPR/Cas9 modifications to investigate specific allelic
variants and their mechanisms to demonstrate proof of
causality. For example, population-based genetically diverse
mouse models can be used to dissect complex traits related to
nutrient overload (83, 99). Several studies in CCRIL and DO
mice have demonstrated the use of these population-based
models to identify QTLs for explaining human phenotypic
variation (100–103).

Taken together, we consider the randomized DO mice
as forward genetics or discovery models and the isogenic
CCRILs for corroborating phenotypes and QTLs leading to
hypothesis-based research with isogenic controls as well as
traditional comparisons of phenotypic responder and non-
responder F1 and F2 outcrosses. For instance, DO mice
are being used as a discovery model to determine why
some obese mice have improved hyperinsulinemia and hy-
perglycemia with select dietary interventions whereas other
mice have impaired hyperinsulinemia and hyperglycemia
(99). To further exemplify, in our DO mice studies focused on
the heterogeneity of obesity based on operational paradigms,
we are using series of DO mice cohorts (50 to 100 of each sex)
over time to gain power for linkage analysis and discovery
of candidates that explain the haplotype(s) of origin and the
majority of the operationally defined phenotypic variance
(research paradigm dependent). Once the haplotype is
identified that explains the phenotypic variance, we can
use the CCRIL with and without the genetic locus specific
haplotype and retesting, and compare and contrast outcomes
(JE French et al., manuscript in preparation). This also allows
for use of the appropriate CCRIL for creating haplotype-
specific controls and experimental groups to test gene ×
diet interactions. We are working toward using experimental
clinical designs and phenotypic/genetic analysis outcomes
and incorporating the elements of those designs based
on the features of the CCRIL and DO mouse models to
test complementarity between SNP-based GWAS or family
linkage analysis approaches.

Integration of -Omics and Computational
Approaches to Tackle the Heterogeneity of
Obesity
For many decades, obesity research has addressed mecha-
nisms involving 1 single factor (e.g., using a single type of
data such as either genetics or metabolomics rather than
both genetics and metabolomics) in a single model (e.g.,
human or single inbred mouse strain) at a single point in
time. Yet current advances in computational efficiency, data
science, and measurement technologies provide outstanding
opportunities for investigating the heterogeneity of obesity.
For example, we can now start to integrate a wide range
of -omics (i.e., metabolomics, lipidomics, proteomics, ge-
nomics, microbiome) into pre-clinical and clinical studies
to ultimately establish the underlying mechanisms and
potential treatment approaches across different subtypes of
obesity. Although this approach has been rarely applied
to obesity heterogeneity, there are emerging studies that
integrate various -omics analyses in the human population.
To exemplify, a recent epidemiological study examined
associations between the gut microbiota and the plasma
metabolome with blood pressure in a Chinese cohort. The
data revealed unique microbiota and metabolite signatures
(notably of acyl-carnitines and differing lipids) that were
associated with systolic and diastolic blood pressure (104).
Additionally, using complex multi-omics data in combina-
tion with integrative analysis and systems biology along
with expertise in obesity and metabolism has the potential
to transform current understanding of the heterogeneity of
obesity.

The rise of publicly available structured biomedical
knowledge has allowed the creation of large-scale knowledge
integration projects such as the NCATS Biomedical Data
Translator (https://doi.org/10.1111/cts.12591), including the
creation of the ROBOKOP Knowledge Graph (KG) (https:
//doi.org/10.1021/acs.jcim.9b00683). As an example, the
ROBOKOP KG compiles information from a dozen pub-
lic sources and contains information on over 4 million
biomedical entities including genes, diseases, phenotypes,
chemicals, anatomical features, and sequence variants as
well as over 12 million relationships between these entities.
The KG, which is available for browsing and download at
http://robokopkg.renci.org, serves as an integration point for
observed obesity associations. These associations are loaded
into the graph as new relationships, such that subsequent
database queries return association data combined with
background information, providing the framework for a
mechanistic interpretation of new associations focused on
the heterogeneity of obesity.

The flexibility of knowledge graphs to integrate het-
erogenous data also allows a systematic representation
of information across species. For instance, the Monarch
Initiative Knowledge Graph relates phenotypes, anatomical
features, and genes across model organisms so that geno-
type/phenotype relations observed in, for instance, mice,
can be used to suggest or support orthologous relations in
humans (105). The structure of the KG, therefore, allows for
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parallel mechanisms to be explored across species without
losing context of the particular organism.

Risk Factor and Genetic Clustering May Reveal
Subtypes of Obesity
An additional approach for tackling the identification of
differing types of “obesities” will be to cluster differing
biomarkers of disease, risk factors, or even genetic pathways.
These biomarkers could be well established clinical measures
or could even be the identification of new and validated
parameters from -omic approaches described earlier. Here we
describe a couple of examples from studies focused on the
heterogeneity of diabetes.

As an example, a study used k-mean and hierarchical clus-
tering analysis of nearly 9000 newly diagnosed participants
with diabetes. The clusters were defined by BMI, HbA1c,
age at diagnosis of diabetes, circulating concentration of glu-
tamate decarboxylase antibodies, and homoeostatic model
assessment of pancreatic β-cell function and insulin resis-
tance. These parameters were then associated with patient
record data, including complications of diabetes and use of
prescription drugs. The analyses revealed 5 groups of patients
with diabetes, with each cluster having unique characteristics
and risks. For instance, one notable finding was that those
that were the most insulin resistant had the highest risk for
fatty liver and kidney disease (106, 107).

To further exemplify, in another study, GWAS results were
clustered using Bayesian non-negative matrix factorization
for 94 type 2 diabetic genetic variants and 47 type 2
diabetes traits (108). Analyses from this study revealed
5 genetic clusters with distinct traits that appeared to repre-
sent unique mechanistic pathways that drive the onset and/or
progression of type 2 diabetes. This approach highlighted
the possibility of stratifying individuals based on distinct
genetic pathways that could predict physiological outcomes.
Taken together, these results underscore the potential utility
of these approaches that can be applied to the field of obesity
to drive future precision medicine and precision nutrition
studies. In addition, establishing underlying cellular and
molecular mechanisms with rodent models will aid in
our understanding of why some pathways favor specific
physiological outcomes.

Best Practices for Animal and Human Research
on the Heterogeneity of Obesity
There is a strong need for establishing uniform practices
in the study of obesity heterogeneity using pre-clinical and
clinical models to ensure rigor and reproducibility. There are
several variables that we discuss below that are often ignored
in the field. One major variable is the lack of consideration
for gene × diet interactions. Obesity and its complications
such as type 2 diabetes and CVDs are influenced by multiple
genetic and environmental factors, including diet behaviors.
Genome-wide association studies are the best means of
confirming known and discovering novel variants associated
with obesity. Some studies have been successful in identifying
genetic variants and their interactions with environmental

factors in influencing the disease process and/or risk factors
(109–111). However, most of these studies are lagging behind
with respect to lifestyle interactions (e.g., sleep, physical
activity, stress, smoking, and alcohol consumption), despite
known recognition that inclusion of lifestyle intake data
reduces the noise in genetic signals (112–114). Studies
that have reported and replicated gene–nutrient interactions
affecting obesity have mostly focused on macronutrients,
mainly fat and carbohydrate intake (115–117), with few
focusing on meal patterns. Key genes whose interactions
with nutrients/meal patterns have been reported and repli-
cated across studies include apolipoprotein A2 (APOA2),
fat mass and obesity associated (FTO), melanocortin 4
receptor (MC4R), lipoprotein lipase (LPL), and peroxisome
proliferator activated receptor gamma (PPARγ ) (118–122).

Diet can regulate gene expression by affecting transcrip-
tion (RNA processing and stability), RNA translation, and
proteins and metabolite processing. In turn, metabolism of
nutrients is affected by the genetic sequence and architecture
of the individual (123, 124). Evolutionarily, nutritional
environments seem to be the major determinants of human
variation, given that populations vary in requirement for
foods and response to diet (124). Thus, the fields of nutrition
and genetics are intertwined; studies of human or animal
genetics are not complete without taking into considera-
tion nutritional variability in the population with obesity.
However, diet × nutrient interactions account for a small
portion of the variation in obesity. Another component of
lifestyle that has evoked interest is the role of gene by physical
activity interactions in obesity. Genes such as angiotensin-
converting enzyme (ACE), angiotensinogen (AGT), alpha
actinin 3 (ACTN3), and FTO have been consistently shown
to interact with physical activity and to be associated with
adiposity/obesity (125–128). Other studies have reported
interactions of genetic variants with other factors such as
sleep (129, 130), stress (131), smoking (132, 133), alcohol
intake (134), and even socioeconomic status (135–137).

It is important to note that gene by lifestyle interactions
in obesity have been mainly examined using genome-wide
and candidate gene association studies. Several models have
been proposed to estimate and analyze interaction effects
with obesity, where most are regression based. Some of
the issues that need to be taken into consideration while
examining gene by lifestyle interaction effect on obesity
include selection of genetic models (additive vs. dominant
vs. recessive), interaction models (additive or multiplicative
terms), and type of confounders and time of exposure
(113, 138).

Another limitation is the differences in the instruments
used to measure dietary intake. Dietary intake assessment is
usually conducted using food records, 24-h recalls, and FFQs.
The ability of food records and 24-h recalls to capture usual
intake depends on the number of days assessed. Similarly,
the accuracy of FFQs, designed to capture long-term intake
patterns, is also affected by the number of days assessed
along with the number and relevance of foods included,
in addition to the recall bias. All these factors need to be
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considered and standardized across studies to ensure rigor
and reproducibility. One approach that can be integrated
into studies is the use of mobile technology and wearable-
based detection approaches, which of course have their own
challenges (139–141).

Another constraint in advancing the science of obesity
heterogeneity is the lack of uniformity in diet composition
to achieve an obese phenotype. For example, the fat source
for high-fat diets varies routinely in pre-clinical experiments.
A range of fat sources are implemented in the experimental
diets, including coconut oil, palm oil, lard, milkfat, and mixed
oils (142). Similarly, a control diet for high-fat feeding studies
is often a purified mouse diet or at times, erroneously, a
standard mouse chow (142). However, the ingredients found
in a standard mouse chow are highly variable, containing
many additional substances such as pesticides, heavy metals,
and phytoestrogens (143). It is no wonder that reproducibility
of effects or lack of translation from animal to human models
is often problematic. Greater attention must be paid to diet in
design and interpretation of studies, particularly relevant to
consistency in controls across laboratories, to make rigorous
conclusions about any given macro- or micronutrient. Like
the use of the ARRIVE (Animal Research: Reporting of
In Vivo Experiments) checklist and other guidelines for
mouse studies (144, 145), we are in need of strong nutrition
guidelines for obesity research.

The case in point about control diets also applies to human
intervention studies. For instance, what are appropriate
controls for human dietary supplement studies? If we stick
with studies of dietary fat as a variable, then what are
appropriate placebo controls?

Again, a limiting factor is the lack of collection of high-
quality diet data in population, cohort, and clinical studies.
The few studies that incorporate diet measures rely upon a
wide range of methods used to capture dietary intake, which
makes cross-study harmonization very difficult. Given the
role of diet/nutrients in obesity, there is a need to integrate
high-quality nutritional assessment tools and nutritional
biomarkers in population, cohort, and clinical studies, and
to use appropriate experimental models to attain proper
translation to human conditions.

Understanding obesity as a heterogeneous disease with
complex mechanisms and etiologies can take us further
to unique prevention and treatment strategies tailored to
the individual. In this paper, we have provided some
fundamental gaps in knowledge of the heterogeneity of
obesity ranging from the cellular level (e.g., heterogeneity of
adipocytes and immune cells across fat depots) to population
perspectives (age at onset of obesity, sex, host genetics). It
was not our intent to address the full scope of individual
predisposition factors and the full range of environment and
lifestyle factors. We specifically focus on a set of factors
important to translational science in synthesizing human and
animal models of obesity heterogeneity. As such, we are not
including a wide range of other factors that are important but
may relate only to human or only to mouse studies. Taken
together, we propose the following measures to improve

studies of obesity heterogeneity and to enhance translation
from mouse to human:

1) Build translational teams to address heterogeneity of
obesity. Integrating expertise across basic, computational,
clinical, and population for true translational science
and integrative analyses is critical to making headway in
understanding the heterogeneity of obesity. Application
of -omic (i.e., metabolomics, lipidomics, proteomics,
genomics, microbiome) and computational approaches
will also be key.

2) Analyses of validated SNPs that could account for
differences in nutrient metabolism. This will take us
one step closer to addressing the neglect of gene ×
diet interactions. Furthermore, increased utilization of
population-based models such as DO and CC mice as
models for complex diseases, will provide key information
about novel SNPs in the heterogenous population with
obesity.

3) Experimental diets for rodent and human studies should
undergo rigorous quality control analyses by investigators
prior to and during the course of a study and the results
should be reported.

4) The bulk of current studies that rely on 45% and
60% kcal from fat diets do not model human intake of
carbohydrates and fats. Investigators at the pre-clinical
level should start the use of newly emerging obesogenic
diets that model human macronutrient intake (146).

5) Account for sex differences in human and mouse studies.
While there is increasing appreciation for sex differences,
this area of research needs to be further expanded as sex
differences will contribute toward differences in various
measured outcomes. Notably, rodent studies are still
heavily focused on male mice although there is a greater
appreciation for conducting experiments with females
based on a recent push from the NIH. These studies
will need to address sex differences from the popula-
tion level to differences in underlying mechanisms of
action.

6) Account for the age at onset and duration of obesity. This
is particularly relevant when comparing results between
mice and humans.

7) Incorporate race/ethnic diversity in human studies as
an important source of heterogeneity and a marker for
structural factors that contribute to disease.

Conclusion
Collectively, there is a critical need to understand the
underlying sources of heterogeneity in the population with
obesity. Translational studies spanning mouse and human
populations offer one such direction of research. Sources of
heterogeneity range from sex/race difference, age at onset
of obesity, differing genetic backgrounds, diversity in the
diet, variations across individuals in their -omic profiles
(microbiome, metabolome, lipidome, genome, proteome),
and differences among individuals in their underlying cel-
lular profiles within key tissue depots such as brown and
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white adipose tissue. Addressing the underlying causes of
heterogeneity in obesity and developing precision medicine
and precision nutrition treatment approaches will rely on
large-scale integration of the next generation of population-
based mouse models with human clinical studies. Finally,
there is a need to develop better practices that will allow
for strong rigor and reproducibility in the study of obesity
heterogeneity.
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Cleaning genotype data from diversity outbred mice. G3 (Bethesda)
2019;9(5):1571–9.

96. Corty RW, Kumar V, Tarantino LM, Takahashi JS, Valdar W.
Mean-variance QTL mapping identifies novel QTL for circadian
activity and exploratory behavior in mice. G3 (Bethesda) 2018;8(12):
3783–90.

97. Bogue MA, Churchill GA, Chesler EJ. Collaborative cross and diversity
outbred data resources in the mouse phenome database. Mamm
Genome 2015;26(9–10):511–20.

98. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE. Mouse Genome
Database (MGD) 2019. Nucleic Acids Res 2019;47(D1):D801–6.

99. Pal A, Al-Shaer AE, Guesdon W, Torres MJ, Armstrong M, Quinn K,
Davis T, Reisdorph N, Neufer PD, Spangenburg EE, et al. Resolvin
E1 derived from eicosapentaenoic acid prevents hyperinsulinemia
and hyperglycemia in a host genetic manner. FASEB J 2020;34(8):
10640–56.

100. Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric
RS, Ferris MT, Frelinger JA, Heise M, Frieman MB, et al. Genetic
analysis of complex traits in the emerging collaborative cross. Genome
Res 2011;21(8):1213–22.

101. Kelada SN, Carpenter DE, Aylor DL, Chines P, Rutledge H, Chesler
EJ, Churchill GA, Pardo-Manuel de Villena F, Schwartz DA, Collins
FS. Integrative genetic analysis of allergic inflammation in the murine
lung. Am J Respir Cell Mol Biol 2014;51(3):436–45.

102. Phillippi J, Xie Y, Miller DR, Bell TA, Zhang Z, Lenarcic AB, Aylor
DL, Krovi SH, Threadgill DW, de Villena FP, et al. Using the emerging
collaborative cross to probe the immune system. Genes Immun
2014;15(1):38–46.

103. Himes BE, Sheppard K, Berndt A, Leme AS, Myers RA, Gignoux CR,
Levin AM, Gauderman WJ, Yang JJ, Mathias RA, et al. Integration of
mouse and human genome-wide association data identifies KCNIP4
as an asthma gene. PLoS One 2013;8(2):e56179.

104. Wang Y, Wang H, Howard AG, Tsilimigras MCB, Avery CL, Meyer
KA, Sha W, Sun S, Zhang J, Su C, et al. Gut microbiota and host
plasma metabolites in association with blood pressure in Chinese
adults. Hypertension 2021;77(2):706–17.

105. Mungall CJ, McMurry JA, Köhler S, Balhoff JP, Borromeo C,
Brush M, Carbon S, Conlin T, Dunn N, Engelstad M, et al.
The Monarch Initiative: an integrative data and analytic platform

2032 Gordon-Larsen et al.

https://portals.broadinstitute.org/collaboration/giant/index.php?title=GIANT_consortium_data_files\&oldid=579


connecting phenotypes to genotypes across species. Nucleic Acids Res
2017;45(D1):D712–22.

106. Ahlqvist E, Storm P, Käräjämäki A, Martinell M, Dorkhan M, Carlsson
A, Vikman P, Prasad RB, Aly DM, Almgren P, et al. Novel subgroups
of adult-onset diabetes and their association with outcomes: a data-
driven cluster analysis of six variables. Lancet Diabetes Endocrinol
2018;6(5):361–9.

107. Ahlqvist E, Prasad RB, Groop L. Subtypes of type 2 diabetes
determined from clinical parameters. Diabetes 2020;69(10):2086–93.

108. Udler MS, Kim J, von Grotthuss M, Bonàs-Guarch S, Cole JB,
Chiou J, Boehnke M, Laakso M, Atzmon G, Glaser B, et al. Type
2 diabetes genetic loci informed by multi-trait associations point to
disease mechanisms and subtypes: a soft clustering analysis. PLoS Med
2018;15(9):e1002654.

109. Hunter DJ. Gene-environment interactions in human diseases. Nat
Rev Genet 2005;6(4):287–98.

110. Davey Smith G. Use of genetic markers and gene-diet interactions
for interrogating population-level causal influences of diet on health.
Genes Nutr 2011;6(1):27–43.

111. Mathers JC. Nutrigenomics in the modern era. Proc Nutr Soc
2017;76(3):265–75.

112. Marti A, Martinez-González MA, Martinez JA. Interaction between
genes and lifestyle factors on obesity. Proc Nutr Soc 2008;67(1):1–8.

113. Reddon H, Guéant JL, Meyre D. The importance of gene-environment
interactions in human obesity. Clin Sci 2016;130(18):1571–97.

114. Rask-Andersen M, Karlsson T, Ek WE, Johansson Å. Gene-
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