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Abstract

The Notch pathway is an ancient intercellular signaling system with crucial roles in numerous cell

fate decision processes across species. While the canonical pathway is activated by ligand-induced 

cleavage and nuclear localization of membrane-bound Notch, Notch can also exert its activity 

in a ligand/transcription-independent fashion, which is conserved in Drosophila, Xenopus, and 

mammals. However, the noncanonical role remains poorly understood in in vivo processes. Here 

we show that increased levels of the Notch intracellular domain (NICD) in the early mesoderm 

inhibit heart development, potentially through impaired induction of the second heart field (SHF), 

independently of the transcriptional effector RBP-J. Similarly, inhibiting Notch cleavage, shown to 

increase noncanonical Notch activity, suppressed SHF induction in embryonic stem cell (ESC)

derived mesodermal cells. In contrast, NICD overexpression in late cardiac progenitor cells 
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lacking RBP-J resulted in an increase in heart size. Our study suggests that noncanonical Notch 

signaling has stage-specific roles during cardiac development.
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Introduction:

Notch is an evolutionarily conserved signaling pathway responsible for various cell-fate 

decisions throughout development. Notch signaling has been shown to be involved in 

several aspects of heart development [1,2], including development of cardiac progenitor cells 

(CPCs) and cardiomyocytes (CMs) [3–5], development of the cardiac conduction system 

[6] and ventricular myocyte differentiation [7], whereas dysregulation of Notch signaling 

is associated with various congenital heart abnormalities [8–11], the most common type of 

birth defects.

The canonical Notch signaling cascade begins with the binding of a Delta/Serrate/LAG-2 

(DSL) family extracellular ligand to a Notch Extracellular Domain, leading to the cleavage 

of the Notch Intracellular Domain (NICD), which translocates to the nucleus where it binds 

the transcription factor RBP-j to initiate gene expression [12–15]. While NICD has generally 

been thought to be biologically inactive outside of this canonical signaling cascade, several 

studies have demonstrated how it is involved in biological processes in multiple systems 

independent of ligand activation and/or RBP-j, suggesting noncanonical roles of Notch 

[16–18]. Consistent with this, we and others recently described how membrane-bound and 

cytoplasmic NICD post-translationally regulates the active form of β-catenin independent of 

RBP-j [19–22], suggesting that Notch may regulate multiple processes of early development 

by regulating Wnt signaling. Wnt signaling plays a key inductive role in primitive streak 

and cardiac mesoderm formation [23–25], and later a regulatory role in CPC development 

[26–31]. These interactions can be recapitulated in vitro, where stage-specific manipulation 

of Wnt activity aids in directed differentiation of pluripotent stem cells to cardiomyocytes 

[32]. However, the role of noncanonical Notch signaling in heart development remains 

unknown. In this present study, we demonstrate that noncanonical Notch signals inhibit 

heart development in early development but increase heart size at later developmental stages, 

suggesting its distinct and biphasic roles during cardiac development.

Materials and Methods:

Mouse work

Mesp1-Cre; NICD and Nkx2.5-Cre; NICD embryos were generated by crossing Mesp1/

Nkx2.5-Cre mice [33,34] with mice harboring a NICD sequence downstream of a stop 

sequence flanked by loxP sites in the Rosa locus [35]. Simultaneous RBP-j knockout was 

achieved by crossing with mice harboring RBP-j sequence flanked by loxP sites [36]. 

Embryos were harvested from E8.0-E9.5 and were dissected using forceps under a Zeiss 

Discovery V8 microscope. Embryos intended for immunostaining were fixed in 4% PFA for 
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1 hour, maintained in 30% sucrose, embedded in OCT and sectioned. Immunostainings 

were completed using Nkx2.5 antibody (Santa Cruz: sc-8697), Tbx5 antibody (Atlas 

Antibodies: HPA008786), and DAPI (Life Technologies). Stained sections were imaged 

using a Keyence BZ-X700 microscope and post-imaging processing completed in Adobe 

Photoshop. Embryos intended for RT-qPCR analysis were harvested and placed in Trizol 

for RNA isolation. Standard RNA isolation protocols were completed. cDNA was created 

using the High-Capacity cDNA Reverse Transcription kit (Thermo Fisher: 4368814). qPCR 

was completed using Sybr Select qPCR mix with primers indicated and gene expression was 

normalized to GAPDH. Dissected yolk sac was used for genotyping embryos. All animal 

experiments were carried out in accordance with the National Institutes of Health guide for 

the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Cell Culture Maintenance and Differentiation

Mouse ESCs were maintained and differentiated as described [37,38]. Mouse ESCs were 

maintained on gelatin-coated dishes in 2i inhibitor containing: Glasgow minimum essential 

medium supplemented with 10% fetal bovine serum, 3 μM Chir99021 and 1 μM PD98059, 

1000 U/ml ESGRO, Glutamax, Sodium Pyruvate, MEM non-essential amino acids. For 

differentiation of mouse embryonic stem cells, cells were plated in 3:1 IMDM/Ham’s 

F12 with B27, N2, Pen/Strep, Glutamax, BSA, L-ascorbic acid, and MTG for embryoid 

bodies (EBs) formation. After 50 hours, EBs were induced for 46 hours with BMP4 and 

Activin A. DAPT (CAS 208255-80-5 - Calbiochem) was administered at a concentration 

of 12.5 and 25 μM. Flow cytometrical analysis was carried out using a SH800 Cell sorter 

(Sony Biotechnologies). Luciferase assays consisted of transfecting cells in single cells 

suspensions with TOPFlash and Renilla constructs, and were analyzed as described [39].

Statistical analyses

The two-tailed Student t-test, type II, was used for data analyses. P<0.05 was considered 

significant

Results:

Increased levels of Notch Intracellular Domain decreases heart size independent of RBP-j

To investigate the role of Notch signaling during early cardiac development, we activated 

NICD in precardiac mesoderm by crossing Mesp1-Cre mice with mice harboring a loxP 

flanked stop codon in front of NICD (NICDOE). The activation resulted in the absence 

of a linear heart tube at E8.5 (Fig. 1A), leading to embryonic lethality at E9.0. The 

mutant embryos had a cardiac crescent-like structure at E8.5, normally present transiently 

from E7.5–8.0, but failed to progress to form a heart tube (Fig. 1A). Additionally, the 

transverse sectioning and staining with the CM marker Nkx2.5 showed a thickening of 

the cardiac crescent compared to control embryos (Fig. 1A). Since NICD can affect cells 

without the obligatory canonical Notch signaling transcription factor RBP-j [19–22], we 

asked whether the observed cardiac phenotype was a result of canonical or noncanonical 

Notch signaling. To do this, we simultaneously deleted RBP-j. Surprisingly, the resulting 

embryos also showed the cardiac crescent at E8.5 with a reduced heart size, phenocopying 

NICDOE embryos with RBP-j (Fig. 1A). This suggests that the observed phenotype results 
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from the biological activity of NICD outside of the canonical Notch signaling pathway. 

The phenotypic similarity was further confirmed by Nkx2.5 staining (Fig. 1A). The heart 

tube was formed normally in RBP-j knockout embryos (Fig. 1A), indicating the NICDOE 

phenotype was not a result of RBP-j deletion. These findings suggest that Notch can 

suppress heart tube formation in a noncanonical manner.

Noncanonical Notch signaling inhibits SHF formation

Next, we sought to determine how NICD activation affects precardiac mesoderm. While 

NICDOE embryos formed the cardiac crescent, referred to as the first heart field (FHF), it is 

unclear if NICDOE affects the second heart field (SHF) that gives rise to the outflow tract 

and right ventricle. To test this, we examined expression of FHF/SHF genes in NICDOE 

embryos at E8.0 in cells of the Mesp1 lineage, specifically. Interestingly, the FHF gene Tbx5 
was not affected; though, Gata4 expression was slightly upregulated (Fig. 1B). However, the 

SHF genes Tbx1 and Six2 were significantly downregulated (Fig. 1B). This result suggests 

that noncanonical Notch signals negatively regulate SHF genes.

To determine if the noncanonical signals affect heart field induction, we utilized our recently 

developed precardiac organoid system which harbors green and red fluorescent protein 

under the control of the FHF gene Hcn4 and the SHF gene Tbx1, respectively [37–38]. We 

previously reported that noncanonical NICDOE phenotype is recapitulated by increasing the 

levels of membrane-bound Notch, which can be done by blocking Notch cleavage with the 

small molecule N-[(3,5-Difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl 

ester (DAPT) [21]. Thus, we treated ESC-derived precardiac organoids with DAPT and 

analyzed the formation of the FHF and SHF through fluorescence flow cytometric analysis 

(Fig. 1C). Interestingly, we saw a significant decrease in SHF CPC formation in DAPT 

treated precardiac organoids when compared to controls (Fig. 1C). These results support our 

in vivo findings and suggest that noncanonical Notch activity inhibits SHF induction.

Previous studies have reported several factors regulating the two heart fields. While both 

FHF and SHF cells are regulated by FGFs [40,41] and BMPs [42], Wnt/β-catenin signaling 

was shown to selectively regulate SHF cells [26,43]. Given that noncanonical Notch 

negatively regulates Wnt/β-catenin signaling in a conserved fashion [16], we hypothesized 

that the decrease in SHF induction could be a result of a decrease in Wnt signaling. 

To test this, we treated ESC-derived mesodermal cells with DAPT during the cardiac 

induction period and performed a dual-luciferase TOPflash reporter assay to measure Wnt 

activity. The treatment greatly reduced Wnt/β-catenin activity (Fig. 1D), correlating with 

the decrease in SHF cells. These data suggest that noncanonical Notch signaling may 

suppress SHF formation via inhibition of Wnt/β-catenin signaling, and the suppression may 

be associated with the decreased number of cardiomyocytes observed in vivo.

Activation of noncanonical Notch in Nkx2.5+ CPCs leads to an increase in heart size

Wnt/β-catenin signaling was shown to have a biphasic role in cardiac development, 

promoting cardiac lineage commitment in early mesoderm while inhibiting cardiogenesis 

in later development [30]. Given the conserved interaction between noncanonical Notch 

and Wnt/β-catenin signaling, we tested whether noncanonical Notch signaling also plays 
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a biphasic role during cardiac development. To do this, we activated NICD in late CPCs 

with a Nkx2.5-Cre driver [34]. Surprisingly, in contrast to the early activation of NICD in 

precardiac mesoderm, the late activation resulted in a dramatic increase in heart size at E9.5, 

and was similarly enlarged in NICDOE embryos with simultaneous knockout of RBP-j (Fig. 

2A). Further examination of mutant embryos showed an increase in size of the left ventricle, 

a FHF-derived chamber. Transverse sections stained for the FHF marker Tbx5 showed an 

expansion of the left ventricle in NICD activated embryos (Fig. 2B), supporting this notion. 

We next looked at the functional capability of control and mutant embryos to circulate 

through embryo ink injection experiments.

Interestingly, we observed an decreased level of circulation in Nkx2.5-Cre NICDOE 

embryos in both RBP-j control and knockout conditions (Fig. 2C), suggesting impaired 

funcational capability of the heart or defective vasculature formation in NICDOE embryos. 

Taken together, these results support that NICD can play a stage-specific role in CPCs 

during cardiac development.

Discussion:

This study provides in vivo and in vitro evidence for distinct roles of a noncanonical 

Notch signaling pathway. Our findings suggest that noncanonical Notch signaling plays a 

biphasic role in CPCs through inhibition of the second heart field in early development 

and promotion of cardiomyocyte proliferation in later development. Given the involvement 

of Notch signaling in numerous developmental and disease processes, it would be of 

great importance to revisit its noncanonical roles and to determine its context-dependent 

interactions with Wnt/β-catenin signaling.
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Highlights

• Noncanonical Notch signals play stage-specific roles during heart 

development

• Activation of noncanonical Notch inhibits heart formation in early 

development

• Second heart field formation is disrupted in noncanonical notch activated 

embryos

• Activation of noncanonical Notch in cardiomyocytes increases heart size
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Figure 1. Noncanonical Notch inhibits heart development in Mesp1+ CPCs.
A. E8.5 embryos whole mount and transverse sectioning showing decreased heart size in 

NICDOE embryos, independent of RBP-j. Cardiac crescent (CC) develops normally, but 

looping heart (HT) with visible left ventricle (LV) and outflow tract (OT) are not present 

in mutant embryos (n=10). White scale bars represent 300μm. B. Relative gene expression 

of FHF/SHF genes from embryos dissected at E8.0. FHF marker Tbx5 shows no significant 

difference and FHF marker Gata4 shows a slight upregulation in NICDOE embryos. SHF 

markers Six2 and Tbx1 both show significant downregulation in NICDOE embryos (n=9). 

C. Representative flow cytometric analysis plots quantifying GFP+/RFP+ cells after DAPT 

treatment. Percentage of RFP+ (SHF) cells significantly decreases with DAPT treatment. D. 

DAPT treatment in CPCs during induction leads to decrease in Wnt activity.
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Figure 2. Noncanonical Notch increases heart size in Nkx2.5 CPCs.
A. NICDOE embryos show increased heart size independent of RBP-j. Of note, LV is 

enlarged in NICDOE embryos compared to control (n = 8/11; n = 6/9). White scale bars 

represent 300μm. B. Tbx5 staining reveals an expansion of LV in transverse sections of 

NICDOE embryos. White scale bars represent 300μm. C. Ink injection experiments show 

disrupted circulation in NICDOE embryos independent of RBP-j (n=10/12)
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