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Abstract

Savanna ecosystems are shaped by the frequency and intensity of regular fires. We
model savannas via an ordinary differential equation (ODE) encoding a one-sided
inhibitory Lotka—Volterra interaction between trees and grass. By applying fire as
a discrete disturbance, we create an impulsive dynamical system that allows us to
identify the impact of variation in fire frequency and intensity. The model exhibits
three different bistability regimes: between savanna and grassland; two savanna states;
and savanna and woodland. The impulsive model reveals rich bifurcation structures
in response to changes in fire intensity and frequency—structures that are largely
invisible to analogous ODE models with continuous fire. In addition, by using the
amount of grass as an example of a socially valued function of the system state, we
examine the resilience of the social value to different disturbance regimes. We find that
large transitions (“tipping”) in the valued quantity can be triggered by small changes
in disturbance regime.

Keywords Savanna - Resilience - Impulsive differential equations - Transient
dynamics - Bistability - Tipping points

1 Introduction

Given the ecological, economic and cultural value of savannas as well as their

precarious ecological role, savanna ecosystems are a frequent target of modeling inves-
tigations (Accatino et al. 2010; Batllori et al. 2015; Baudena et al. 2010; Beckage et al.
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2009; Djeumen et al. 2021; Goel et al. 2020; Patterson et al. 2020; Ratajczak et al.
2017; Schertzer et al. 2015; Staver et al. 201 1a; Tamen et al. 2016, 2017; Touboul et al.
2018; Wuyts et al. 2019; Yatat et al. 2018). In tree—grass—fire interaction models of
savanna ecosystems, the impact of fire on tree and grass biomass is often represented
as a continuous mortality in ordinary differential equation (ODE) models (Accatino
et al. 2010; Beckage et al. 2009; Djeumen et al. 2021; Staver et al. 2011a; Touboul
etal. 2018) and in spatial partial differential equations (PDE) models (Goel et al. 2020;
Wuyts et al. 2019; Yatat et al. 2018). Continuous fire is an obvious simplification, and
in this paper, we show that it is not equivalent to similar models with discrete fire.
Fire is also sometimes represented via a more complicated stochastically applied loss
term (Batllori et al. 2015; Baudena et al. 2010; Patterson et al. 2020). Stochastic loss
terms lead to some models that are difficult to fully analyze. However, Patterson et al.
(2020) shows that stochastic loss terms can be used to underpin continuum models,
giving a nuanced relationship between the two types of models.

In this paper, we use an impulsive modeling approach, where fire is imposed deter-
ministically as a discrete disturbance on the state of the system. This is similar to a
model presented in Tamen et al. (2016). This choice combines benefits (and shortcom-
ings) of continuous and stochastic fire models. The deterministic nature of fire in the
impulsive model makes the model more easily amenable to analysis. The assumption
of periodic fire remains a simplification. The discrete nature of disturbances in the
impulsive model and in some stochastic models mimics the difference in time scales
between fire and tree growth, and even between fire and grass growth. Moreover, the
discrete structure describes a fire disturbance more fully, making it possible to separate
the impacts of fire timing and fire intensity.

An impulsive differential equation has three parts: (1) a continuous differential
equation that governs the system except for at a sequence of discrete impulses; (2)
the impulse function describing the jumps or kicks in the state of the system; and (3)
impulse mechanisms that describe when the impulses happen, either at certain times,
at certain states or both (Roup et al. 2003). The impulsive differential equation in this
paper involves a Lotka—Volterra system with interacting grass and tree populations and
a periodic, state-dependent impulse mechanism to represent fires. In a non-impulsive
continuous system, long-term behavior may approach a fixed amount of trees and
grass. The system might also exhibit oscillations. In an impulsive system, the long-
term behavior is time periodic whenever the impulse is nonzero. For example, in this
model, we see the impulse of fire mortality, and then slower recovery of the grass and
trees. It is possible to think of the long-term behavior in the non-impulsive system
as capturing a time average that smooths out the rapid changes driven by impulses in
the impulsive system, or vice versa. For example, Tamen et al. (2016) work with a
dimensionalized version of the model in this paper, and they show that parameters of
the impulsive model can be adjusted so that the time average of the impulsive results is
a good representation of the mean fields for coexistence of grass and trees in a savanna
in three different regions of Cameroon.

Using a time periodic impulse makes it possible to analyze the impulsive differential
equation as a map from one post-kick state to the next post-kick state. We refer to
this map as a flow-kick map (Meyer et al. 2018). We refer to the set of parameters
describing the impulse as a disturbance regime. Figure 1 shows two time series for
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a one-dimensional impulsive differential equation. We see the flow (solid lines) and
proportional removal of the state (impulse/kick, dashed lines). A fixed point of the
flow-kick map (red disk in Fig. 1) corresponds to a periodic solution of the impulsive
differential equation (red line segment in Fig. 1). Time series and phase planes for a
two-dimensional impulsive system are shown in Fig. 2.

Observations suggest that savanna systems are vulnerable to woody encroachment
(Archer et al. 2016; Stevens et al. 2017), potentially shifting the system from a savanna
to a forest state, and reducing its value as rangeland for livestock. Studies on bistability
between savanna and forest (Staver et al. 2011a,b) suggest that fire is an important
mechanism in determining which state dominates. This raises concerns about the
resilience of the savanna ecosystem to differing fire disturbance regimes. Naively,
resilience of a valued state of a system to a change in parameters is linked to the
bifurcation structure of the system (Meyer 2016; Meyer et al. 2018). However, the
changes in long-term behavior that are identified via a bifurcation analysis may not
directly relate to aspects of the system that are targets for preservation or management
(Zeeman et al. 2018). A function of the system state that is of social value may be
a more appropriate focus for analysis. For example, the forage value of grass in a
savanna could be a conservation target. Such a socially valued function may respond
to the changes in system state that occur at bifurcations or may indefinitely remain
within a socially valued region even as the system undergoes a bifurcation. Bifurcation
analyses typically focus on long-term asymptotic limits of the system behavior. We
also include shorter-term transient behaviors in this resilience analysis, potentially
making it more relevant for decision support (Morozov et al. 2020).

In this paper, we introduce (Sect.2) and analyze (Sect.3) an impulsive savanna
model and then identify the resilience of high-grass states (Sect. 4). The model exhibits
three bistability regimes: savanna and grassland; high and low tree density savanna;
and savanna and woodland (Sect. 3, see Fig. 4 and Table 2). We use numerical methods
(Sect.2.2) to generate some bifurcation results (Sect. 3.1) and use analytical techniques
to extend the stability analysis of the system in the disturbance parameter space. Sec-
tion 3.2 contains analytical proofs which correct some erroneous results in Tamen et al.
(2016). We compare the bifurcation structure of the impulsive system to related con-
tinuous systems (Sect. 3.4) to show the intrinsic limitations of the disturbance regimes
in a continuous system. Using the amount of grass as a socially valued function of
the system state, we examine the resilience of that social value to varying disturbance
(Sect.4.2). At some locations in the parameter space, small changes in the disturbance
pattern lead to irreversible changes in the valued function. This could be considered
“tipping” (an irreversible change in state) and corresponds to woody encroachment
into the savanna. The mathematical results presented in Sect. 3 focus on long-term pre-
dictions of the model. By considering how these results apply on shorter timescales,
we make the analysis relevant to timescales of human management (Sect.4.3). Sec-
tion4.4 contextualizes the results of this model, and Sect. 4.5 offers future directions.
This work shows there is value in using deterministic discrete fire disturbance models
for insight into savanna mechanisms.
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Fig.1 The plot shows two time series, with different initial conditions, for an impulsive differential equation.
In this example, the state variable flows according to x = %x(] — x) for a period of one time unit. The
state variable then experiences an impulse (kick) proportional to its state at the end of the flow period,
Ax(ty) = x(t,?L )—x(t, ) = —0.3x(z,, ) with#,;, = n. The two time series are converging to an asymptotically
stable periodic solution of the impulsive system, which is shown in red on the phase line. The red dot denotes
the fixed point of the associated flow-kick map (color figure online)

2 Model and Methods

In this section, we introduce a Lotka—Volterra system along with an impulsive fire
disturbance. This system is closely related to the impulsive system introduced and
analyzed in Tamen et al. (2016, 2017). We also present the numerical methods we use
to identify fixed points and bifurcations of the impulsive system.

2.1 Impulsive Lotka-Volterra Model
2.1.1 Underlying Continuous Tree—Grass Dynamics

We consider a model, given in Eq. 1, based on a competitive Lotka—Volterra system
for trees, T, and grass, G, in a savanna. Competition is one sided, with competition
between trees and grass only affecting grass. G represents the biomass of grass, 7 the
biomass of trees, and ¢’ is time, measured in years.

dG =ycG |1 G GT
a e Ko YrG

dTr _ 11 T
de’ = Kr

K¢, Kt are the carrying capacities of grass and trees, respectively, yg, yr are growth
rates for grass and trees, respectively, and yr g, which we usually assume to be positive,
is the parameter associated with the one-sided inhibitory interaction on grass by trees.
The non-dimensionalized version of this system is given in Eq. 2.

ey

dx
T f,y)=x(1—-x—ay)

t 2)
dy (
ol glx,y)=3é8y(1—y)
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Table 1 Fixed points and their stability for the underlying Lotka—Volterra system, given in Eq.2

Fixed point Description Stability

(0,0) Desert state Unstable for § > 0

(1,0) Grass-only state Saddle for § > 0

O, 1) Forest-only state Saddle for§ > 0,0 < < 1
Stable for§ > 0,1 < «

(1—a,l) Forest—grass state Stable for§ > 0,0 <o < 1

Saddle for§ > 0,1 < «

This system never exhibits bistability. For « = 0.8,5 = 0.6 (the parameter set used in this paper), the
forest—grass coexistence state is the only stable fixed point of the underlying system. See Table 2 for the
wider range of stable and bistable states that exist in the impulsive system

In the non-dimensional system,x = G/Kg,y = T/K7,t = ygt',a = (Kryrc)/ve,
and 8 = yr/yc

We call Eq. 2 the underlying system. This one-sided Lotka—Volterra system has four
fixed points. The fixed points and their stability are shown in Table 1. We use @ = 0.8,
8 = 0.6 through the analysis in this paper. These choices of « and § correspond to the
parameter set in Figure 5C of Tamen et al. (2016).

2.1.2 Impulsive Fire Disturbances

To encode fire in the system, we use impulses, referred to as kicks. These instanta-
neously adjust the state of the system, representing the impact of fire. In the dimensional
system, the impulse occurs with a period of T’ years, which is equivalent to a period
of T = y¢ 1’ in the non-dimensional system.

The impact of fire on the grass state is modeled as a proportional kick, so that for
each fire, some proportion, k1, of the grass dies. The mathematical statement encoding
this impulse is given in Eq. 3.

Ax(nt) =x(ntt) —x(nt) = —kix(nt ") 3)

For the tree state, fire mortality is modeled as both proportional loss of the pre-fire
tree biomass, with proportion k3, and as dependent on the amount of grass that burns.
The maximum tree mortality would be ky y(nt ™), but it is modulated by a “switching
function," @ (k1x(nt ™)), that specifies a proportion of the maximum mortality that
will occur. The mathematical statement encoding this impulse is given in Eq. 4.

Ay(nt) = y(ntt) — y(nt7) = —ky w(kyx(nt ")) y(nt ") “4)
We use
%-2

where the parameter a acts as a threshold setting the transition from input values
associated with w < % to input values associated with w > % This means that when

w() = &)
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the amount of grass biomass burned, kjx, is less than a, the tree mortality is less
than half its maximum, so |Ay(nt)| < %kzy(nr’), while when k1x > a, the tree
mortality is more than half its maximum, |Ay(nt)| > %kz y(nt~). Weuse a = 0.08
for the analysis in this paper. Such a switching function is motivated by percolation
models for fire spread (e.g., Schertzer et al. 2015) and by empirical studies that show
fire incidence has a threshold dependence on flammable cover (e.g., Archibald et al.
2009).

Anexample of this system is given in Fig. 2. Subfigures A and B show time series for
the grass and trees from two different initial conditions. Subfigures C and D show the
phase portrait; Subfigure D also includes the basins of attraction for the different stable
periodic equilibria, and a “slow region" to which solutions converge quickly and then
move along more slowly. This slow region is determined by the stable and unstable
manifolds of the stable and saddle points, respectively. The method for determining
the basins of attraction and slow regions is given in Sect.2.2.

2.2 Numerical Methods

We simulate the kick-flow map in MATLAB using ode45 to numerically integrate
the differential equations from Eq.2 and then apply the kicks from Eqgs.3 and 4.
Stable fixed points can be found numerically by iterating the kick-flow map. We use a
maximum of 300 iterations or convergence of the map to within 1076 of the previous
step.

We can also simulate the system using MatContM. Within MatContM, we encode
the flow-kick map described in Sect. 2.1, rather than encoding a closed-form version
of flow-kick map (Eq.9). To compute fixed point continuations, identify bifurcations,
and continue bifurcation numerically, MatContM requires Jacobian, Hessian, and third
derivative information of the map Meijer et al. (2017). We generate these numerically,
by running the flow-kick map from perturbed initial conditions.

Fixed point continuations in MatContM are particularly useful for finding sad-
dle and unstable fixed points that we show in the phase portraits in Fig.2 and in
Appendix A. After finding a stable fixed point, we can continue the fixed point through
bifurcations to find the saddle and unstable fixed point curves. The variable step size
used by MatContM means that the fixed points for an exact parameter set might not
be included in the curve, so we use a Newton solver to find a fixed point specifically
chosen parameter values. For a saddle point, we then use the linearization of the map
(calculated numerically) to identify points near the stable and unstable manifolds.
We iterate points on the unstable manifold forward in time and the stable manifold
backward in time to find the boundaries of the slow region.

3 Results
In this section, we examine the bifurcation and stability structure of the model. We

look at this structure in the tkjk;-disturbance space, considering only changes to fire
intensity and frequency, and not changes to the underlying system. As shown in Tamen
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Fig.2 a shows the time series for x (grass) for two initial conditions of the impulsive differential equation.
The long-term flow-kick equilibria are marked on a phase line to the right. The forest-dominant state is
shown in light green and the grass-dominant in dark green. b shows the corresponding time series for y
(trees). ¢ shows the parameterization of these two time series in phase space, again for 30 iterations of the
flow-kick map. The dots denote fixed points of the flow-kick map, the curve along with the dot shows the
periodic equilibrium of the impulsive system, and the straight line shows the action of the kick. In phase
space, we observe rapid convergence to the unstable manifold of a saddle point, and slower movement along
that manifold. d shows the basins of attraction and the six equilibria in the system. There are three saddle
points: a forest-only state ((0, 1)), a periodic grass-only state, and a savanna state. There are two stable
attracting fixed points. (Both are tree—grass coexistence states.) The region associated with the unstable
manifold of the central saddle point is shaded a slightly darker color. Solutions converge quickly to this
region and more slowly evolve toward their respective attracting fixed point. See 2.2 for details on how the
basins of attraction were calculated. The disturbance parameter set used to generate this figure is k1 = 0.25,
ko = 0.6, and T = 2 (color figure online)

etal. (2016), for all values of k1, k2, and 7, two fixed points always exist at (0, 0) and at
(0, 1). At (0, 0), with both vegetation types extinct, the fixed point is unstable (saddle
or repellor). At (0, 1), the fixed point corresponds to a forest-only or woodland state,
where grass is extinct and trees are at their carrying capacity. Numerically, we find
there are up to four other fixed points in the system, depending on the disturbance
regime. See section Appendix A for detailed phase portraits of possible cases.

In changing the disturbance regime, we observe various bistabilities, one of which
was described in Tamen et al. (2016), and others that are novel. These bistabilities are
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not present in the underlying continuous system, or in the continuous analog to the
impulsive system (see Sects. 3.4 and 4.1). The bistabilities mimic ecological bistability
observations (Staver et al. 201 1b, a). In the model, there are a total of seven qualitatively
different stability and bistability regimes (see Fig.4). These different combinations of
stable grass-only, forest-only, and savanna coexistence states are shown in Table 2.

Using MatContM, we numerically identify the locations of transcritical and limit
point (saddle-node or fold) bifurcations. These bifurcations curves separate different
bistability regions. The curves are described in Sect.3.1 and shown in Figs.3 and 4.
In Sect.3.2, we use an algebraic condition that must be met when two fixed point
branches cross to identify analytic expressions for the transcritical bifurcation curves
that had been identified numerically in Sect.3.1.

3.1 Numerically Identified Bifurcations

Using the methods described in Sect. 2.2, we find two types of bifurcations: trans-
critical bifurcations and limit point bifurcations. There are three distinct transcritical
bifurcations in the systems, involving the origin, a forest-only fixed point, and a grass-
only fixed point. Their locations are challenging to identify numerically for small
values of . Analytic conditions for their locations are given in Theorems 1, 2, and
Theorem 3.1 of Tamen et al. (2016).

Figures 3b—d and 4 show transcritical bifurcation curves as a dashed black line,
a blue line, an a red line, respectively. The transcritical bifurcation depicted by the
dashed line is where a grass-only fixed point enters the first quadrant as a saddle. This
is the transition from region I to region II of Table 2. The blue curves show the location
of a transcritical bifurcation at (0, 1), where the forest-only state changes from stable
to saddle and a coexistence state enters the first quadrant as a stable fixed point. This is
the transition from region IV to region VII or region V to region VI of Table 2. The red
curves show the location of a transcritical bifurcation at (x,, 0) where the grass-only
state changes from saddle to stable, and a coexistence state enters the first quadrant
as unstable fixed point. Regions IV, VII, VIII of Table 2 are inside the closed red loop
made by cross sections of this bifurcation surface.

In addition, we identify limit points curves. The locations of these curves from
numerical continuation are shown in black (solid lines) in Figs. 3b—d and 4. The fixed
points associated with the limit point curve contradict the claim of a unique savanna
tree—grass coexistence fixed point in Tamen et al. (2016). Regions V, VI, and VII each
have more than one savanna tree—grass coexistence fixed point.

3.2 Bifurcation Theorems

In Theorems 1 and 2, we find analytical expressions for a necessary condition for tran-
scritical bifurcations at the grass-only and forest-only fixed points. These conditions
are related to conditions presented in Tamen et al. (2016), match our numerical results
for the bifurcations, and make it possible to identify the locations of bifurcations close
to k1 = v = 0. The methods of proof are also based on ideas in Tamen et al. (2016).
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Fig. 3 a shows bifurcation surfaces in disturbance space (ki, k7, t-space) for three analytically derived
bifurcations. The transcritical bifurcation where a non-trivial grass-only fixed point, a grassland state,
comes into existence as a non-attracting state (Eq. 7) is shown in gray. The red surface shows the transcritical
bifurcation between a grass-only fixed point and a tree—grass coexistence fixed point (Eq. 8), which can be
thought of as a savanna state. In blue is the transcritical bifurcation between a forest-only fixed point and a
tree—grass coexistence fixed point (Eq. 13). Note that both the grass-only bifurcation and forest to savanna
bifurcation points are not dependent on k. Figures b, c, d show cross sections of these surfaces, along
with numerically determined limit point bifurcations for these values of the parameters. b Cross section
when k1 = 0.6. A co-dimensional two-bifurcation point, specifically a cusp point, is marked with a asterisk
and labeled CP. ¢ Cross section when kp = 0.8. Again, a cusp point appears in the cross section. d Cross
section when T = 1.75. The limit point and transcritical bifurcation curves divide disturbance space into a
large number of regions, where each region has qualitatively distinct dynamics. See Table 2 for additional
information (color figure online)

In part of the kjkt-parameter space, (0, 0) and (0, 1) are the only fixed points of
the system in the invariant first quadrant R>o x Rx¢. This is region I in Fig.4 and
Table 2. For parameter sets that meet a grass existence condition, there also exists a
fixed point of the flow-kick map at

(xg,0) = <ﬂ7 o) ) (6)

1—e7
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This fixed point crosses into positive x through a transcritical bifurcation when
ki=1—¢" @)

(see Theorem 3.1 of Tamen et al. 2016). When ky < 1 —e™ 7, x, is in R>p x Rx,
giving at least three fixed points of the system. This condition is shown as a gray
surface in Fig. 31 and as a dashed black line in Fig. 3b—d.

The following two theorems give necessary conditions for tree—grass savanna coex-
istence fixed points where both x and y are nonzero.

Theorem 1 A necessary condition for a transcritical bifurcation associated with a
grass—tree coexistence fixed point crossing into the first quadrant is met when

kixg
11—k

1= (1 — ko (&) =0, with &y = forky <1—e T, ®

at the point (xz,‘, 0) where (x;, 0) is of the form in Eq. 6 and w(.) is defined in Eq.5.

Proof Let ®(x, y, ki, k2, T) be the flow-kick map such that

Xn+1 | _ _ UG, yn)
] == [Vann) ®

We assume that k; < 1 — e~ *. From Eq. 6, a grass-only fixed point (x,, 0) is defined
by

_y O_l—(l—kl)er

Yo = Ul O = =7 (10)

0 = V(xg,0)

A transcritical bifurcation occurs when the grass-only (xg, 0) branch crosses a
branch of fixed points of the form (x*, y*) with y* not uniformly zero. In other words,
near the transcritical bifurcation, y — V(x, y) = 0 has a y = 0 root, corresponding
to the (xg, 0) branch, and a root with y almost always nonzero, corresponding to the
(x*, y*) branch. The transcritical bifurcation occurs when these two branches cross so
that the y = O root of y — V (xg, y) = 0 has multiplicity two. We construct a function
h(y) that reduces the multiplicity of the y = 0 solution.

Let h(y) — y = V('xg’ y) -1 V()Cg, )’)

y
V(x,y) and h(y). By integrating Eq.2, and incorporating the impulses from Eqs.3
and 4, we find

=0. We give explicit formulas for

8T

y X
here £ = kj——. (11
TFoy(—1 1 ooy Whered =kig— - (D

Vix,y) = (1 - ko))
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: 1 —(1—kpe"
Given x; = ———————, h(y) becomes
1—e?
V (xg, T (1 —k 1— (1 —kp)et

hy) =1 — (g 9) _ flf ( 2w($§z) where &, = ki (t De’

+ §y(—1 4 €°7) (1—e )(1—k1()12)
. 7 (1 — k(&) — 1
Setting Eq. 12 to zero, we find aroot of 2(y) = Owheny = 51 1o
—1l+e

This crosses y = 0 when %7 (1 - kza)(sg)) — 1 =0, giving a repeated root y = 0 to
the equation y = V (x,, y). Thus, &7 (1 — kza)(ég)) — 1 = 0is a necessary condition
for a transcritical bifurcation. O

The bifurcation condition in Theorem 1, conditioned on the grass-only fixed point
being in R x R>0, is shown as a red surface in Fig. 3a and as ared curve in Fig. 3b—d.
The condition in Theorem 1 is associated with a change in stability of the grass-
only fixed point, and with a grass—tree coexistence fixed point entering or leaving
Rxo x Rxp.

Theorem 2 A necessary condition for a transcritical bifurcation associated with a
grass—tree coexistence fixed point crossing into the first quadrant at (0, 1) is met when

1+ 1797 (<1 4 k) = 0. (13)

Proof For all values of the disturbance parameters, (0, 1) is a forest-only fixed point

of the system, i.e., there is a forest only fixed point when
0=U0(@,1)

{ 1=V(©O,1) (14

A transcritical bifurcation involving the forest-only state occurs when the (0, 1)
branch of fixed points crosses a branch of fixed points of the form (x*, y*) with x*
not uniformly zero. Near the transcritical bifurcation x — U(x,y) = Ohasax =0
root, corresponding to the (0, 1) branch, and a root with x almost always nonzero,
corresponding to the (x*, y*) branch. The transcritical bifurcation occurs when these
two branches cross so that the x = 0 root of x — U(x, 1) = 0 has multiplicity two.
We construct a function g(x) that reduces the multiplicity of the x = 0 solution.

x—U(x,1) U(x, 1)

Letg(x) = =1-

X
and g(x) Setting y = 1, integrating Eq.2, and incorporating the impulses in Eqgs.3
and 4, we find

=0. We give explicit formulas for U (x, 1)

(A —a)e (1 —kp)x
Ux, 1) = Ty ————T (15)

Then,
Ux, 1) _ (1 — a)e1=91(1 — k)

X B l—a—l—x(e(l*"‘)’—l)

g) =1- (16)
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Table 2 The non-trivial fixed points and their stabilities for all eight regions from Fig. 4 are shown here

Region Tree-only fixed point Grass-only fixed point Coexistence fixed points
1 o stable - -

I o Stable Saddle -

1T Saddle Saddle o Stable

v o Stable o Stable Saddle

A% o Stable Saddle o Stable, saddle

VI Saddle Saddle oStable, o Stable, saddle
VII Saddle o Stable o Stable, saddle

VIII Saddle o stable -

There are three types of fixed points: tree-only (forest) at (0, 1), grass-only (grassland) at (xg, 0) where xg
is determined as in (6), and coexistence (savanna) fixed points with non-trivial values of both x and y. The
coexistence values can range greatly in x and y and are examined further in the discussion. Additionally,
this table shows there are four different types of bistability in this model (regions and bistable points
are in bold): forest—grassland (region IV), forest—savanna (region V), savanna—savanna (region VI), and
grassland—savanna (region VII)

Setting Eq. 16 to zero, we find x = 1 — 1= (] — k) is aroot of g(x) = 0. This
crosses x = 0 when 1 — ¢1=®"(1 — ky) = 0, giving a repeated root x = 0 to the
equation x = U (x, 1). Thus, 1 — e{1=9"(1 — k1) = 0 is a necessary condition for a
transcritical bifurcation. O

Note that in Theorem 2, we show that the location of the bifurcation curve varies
with the indicators of fire intensity for grass, k1, and fire frequency, t, but does not
depend on the indicator of fire intensity for trees, k3.

The bifurcation condition in Theorem 2 is shown as a blue surface in Fig.3a and
as a blue curve in Fig.3b—d. Crossing this condition is associated with a change in
stability of the forest-only fixed point, and with a grass—tree coexistence fixed point
entering or leaving R>¢ x R>g.

3.3 Stability Diagrams

Examining the impact of different disturbance regimes on the long-term behavior of
the system involves varying k1, kp, T. The possible long-term behaviors of the system
are summarized in the stability diagrams shown in Fig. 4 and in Table 2. In the figure,
each stability region is labeled with a numeral and colored dots showing which fixed
points are stable. Table 2 gives a full description of all fixed points (stable or unstable)
in each stability region. A representative phase portrait for each region of ki t-space
for ko = 0.6 and of kjt-space for kp = 0.8 is included in Appendix A and in Figs. 8
and 9, respectively.

In Fig.4, we show diagrams in kjt-space for four values of ko where k; is the
potential maximum impact of the fire on the tree population. At low potential impacts
(ko = 0.2), in Fig. 4a, no bistability regions exist, meaning there is a unique long-term
behavior at each k1 T parameter set. Region III has a tree—grass coexistence fixed point
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Fig.4 These stability diagrams show transcritical and limit point bifurcation locations, as well as the type of
stable fixed point(s) in each regions, in the tkj-parameter space for k = 0.2, 0.4, 0.6, and 0.8 ina, b, c, d,
respectively. See Table 2 for a list of fixed points in each stability region. a ko = 0.2. The dashed black curve
is a transcritical bifurcation of the origin (a zero biomass state) and a grass-only fixed point at (xg, 0) as
given in (7). The blue curve is a transcritical bifurcation of the forest only state with a coexistence (savanna)
state. At this curve, we see the stable forest from above has switched to a stable coexistence savanna state
below. These two curves do not depend on k7 and appear in b, c, and d as well. For any parameter set, there
is one stable fixed point for ko = 0.2. b ky = 0.4 For kp > 0.349, the red surface in Fig. 3a will occur as the
red bifurcation curve. Along with a small limit point curve shown in black, this grass bifurcation gives two
new stability regimes, both of which have bistability. ¢ k; = 0.6 As k> increases, the limit point and grass
(red) bifurcation curves encompass a larger region of parameter space. Because they cross the blue (forest)
bifurcation, there are two additional stability regimes, which both have bistability. One includes two stable
coexistence states. d kp = 0.8 The limit point curve has changed shape adding one more stability case.
Figures 8 and 9 give examples of phase portraits for each stability region in figures ¢ and d (color figure

online)

as the long-term behavior, while other regions have a forest-only state as the long-term
behavior.

The existence of the grass-only bifurcation curve and limit point curves at higher
values of k; corresponds to bistable regions of parameter space, where there are mul-
tiple possible long-term behaviors for the system, based on its initial state. The size
of the bistable region in k1 T-space increases as k> increases. These bistability regions
can involve many different pairings of alternative stable states. We see bistability of
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grass-only and forest-only states (region IV), of grass-only and tree—grass coexistence
states (region VII), of forest-only and tree—grass coexistence (region V), and of two
distinct tree—grass coexistence states (region VI). Fire frequency can be a determinant
of which states are bistable. A forest state is bistable with a grass-only state with more
frequent fires (smaller values of 7), as seen in region IV. It is bistable with a tree—grass
coexistence (savanna) state with less frequent fires, as seen in region V. In the context
of this model, observing a forest state, one would need to determine the disturbance
regime to know the other possible stable state.

3.4 Derivation of Analogous Continuous System

We derive a continuous system in the limit of small frequent disturbances. Many
models of savanna ecosystems use this kind of simple disturbance regime, rather than
using an impulsive disturbance model (Accatino et al. 2010; Beckage et al. 2009; Staver
et al. 2011a; Touboul et al. 2018). By building a comparable continuous system, we
are able to show that many of the bistability and coexistence cases that exist in our
discrete model are not present in its continuous analog.

We compare systems with discrete disturbance to a system with continuous distur-
bance by considering the average disturbance over a period of time, and holding this
constant. Fix r; = kj/t, a measure of fire intensity, in a fixed ratio as T — 0. This
measure increases with increasing ki, the proportion of grass biomass that burns. It
also increases with more frequent fires, corresponding to decreasing t.

Lemma 1 Forthe impulsive model defined by Egs. 2, 3, 4, the continuous analog system
generated by fixed fire intensities r1 = k1/t andro = ka /7T is

dx
— =x(1—-—r—x—ay)
dt
0 (17
— =6y(1l —y).
& yd =y
Proof Let ®(x, y, ki, k2, T) be the flow-kick map such that
Xn+1 U(xn, yn)
= & (x,, = . 18
|:yn+1i| (Xn, yn) I:V(x}’l’ .Yn)i| (18)

To find the continuous system, we take the limit of the difference quotient as 7 — 0

dx Ux,y)—x
m—

Fris)
T—> T

19
dy i Vix,y) =y e
dr —0 T

U and V are the flow-kick map associated with Eq. 2 and the disturbances in Egs. 3
and 4. Their Taylor expansions are given by U (x, y) = (x+7 f (x, y)+O(t?))(1—k})
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and V(x,y) = (y + 18(x, y) + O(t)) (1 — kaw (ki (x, y)), with f, g from Eq.2
and ¢ the flow associated with f. We have

U,y —x . (+Tf, ) +0E)U —ri7) —x
lim ————— = lim
=0 T =0 T
=—”1X+f(x’)’)
and
hn YD =y 07000+ 0E?) (= nTe@iTéd(x, ) — Y
im ———— = lim
t—>0 T T—0 T
=g(x,y) —rnw0)y
=g(x,y)

The analogous continuous disturbance system is thus

dx
— =x(1—-r—x—ay)
g; (20)
— =45y(l — y).
i y(1 =y
O

The impact of fire manifests as a —rjx term in the grass dynamics and does not
appear in the tree dynamics. This is because the argument to w(.) is k1 x, and we have
assumed k; — Oast — 0.

However, if we do not consider the analogous continuous disturbance, but instead
look for a continuous system that is more structurally analogous to the flow-kick
system, we can assume the fire impact is row (x), where r, = ky /7 is held in a fixed
ratio, so that tree mortality is dependent on the amount of grass present. In this case,

we find
dx
=x(1—ri—x—ay)

dr Q1)

d
d—f = 5y(1 — y) — Rw())y.

In addition, we can assume the fire impactis row (r1x), where ro = ko /T, rl = ki /7
are held in a fixed ratio, so that tree mortality is dependent on the amount of grass
burned (r1x). Then, the continuous system is

dx
m =x(l—ri—x—ay)

d; (22)
Pl Sy(1 —y) —rw(rix)y.

This system has a similar @ input to the flow-kick system (although it is not the
continuous analog of that system).
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Fig. 5 a shows the bifurcation structure for Eq.21, where the continuous tree disturbance is given by
—rpw(x), while b shows the bifurcation structure for Eq. 22, where the continuous tree disturbance is given
by —rpw(r1x). The dashed black line indicates the transcritical bifurcation where a non-trivial grass-only
fixed point comes into existence, the red curve is the transcritical bifurcation marking the grass-only to
coexistence transition, and in blue the transcritical bifurcation marking the transition from stable forest to
stable coexistence. Note that both the grass-only branch and forest to coexistence transcritical bifurcations
are not dependent on rp. The black curves correspond to saddle-node or fold bifurcations. These figures
can be compared to Fig. 3d, the k1 kp-cross section, with fixed 7, of the full impulsive system (color figure
online)

The system in Eq. 20 is a one-sided Lotka—Volterra system with very similar dynam-
ics to the original underlying system. It does not show the new behaviors that are
present in the impulsive system. The bifurcation structure in the ryr-plane is shown
for Eq. 21 in Fig. 5a and is shown for Eq. 22 in Fig. 5b. Comparing Figs. 5b to 3b, these
bifurcation curves are analogous to the bifurcations seen in the k1k;-plane at a fixed
value of t. Note that the small difference between these systems (w(x) vs @ (r1x) in
the fire disturbance) leads to large qualitative differences in the bifurcation structure.
These systems are discussed further in Sect. 4.1 of the discussion.

4 Discussion

We have presented a complete bifurcation analysis in disturbance parameter space
for a simple impulsive model of a savanna. We find numerous regions of bistability,
including different pairs of bistable states. We also find bifurcation curves that are
bounded away from the origin in disturbance space, meaning that they only occur
in the impulsive version of the model. The complexity of the stability diagram in
Fig.4d shows that substantial variation can occur in the long-term behavior with small
differences in disturbance parameters.

In this discussion, we compare the predictions of this model to those of related con-
tinuous models. We also examine the resilience of the savanna ecosystem to different
disturbance regimes. Using a socially valued function of the system state, we assess the
impact of small changes in the disturbance regime on the socially valued quantity. We
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also consider whether this analysis, which is focused on long-term behavior, extends
to predictions relevant on shorter timescales.

4.1 Comparison to Continuous System

The continuous system in Eq. 20 is directly analogous (via a small fire interval limit) to
the flow-kick system. This continuous analog system has Lotka—Volterra-type behavior
and exhibits none of the bistability of the flow-kick system. However, by trying other
versions of the continuous fire disturbance that include a Hill function, as in Eqs. 21 and
22, we are able to find bifurcations similar to those seen in the k1 k>-plane (for fixed )
in the flow-kick system. These continuous systems do not have a direct mathematical
relationship to the impulsive system that we investigated. Note that Eq. 22 is closest
to those in the literature. For example (Staver et al. 201 1a; Touboul et al. 2018), both
make use of a Hill function with argument of only the amount of grass present in the
system, similar to w(x). (This is used to temper the growth of tree saplings to adult
trees, based on the assumption of greater mortality due to fire of saplings compared
to trees.)

The similarities between the bifurcation structure of Eq. 22 (see Fig. 5) and the flow-
kick system suggest that the dynamical roles of 71 and r; in these continuous systems
are similar to those of k1 and k>. However, r; and r; ostensibly combine fire intensity
and frequency in a single variable. Based on this comparison of bifurcation structures,
capturing the impact of fire frequency seems to require using the full impulsive system,
rather than a continuous variant.

4.2 Resilience Analysis

One motivation for studying a savanna ecosystem via a model is to identify how
vulnerable the system would be to changes, such as increased fire intensity or increased
fire frequency, that may be associated with climate change or other forcing. We use the
term resilience to refer to the effect of a change in disturbance on some valued aspect
of the system. There are a number of ways to assign value to an ecosystem. Some
of these valuations are functions of the system state; we call such functions socially
valued functions. To examine resilience, we study how a socially valued function of
the system state will vary with changes in fire disturbance parameters. In our example
below, we will show that small changes in the fire intensity or fire frequency lead to
irreversible changes in the amount of grass, x, present in the system, meaning that this
socially valued function is not resilient to those small changes in disturbance.

The amount of grass, x, may be of interest when a savanna is being valued for its
grazing potential. We choose to use the long-term value of x just before the disturbance
is applied as a measurement of the amount of grass. Other choices, such as time-
averaging over acycle, or using the amount of grass just after the disturbance is applied,
would yield a qualitatively similar analysis. Rather than assigning a social value, f(x),
we set the social value to x itself for this example. At disturbance parameter sets with
bistability, we choose the highest grass state available as the social value. The socially
valued state is shown in Fig. 6a.
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0 0.2 0.4 0.6 0.8 1 T k

Fig. 6 a The amount of grass, x, associated with a stable fixed point of the system is indicated by color
(see legend). The region of the space with bistable fixed points is shaded slightly gray and surrounded by
the black lines and red curve. In this bistable region, there are two potential grass values, and the color
corresponds to the higher grass value. b This is a bifurcation diagram in 7 for k& = 0.2 and k» = 0.6.
The values of x (grass) associated with stable fixed points are shown in green and associated with saddle
points in dashed black. The sharp transition between high- and low-grass values that is visible along the
black limit point curve in (a) corresponds to the limit point bifurcation at ¢ = 1.49 in (b). Crossing this
transition by increasing t, starting from a high grass state (for fixed k1 and k3 ), would be irreversible, with
x remaining in the low-grass state when t returned to a value below the limit point. ¢ This is a bifurcation
diagram showing x and k| for T = 2 and kp = 0.6. Similarly to (b), a green curve denotes the x value
for stable fixed points and black denotes it for saddle points. Also, similarly to (b), adjusting k1 (the fire
mortality of grass) in either direction with t and k» fixed, starting from the high-grass state, would result
in a transition to a low-grass state. That transition would not reverse if the parameter value was restored to
its original value (color figure online)
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Fig.7 We examine the difference between long-term behavior and shorter-term behavior by comparing the
equivalent of 30 years of flow-kick iterations to the limiting behavior of the system as time goes to infinity.
a For each disturbance parameter set (ko = 0.6, k1, T vary), we consider all initial conditions within the
basin of attraction for the long-term state shown in 6a. We find the proportion of initial conditions that have
a grass value after 30 years that is within 5% of the long-term value. The colormap indicates this proportion.
b Using the same set of initial conditions as in (a), we calculate the distance between the 30 year grass value
and the long-term value. The colormap indicates the mean value of these distances (color figure online)

Of note in this figure is the stark transition from low to high social value along
the curve of saddle-node bifurcations to the left of the cusp point. In Fig.6b and c,
we provide bifurcation diagrams that illustrate a sharp transition in the social value
that is not reversible. For example, starting at a fire interval of ¢ = 1 and increasing
the fire interval to T = 2 lead to a marked decrease in x. Returning to 7 = 1, the
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social value is trapped on the lower curve, where x = 0, so value is not restored.
This irreversibility is more extreme than hysteresis, as the valued state of the system
is simply not accessible via adjusting the fire interval.

For this example of a socially valued function (the amount of grass), the bistability
region defines a disturbance parameter space within which the socially valued function
exhibits resilience to parameter variation. The system state is not resilient to a shift
that leads to a disturbance regime outside of bistability region, in that restoring the
old disturbance regime does not restore the system state. Under this model, woody
encroachment due to a change in disturbance would require more than just restoring
the original fire regime. It would also require actively removing trees and promoting
grass to return the system to the basin of attraction of the high-grass state.

4.3 Analyzing the System on Decadal Timescales

Our previous analysis in this paper has relied upon identifying the long-term behav-
ior of the system. However, we must take into account the possibility of transient
timescales (Morozov et al. 2020) as the timescales of interest for savanna manage-
ment are not infinite. Here, we consider a 30-year timescale to examine the relationship
between medium-term transient behavior (the 30-year behavior) and the long-term
behavior of the system. We see that for k; = 0.6, in the majority of tk;-parameter
space, the 30-year transient behavior varies minimally from the long-term behavior,
with the exception of parameter sets near the bifurcation curves where dynamics are
naturally slower.

In Fig.7, there are two visualizations comparing the highest pre-kick grass value
in a periodic equilibrium of the impulsive system with the highest grass value after a
decadal timescale close to 30 years. Thus, we can conclude that the long-term behavior
analysis (which is easier to compute) gives a good proxy for a shorter time transient
analysis in this model.

4.4 Contextualization of Results

In this section, we compare the results of our model to other models cited in this paper.

In field observations, savanna systems exhibit bistability between attracting states
and have an attracting tree—grass coexistence state (Staver et al. 2011a,b). In modeling
efforts from the early 2000s that were working to capture these observations, Beckage
et al. (2009) conclude that a grass—fire feedback in a two- or three-species ODE model
does not lead to a stable savanna state where trees and grass coexist. Rather, using
a savanna tree—fire feedback stabilizes a savanna state in their three-species system.
Accatino et al. (2010) incorporate soil moisture, along with a fire term, to stabilize a
savanna state in a three-dimensional model with two plant species and soil moisture. In
this work, we find that a two-species tree—grass interaction model has stable savanna
states with the introduction of impulsive disturbances.

In addition finding mechanisms that generate a stable savanna state, savanna mod-
eling efforts also focus on capturing bistabilities in the system. For example, Staver
et al. (2011a) use observations to calculate aerial tree cover in proportion to aerial
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grass cover in savanna regions. They find that savannas and forests exist as alternative
stable states and use a three-species ODE model to capture this result. Other papers
generate similar bistability results using stochastic fire feedbacks (Batllori et al. 2015;
Baudena et al. 2010). Some stochasticity, e.g., Patterson et al. (2020), is also captured
by continuum models like those in Staver et al. (2011a) and Touboul et al. (2018).
The impulsive model presented in this paper not only has forest—savanna bistability,
but forest—grassland bistability and bistability between woodier and grassier savanna
coexistence states. Similar modeling work that uses a different parameterization of the
impact of fires on trees, so as to capture age effects in a two-species model (Djeumen
et al. 2021; Tamen et al. 2017), shows it is possible to generate a similar diversity of
bistabilities with a somewhat different disturbance regime.

Spatially homogenized models, either continuous or stochastic, capture a mean-
field average of trees and grass over the whole area of a savanna. Some, like the
model in this paper, focus on biomass, while others model the fraction of coverage for
different plants. In contrast, spatially extended models have the potential to capture
patterns of trees and grass within the savanna, as well as the boundaries between
savanna and forest (Wuyts et al. 2019; Yatat et al. 2018). For example, in Goel et al.
(2020), Goel et al. create a reaction—diffusion model which reflects natural biome
boundaries between savanna and forest and conclude that biome recovery may be
easier in a spatially extended model than it is in a non-spatial model. This is in stark
contrast to the stronger-than-hysteresis tipping that we show exists in the impulsive
model explored in this paper (see Fig. 6).

4.5 Future Work

This analysis of a simple one-sided Lotka—Volterra interaction with an impulsive
disturbance focused on bifurcations in the disturbance space. Understanding sensitivity
of the predictions of the model to the structure of the underlying Lotka—Volterra
interaction, including to parameters in that system, would extend these results to a
broader range of savanna systems. In addition, it would make it possible to separately
assess the robustness of model predictions in the face of structural model errors, which
are inevitable in ecological modeling.

It would be possible to focus further work using this model on questions of woody
encroachment, as transitions between grassy and woody states are observed in the
model. Creating a spatially extended impulsive model could also be of interest, partic-
ularly in light of the ease of biome recovery in spatial models. In addition, the analysis
of transient behaviors could be placed within a more general framework. Given that
many analyses focus on long-term behavior, expanding tools for understanding tran-
sient would be worthwhile.
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Appendix A: Phase Portraits

We construct a representative phase portrait for each region of Figs.4c, d. We use
a = 0.8, = 0.6, a = 0.08 and indicate the values of k;, k2, T in the title of each
phase portrait. Phase portraits for kp = 0.6 are shown in Fig. 8, and phase portraits for
ko = 0.8 are shown in Fig. 9. Fixed points are indicated by filled circles. Red circles
are used for repelling fixed points, gray for saddle fixed points, and shades of green
are used for stable fixed points. The entire periodic equilibrium is shown as a curve
attached to the flow-kick map fixed point.

Saddle fixed points have associated stable and unstable manifolds. The stable mani-
fold forms a basin boundary between different basins of attraction in the phase portrait.
Orbits of the flow-kick map quickly collapse to the unstable manifold, so most evolu-
tion of the system is along this manifold. The flow region associated with the manifold
is the shaded region in the center of each phase portrait.
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Fig.8 Phase Portraits for stability regions with k» = 0.6. The figures are described in the text of Appendix
A (color figure online)
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Fig.9 Phase portraits for stability regions with kp = 0.8. The figures are described in the text of Appendix A

(color figure online)
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