Skip to main content
. 2021 Jul 26;22(10):1597–1608. doi: 10.3348/kjr.2020.1314

Table 3. Application of Deep Learning for Image Segmentation in Cardiovascular CT.

Study Year Development Dataset CT Scans for Test (n) Performance, Dice Coefficient Network Target of Segmentation/Modality for Prediction
Trullo et al. [34] 2017 Nonenhanced chest CT 30 0.91 FCN Heart, thoracic aorta/nonenhanced chest CT
Commandeur et al. [16] 2018 Nonenhanced cardiac CT 250 0.82 Multi-task CNN (ConvNet) Epicardial adipose tissue, paracardial adipose tissue, thoracic adipose tissue/ nonenhanced cardiac CT
Jin et al. [18] 2017 CCTA 150 0.94 FCN Left atrial appendage/CCTA
López-Linares et al. [15] 2018 Aorta CT angiography 13 0.82 FCN Postoperative thrombus after EVAR/aorta CT angiography
Cao et al. [38] 2019 Aorta CT angiography 30 0.93 FCN (3D U-Net) Whole aorta, true lumen, false lumen/aorta CT angiography
Morris et al. [35] 2020 Paired CT/MRI data 11 0.88 FCN (3D U-Net) Cardiac chambers, great vessels, coronary artery/nonenhanced CT for simulation
Baskaran et al. [4] 2020 CCTA 17 0.92 FCN (3D U-Net) Cardiac chambers, LV myocardium/CCTA
Bruns et al. [36] 2020 CCTA (dual-energy set) 290 0.89 3D CNN Cardiac chambers, LV myocardium/nonenhanced cardiac CT
Chen et al. [31] 2020 CCTA 518 - CNN Left atrium/CCTA
Koo et al. [17] 2020 CCTA 1000 0.88 FCN LV myocardium/CCTA

CCTA = coronary computed tomography angiography, CNN = convolutional neural network, CT = computed tomography, D = dimensional, DC = dice coefficient, EVAR = endovascular aneurysm repair, FCN = fully convolutional neural network, LV = left ventricle