Table 3. Application of Deep Learning for Image Segmentation in Cardiovascular CT.
Study | Year | Development Dataset | CT Scans for Test (n) | Performance, Dice Coefficient | Network | Target of Segmentation/Modality for Prediction |
---|---|---|---|---|---|---|
Trullo et al. [34] | 2017 | Nonenhanced chest CT | 30 | 0.91 | FCN | Heart, thoracic aorta/nonenhanced chest CT |
Commandeur et al. [16] | 2018 | Nonenhanced cardiac CT | 250 | 0.82 | Multi-task CNN (ConvNet) | Epicardial adipose tissue, paracardial adipose tissue, thoracic adipose tissue/ nonenhanced cardiac CT |
Jin et al. [18] | 2017 | CCTA | 150 | 0.94 | FCN | Left atrial appendage/CCTA |
López-Linares et al. [15] | 2018 | Aorta CT angiography | 13 | 0.82 | FCN | Postoperative thrombus after EVAR/aorta CT angiography |
Cao et al. [38] | 2019 | Aorta CT angiography | 30 | 0.93 | FCN (3D U-Net) | Whole aorta, true lumen, false lumen/aorta CT angiography |
Morris et al. [35] | 2020 | Paired CT/MRI data | 11 | 0.88 | FCN (3D U-Net) | Cardiac chambers, great vessels, coronary artery/nonenhanced CT for simulation |
Baskaran et al. [4] | 2020 | CCTA | 17 | 0.92 | FCN (3D U-Net) | Cardiac chambers, LV myocardium/CCTA |
Bruns et al. [36] | 2020 | CCTA (dual-energy set) | 290 | 0.89 | 3D CNN | Cardiac chambers, LV myocardium/nonenhanced cardiac CT |
Chen et al. [31] | 2020 | CCTA | 518 | - | CNN | Left atrium/CCTA |
Koo et al. [17] | 2020 | CCTA | 1000 | 0.88 | FCN | LV myocardium/CCTA |
CCTA = coronary computed tomography angiography, CNN = convolutional neural network, CT = computed tomography, D = dimensional, DC = dice coefficient, EVAR = endovascular aneurysm repair, FCN = fully convolutional neural network, LV = left ventricle