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Abstract
We describe a case of a boy with neurodevelopmental delay and a diffuse large B-cell lymphoma (DLBCL) in whom we 
discovered a germline de novo 2p16.3 deletion including MSH6 and part of the FBXO11 gene. A causative role for MSH6 
in cancer development was excluded based on tumor characteristics. The constitutional FBXO11 deletion explains the 
neurodevelopmental delay in the patient. The FBXO11 protein is involved in BCL-6 ubiquitination and BCL-6 is required 
for the germinal center reaction resulting in B cell differentiation. Somatic loss of function alterations of FBXO11 result in 
BCL-6 overexpression which is a known driver in DLBCL. We therefore consider that a causative relationship between the 
germline FBXO11 deletion and the development of DLBCL in this boy is conceivable.
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Introduction

Cancer in childhood is mostly sporadic, but in an estimated 
6–10%, a genetic predisposition plays an important role 
[1–3]. Many of the children with underlying germline muta-
tions have additional syndromic features, but the exact pro-
portion of children with a cancer predisposition syndrome 
(CPS) is unknown. The identification of novel predisposing 
genes is an ongoing process [4, 5].

It is often challenging to discover or confirm the causal 
link between a (new) germline pathogenic variant in a gene 
and tumor development in an individual. Especially rare 
genetic syndromes with low penetrance for cancer are dif-
ficult to identify as a CPS. Examples are Weaver syndrome, 
caused by pathogenic variants in EZH2, and the Diets-Jong-
mans syndrome, caused by pathogenic variants in KDM3B 
[6–9]. Large case series are necessary to provide sufficient 
evidence that these patients indeed have an increased risk for 
tumor development. However, a first suspicion of a causative 

correlation often starts with cancer in a single case com-
bined with knowledge of somatic cancer driving alterations 
in the gene of interest.

In this case report we describe a boy with developmen-
tal delay and a diffuse large B-cell lymphoma in whom we 
identified a de novo germline 2p16.3 deletion (134.1 kb), 
including MSH6 and part of FBXO11. The developmental 
delay can be explained by the FBXO11 deletion [10, 11]. 
We interrogate the role of this germline deletion in cancer 
development in this boy.

Case report

The patient is a 5-year-old boy who was born after an 
uncomplicated pregnancy and delivery. His parents are a 
healthy, non-consanguineous couple. The family history was 
unremarkable. The patient had a congenital tooth which was 
extracted at the age of 4 years. His cognitive and speech 
development are severely delayed for which he attends spe-
cial education. The boy’s behavior is characterized by hyper-
activity and a short attention span. His vision and hearing 
are normal. He had no history of frequent or severe infec-
tions. Physical examination showed normal height and head 
circumference for age. He has several facial dysmorphisms 
including a wide forehead, wide palpebral fissures, long 
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eyelashes and a thin upper lip. He has no hyper- nor hypo-
pigmentation of the skin and normal extremities.

At the age of 5 years, the patient was referred to the hos-
pital with pain in the lower right quadrant of the abdomen 
for 2.5 weeks that had worsened over time. Additional symp-
toms were frequent nosebleeds, easy bruising and weight 
loss. Physical examination revealed an enlarged spleen and 
liver. Laboratory tests showed hemoglobin 5.5 mmol/L, 
thrombocytes 36 × 109/L, leukocytes 67.8 × 109/L, ASAT 
159 U/L, ALAT 20 U/L, LD 10,701 U/L, urine acid 0.9 
mmol/L, CRP 68 mg/L. An ultrasound revealed hepatosple-
nomegaly and an ileocaecal intussusception. Conventional 
imaging showed no signs of a lymphoma. A hydrostatic 
reposition was performed but was insufficient. The next day, 
an ileal resection with primary anastomosis was performed. 
Evaluation of the resection material by the pathologist 
revealed a BCL-2 positive and BCL-6 negative high-grade 
B-cell lymphoma of the small intestine (Fig. 1). Based on 
morphology and BCL-6 negativity the preferential diagno-
sis was a DLBCL above a Burkitt lymphoma. Additional 
examination showed 72% blasts in the bone marrow and 
3% blasts in the cerebrospinal fluid. Using FISH analysis, 
a complex t(8;14) IGH-MYC translocation was detected, 
but no translocations of the BCL2 and BCL6 genes were 
found. Immunohistochemistry for the mismatch repair pro-
teins (MLH1, MSH2, MSH6, PMS2) was positive, and the 
tumor showed no microsatellite instability (BAT25, BAT26, 
BAT40, D17S250, D5S346, D2S123 markers).

Considering the typical morphological and immunohisto-
chemical aspect of the tumor, the diagnosis of a cMYC-IGH 
translocated diffuse large B-cell lymphoma (DLBCL) with 
bone marrow and central nervous system involvement was 
made. The patient was subsequently treated according to the 
EICNHL inter-B-NHL Ritux 2010 protocol (treatment arm 
C3). The treatment was complicated by multiple episodes 
of paralytic ileus and steroid induced diabetes mellitus. The 
patient finished his treatment according to the protocol and 
showed no sign of relapsed disease or long-term sequelae of 
treatment 1.5 years post treatment.

As part of the diagnostic process for DLBCL, a 
CytoSNP-850 K BeadChip SNP array (Illumina, San Diego, 
CA, USA) on lymphoma derived DNA was performed. This 
revealed a 134-kb deletion in 2p16.3 including the MSH6 
gene and exons 2–23 of the FBXO11 gene (Fig. 2), and a 
copy-number-neutral loss-of-heterozygosity of part of the 
short arm of chromosome 17 (pter-p12) (not shown), sug-
gesting a 17p13.1 TP53 mutation (see below). Because of 
the combination of developmental delay and DLBCL the 
patient was referred to a clinical geneticist for further evalu-
ation. The 2p16.3 deletion was also detected in a remission 
sample from blood by SNP-array and therefore marked as a 
germline deletion. The deletion of MSH6 was confirmed by 
Multiplex Ligation-dependent Probe Amplification (MLPA). 
A second germline MSH6 variant was not detected using 
Sanger Sequencing, ruling out Constitutional Mismatch 
Repair Deficiency (CMMRD) underlying the DLBCL. Both 
parents tested negative for the deletion by SNP array analy-
ses on peripheral blood DNA. Whole exome sequencing was 
performed on DNA from the tumor and a germline sample 
derived from blood. Analysis of somatic variants revealed 
a TP53 hotspot variant: c.742G > A (p.R248W) and several 
additional aberrations (Supplementary Table 1). No somatic 
alterations in FBXO11, MSH6 or BCL6 were present, nor did 
we find hypermutation in the tumor or a mutational signature 
related to MMR deficiency.

Discussion

In this case report we describe a child with developmen-
tal delay who developed a diffuse large B-cell lymphoma. 
Genetic testing revealed a de novo germline 2p16.3 deletion 
including the MSH6 gene and a large part of the FBXO11 
gene.

 MSH6 or mutS homolog 6 encodes for the DNA mis-
match repair (MMR) protein MSH6, a member of the Muta-
tor S family. Germline heterozygous loss-of-function vari-
ants in the MMR genes, MHL1, MSH2, MHS6, and PMS2 

Fig. 1   Microscopic image of 
the DLBCL showing the tumor 
cells between the crypts in the 
lamina propria. a Hematoxylin 
and eosin (H&E) staining was 
used on the tissue. b The tumor 
cells were stained with BCL-6, 
showing loss of BCL-6 expres-
sion in the tumor of the patient
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are associated with autosomal dominant Lynch syndrome 
(OMIM# 120435), which is associated with an increased 
risk of predominantly colorectal cancer and endometrial 
cancer in adults at a young age [12]. DLBCL is not a recur-
rent feature of Lynch syndrome, but DLBCL with micros-
atellite instability was reported in a patient with a germline 
MLH1 mutation [13]. Biallelic pathogenic germline variants 
in the MMR genes result in Constitutional Mismatch Repair 
Deficiency (CMMRD, OMIM# 276300) [14]. CMMRD pre-
sents with a much wider range of cancer types, particularly 
brain tumors, hematological malignancies and colorectal 
cancer, which mostly develop in childhood. Whereas lym-
phomas comprise ~ 15% of cancers in CMMRD, these are 
mainly T-cell lymphomas and reports of DLBCL are less 
frequent [15]. The patient we report here had no additional 
clinical features of CMMRD, nor did we find a second path-
ogenic germline or somatic variant in MSH6. The tumor 
did not show signs of hypermutation or a mismatch repair 
associated mutation spectrum. Furthermore, all MMR mark-
ers were expressed normally, and microsatellite instability 
was absent. Hence, we could not confirm a causal relation 

between loss of the MSH6 allele and development of the 
DLBCL. Because of the germline deletion of MSH6 the 
patient was diagnosed with Lynch syndrome, and colorec-
tal cancer surveillance was recommended from the age of 
25 years onwards.

Since the first description of a patient with a FBXO11 
alteration and developmental delay in 2016, a total of 71 
patients have been published [10, 11, 16–25]. Forty single 
nucleotide variants and indels were detected in 46 patients, 
including 18 missense, 5 nonsense, 10 frameshifts, 5 splice 
site variants, and 2 in-frame deletions [10, 11, 16–19]. All 
variants were de novo, except for one frameshift variant, 
which has recently been described in two sisters with devel-
opmental delay who inherited the variant from their mother 
[19]. In addition, 25 individuals have been described with a 
germline partial gene deletion of FBXO11 or a larger dele-
tion including the FBXO11 gene [10, 11, 20–26]. Of these 
individuals, seven patients carry a deletion limited to the 
FBXO11 and MSH6 genes and four patients carry a partial 
deletion of FBXO11 only. Larger deletions often include 
the adjacent MSH6 and MSH2 genes. Common phenotypic 

Fig. 2   Illumina CytoSNP-850K SNP-array analyses revealed a de 
novo 134-kb 2p16.3 deletion including the MSH6 gene and the 3′ 
prime part of the FBXO11 gene in both DLBCL and germline DNA 

of the child. DLBCL DNA was derived from bone marrow at diagno-
sis. Germline DNA was derived from blood in remission
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presentations for all patients are developmental delay and 
behavior abnormality including autism, hyperactivity, and 
anxiety. Two of these patients, both affected by a large dele-
tion in chromosome 2p16.3-p21 affecting multiple genes 
including FBXO11, MSH6 and MSH2, developed a malig-
nancy. A male patient developed a prostate adenocarcinoma 
and a synchronous sigmoid adenocarcinoma at the age of 52. 
Both tumors showed loss of MSH2 and MSH6 expression 
[25]. A female patient developed a mucinous adenocarci-
noma of the colon with loss of MSH2 [22]. The tumors in 
both patients were attributed to Lynch syndrome. No other 
malignancies have been reported in patients with a FBXO11 
alteration.

So far, germline aberrations in FBXO11 have not been 
linked to cancer development. However, a relation between 
somatic FBXO11 alterations and cancer has been described. 
FBXO11 is part of the F-Box protein family, of which the 
members are the substrate recognition subunits of the SKPI-
Cullin1-F-box (SCF) complex [27]. This complex is respon-
sible for the catalyzation of ubiquitination and subsequent 
proteasomal degradation of substrates [28]. The SCF medi-
ated process of protein degradation is important for genome 
stability and maintenance [29]. According to the cBioPor-
tal and COSMIC databases, FBXO11 alterations have been 
detected in various adult neoplasms, including colon cancer, 
lung cancer, ovarian cancer, and head and neck cancer, as 
well as in diffuse large B-cell lymphoma (DLBCL) [30–32]. 
Recently, FBXO11 was also identified as a potential tumor 
suppressor in myelodysplastic syndrome and secondary 
acute myeloid leukemia [33, 34]. In approximately 4–8% of 
adult patients with DLBCL a somatic genetic alteration of 
the FBXO11 gene is present [35, 36]. According to the St. 
Jude Cloud PeCan database, somatic FBXO11 variants have 
been detected in eight pediatric oncology patients of whom 
seven were diagnosed with a Burkitt lymphoma (BL), but 
none with a DLBCL [37]. These variants include four mis-
sense variants, two frameshift variants located in the Beta 
Helix domain, and a stop-loss variant causing a 16-nucleo-
tide extension of the open reading frame. Although DLBCL 
and BL are classified as two different types of lymphoma, 
similarities on both morphological and molecular level can 
make it difficult to distinguish them [38, 39].

Patients with DLBCL frequently carry somatic muta-
tions in BCL6, a known proto-oncogene. BCL-6 is present 
in the germinal center and withholds premature B-cell 
activation and differentiation into mature plasma cells and 
memory B-cells [40]. BCL-6 expression is retained in most 
patients with DLBCL [41]. One of the mechanisms, result-
ing in retained BCL-6 expression is insufficient proteasomal 
degradation, which occurs as a result of diminished ubiq-
uitination of BCL-6 by the mutated FBXO11 protein [35, 
36]. Duan et al. found monoallelic deletions and mutations 
of FBXO11 in DLBCL, and suggested that FBXO11 is a 

haplo-insufficient tumor suppressor gene [35]. We hypoth-
esize that the heterozygous germline FBXO11 deletion in 
the patient would result in retained BCL-6 expression in 
the tumor. However, immunohistochemistry of the tumor 
showed negative staining for BCL-6. No somatic aberration 
of BCL6 was discovered that could explain this phenomenon.

Based on the role of FBXO11 in DLBCL, we consider 
that the germline heterozygous FBXO11 deletion may 
have contributed to the DLBCL development in this child, 
although we cannot exclude that the development of DLBCL 
may be a coincidence. Thus far, no cancer attributed to 
the FBXO11 aberration has been reported in a total of 71 
patients with germline FBXO11 alterations. This lack of 
cancer might be explained by reduced penetrance, as is the 
case for many other childhood cancer predisposing genes 
[42], and by the relatively low age of these patients at time 
of publication (median age of 9.25 years in a cohort of 61 
individuals). Therefore, assessment of larger cohorts of indi-
viduals with constitutional FBXO11 aberrations is required 
to establish whether the incidence of lymphoma is indeed 
enriched inthese individuals.

Conclusion

In conclusion we present a case of a boy with developmental 
delay resulting from a de novo germline 2p16.3 deletion 
including FBXO11 and MSH6, who developed a diffuse large 
B-cell lymphoma. We found no evidence of MSH6 inactiva-
tion nor MRRdeficiency in the tumor, hence a causative role 
for the germline deletion of MSH6 in the development of the 
lymphoma was excluded. We consider a causative relation-
ship with the germline deletion of FBXO11, a haplo-insuf-
ficient tumor suppressor in this cancer type, conceivable.
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