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Abstract Production of Physalis peruviana L. has gained

prominence in Northeastern Brazil. However, salinity

limits the crop development in the Brazilian semiarid.

Thus, this research aimed to evaluate the application of

Acadian� biostimulant as mitigant of the deleterious

effects of salinity on growth and gas exchange of P.

peruviana plants. The experiment was combining different

electrical conductivity of irrigation water (0.50, 1.23, 3.00,

4.44, and 5.50 dS m-1) and biostimulant doses (0.00, 1.45,

5.00, 8.55, and 10.00 mL L-1). The main variables eval-

uated were plant height, stem diameter, number of leaves,

root length, leaf area, specific leaf area, leaf area ratio,

absolute and relative growth rate for plant height, and gas

exchange. Experimental results showed that an increase in

electrical conductivity of irrigation water had negatively

affected the growth components and gas exchange in P.

peruviana. Also, the application of seaweed-based bios-

timulant improves the photosynthetic capacity (43.3%),

reduces transpiration rate (26.5%) and water loss by this

process, further it attenuated the deleterious effects of

salinity on specific leaf area, leaf area ratio, and stomatal

conductance. To further elucidate the effectiveness of

biostimulant application as a mitigant of salt stress,

research aimed at the biochemical and enzyme activities of

the plant’s antioxidant system should be conducted to

better understand this process.

Keywords Acadian� � Horticulture � Photosynthesis �
Plant physiology � Salt stress

Introduction

Cape gooseberry (Physalis peruviana L.) is an herbaceous

plant from the Solanaceae family, native to the South

American Andes regions, occurring in Brazil, Chile,

Colombia, Ecuador, and Peru (Fischer and Melgarejo

2020). It is considered a high potential species for national

horticulture, due to its nutritional value and economic

viability of production (Rodrigues et al. 2021). It is largely

consumed as fresh fruits, which are rich in bioactive

compounds beneficial to human health, such as vitamin C,

minerals, phenolic compounds, chlorophylls, and car-

otenoids (Mezzalira et al. 2017; Puente et al. 2021;

Rodrigues et al. 2021).

However, in northeastern Brazil, mainly in the semiarid

region, abiotic factors limit P. peruviana cultivation, which
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has a limit salinity of 3.0 dS m-1. Despite the species may

be moderately tolerant to salinity, quality of irrigation

water is essential for plants to express their productive

potential, since high salt content in water becomes a lim-

iting factor for plant growth and productivity (Monroy-

Velandia and Coy-Barrera 2021).

Also, inadequate irrigation management increases the

salt content in the soil and consequently in the different

organs of the plant, which damages several metabolic and

physiological processes (Lofti et al. 2018). Thus, search for

chemical products capable of minimizing the adverse

effects of salinity on plants is of prime importance. In this

sense, application of biostimulants have been used in this

regard (Elansary et al. 2016). The application of biostim-

ulants promotes root growth and fast and uniform

establishment of seedlings (Souza et al. 2020), which

benefit plants under stress conditions. The beneficial effect

of biostimulants has already been observed by some

researchers, such as Popescu (2020) in the growth of

cucumber (Cucumis sativus L.) and tomato (Solanum

lycopersicum L.) plants under saline water, Souza et al.

(2020) in the treatment of zucchini (Cucurbita pepo L.)

seeds, and Souza Neta et al. (2018) in gherkin (Cucumis

anguria L.) plants under salt stress.

In previous studies, Acadian� is an Ascophyllum

nodosum seaweed-based biostimulant rich in carbohydrates

and macro and micronutrients that induces the synthesis of

phytohormones (auxins, gibberellins, cytokines, and

abscisic acid) on plants (Silva et al. 2016). These growth

regulators in the biostimulant induces defense gene sig-

naling and hormonal homeostasis, thereby increasing the

plant tolerance to salinity (Hadia et al. 2020). Thus, this

study aimed to evaluate the the application of Acadian�
biostimulant as a mitigant of the deleterious effects of

salinity on growth and gas exchange of P. peruviana

plants.

Material and methods

Site description and experimental design

The experiment was carried out from January to April 2019

under greenhouse conditions (Fig. 1) at the Department of

Crop and Environmental Sciences, Center of Agrarian

Sciences, Federal University of Paraı́ba (UFPB), Areia

Table 1 Treatments generated through the center composite design

(CCD) matrix

Treatments ECw (dS m-1) BD (mL L-1)

T1 1.23 1.45

T2 1.23 8.55

T3 4.77 1.45

T4 4.77 8.55

T5 0.50 5.00

T6 5.50 5.00

T7 3.00 10.00

T8 3.00 0.00

T9 3.00 5.00

Fig. 1 Temperature and

humidity in the greenhouse

during the experiment

2142 Physiol Mol Biol Plants (September 2021) 27(9):2141–2150

123



city, Paraı́ba State, Brazil. The experimental site is located

at the geographical coordinates 6�5801.45’’ S,

35�42048.90’’ W, and 575 m above the sea level.

Treatments were arranged in a randomized block design

at the incomplete factorial scheme, combining different

electrical conductivity of irrigation water (ECw) and sea-

weed-based biostimulant doses (BD). The minimum (-a)

and maximum (a) values ranged respectively from 0.5 to

5.5 dS m-1 and 0.0 to 1.0%, totaling nine treatments

generated through the center composite design (Mateus

2001), with four replicates and two plants per plot

(Table 1).

Conducting the experiment

Cape gooseberry seeds were obtained from mother plants

produced under greenhouse conditions at Federal Univer-

sity of Campina Grande, Pombal city, Paraı́ba State, Brazil.

Four seeds collected from the same plant were sown per

polyethylene pot. Then, a thinning was performed leaving

one seedling, the most vigorous one. Pots of 1.2 dm-3

capacity were filled with substrate formulated with Dys-

trophic Regolithic Neosol (Embrapa 2018), cattle manure,

and washed sand at the 3:1:1 ratio. The substrate was

evaluated for physicochemical attributes (fertility and

Table 2 Physicochemical

characterization of the

substrates used in the

experiment

Physical Value Fertility Value Salinity Value

Sand (g kg-1) 874 pH in water (1: 2.5) 8.1 pH 7.40

Silt (g kg-1) 91 P (mg dm-3) 65.16 CEe (dS m-1) 2.00

Clay (g kg-1) 35 K? (mg dm-3) 423.97 SO4-2 (mmolc L-1) 2.17

Texture Sandy Na? (cmolc dm-3) 0.24 Ca?2 (mmolc L-1) 6.50

Al?3 (cmolc dm-3) 0.00 Mg?2 (mmolc L-1) 17.50

H? ? Al?3 (cmolc dm-3) 0.99 Na? (mmolc L-1) 3.67

Ca?2 (cmolc dm-3) 2.88 K? (mmolc L-1) 7.67

Mg?2 (cmolc dm-3) 0.96 CO3
-2 (mmolc L-1) 0.00

SB (cmolc dm-3) 5.17 HCO3
-2 (mmolc L-1) 17.50

CEC (cmolc dm-3) 6.16 Cl- (mmolc L-1) 10.00

SOM (cmolc dm-3) 15.00 SAR (mmolc L-1) 1.06

ESP (%) 0.30

Classification Normal

P, K, Na: extracted by Mehlich 1; SB: Sum of exchangeable bases; H ? Al: extracted by calcium acetate

extractor 0.5 M pH 7.0; CEC: Cation exchange capacity; Al, Ca, Mg: extracted by KCl 1 M; SOM: Soil

organic matter content by the Walkley–Black method; C.E.: Electrical conductivity at 258C; SAR: Sodium

adsorption ratio; ESP: Exchangeable sodium percentage

Table 3 Mean square of the analysis of variance for growth components of Physalis peruviana cultivated under irrigation water with different

electrical conductivity (ECw) and seaweed-based biostimulant doses (BD)

Source of variation DF Mean squares

PH SD LA NL SLA LAR AGRPH RGRPH RL

Block 3 10.23ns 0.06ns 1236.6ns 2.74ns 261ns 80.0ns 0.005ns 0.00001ns 4.06ns

Treatments 8 39.74** 0.11ns 2713.5** 9.97** 4401** 878.3** 0.027** 0.00008** 20.44**

BD (L) 1 8.26** 0.22ns 50.49** 3.38** 25.36* 18.59* 0.214** 0.01234** 1.12ns

BD (Q) 1 0.98ns 0.28ns 29.29* 0.25ns 23.35ns 16.22* 0.031ns 0.00120ns 2.22**

ECw (L) 1 2.32* 0.02ns 37.54** 1.88* 11.82ns 6.25ns 0.072** 0.00119ns 0.28ns

ECw (Q) 1 0.08ns 0.95ns 27.06** 0.87ns 15.77ns 13.71ns 0.005ns 0.00156ns 4.83**

BD (L) x ECw (L) 1 0.19ns 0.10ns 3.05ns 0.06ns 9.72** 4.24** 0.003ns 0.00011ns 0.37ns

CV 8.90 5.70 10.40 11.00 9.30 14.20 10.10 8.50 5.80

PH: plant height; SD: stem diameter; LA: leaf area; NL: number of leaves; SLA: specific leaf area; LAR: leaf area ratio; AGRPH: absolute growth

rate for plant height; RGRPH: relative growth rate for plant height; RL: root length; L: linear model; Q: quadratic model; DF: degrees of freedom;

CV: coefficient of variation. *, **: significant at p\ 0.05 and p\ 0.01, respectively, by the F test; ns: non-significant
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salinity of saturated extract shown in Table 2) following

the methodologies of Embrapa (2017) and Richards (1954).

The irrigation waters with different electrical conduc-

tivities were prepared by adding sodium chloride (NaCl) at

the required proportions to the potable water from the

UFPB supply system, which had 0.5 dS m-1 ECw. EC was

measured by using a portable conductivity meter (CD-860

model, Instrutherm�). Irrigation was performed daily, and

saline water was applied 15 days after sowing (DAS),

maintaining the soil at field capacity (FC) to ensure seed

emergence and plant development. The water blade applied

was determined by the drainage lysimetric method, as

proposed by Bernardo et al. (2006), using three separate

replicates per treatment.

The biostimulant, an A. nodosum seaweed-based extract

(Acadian�, Agritech, Canada), was applied 20 DAS. The

extract had the following characteristics: 8.12, 6.82, 12.00,

1.60, 2.03, and 8.16 g kg-1 N, P, K, Ca, Mg, and S,

respectively; 5.74, 13.60, 11.5, 0.04, 24.40, and

20,000 mg kg-1 B, Cu, Fe, Mn, Zn, and Na respectively;

potassium hydroxide, with 61.48 g L-1 water-soluble K2O;

69.60 g L-1 total organic carbon; and 1.16 g dm-3 density

(Arrais et al., 2016). The seaweed extract was diluted with

water to concentrations of 1.45, 5.00, 8.55, and 10.00 mL

L-1, then 100 mL per plant of each solution was sprayed in

leaves in the late afternoon. Six applications were per-

formed weekly.

Growth and gas exchange analyses

Also, at 75 DAS the effect of treatments on plant growth

was evaluated. Plant height (PH) and root length (RL) were

measured by using a millimetric ruler; stem diameter (SD)

by using a digital caliper; and the number of leaves (NL) by

counting the fully expanded leaves. Moreover, leaf area

(LA), specific leaf area (SLA), and leaf area ratio (LAR)

were calculated according to Benincasa (2003) by the

following equations, respectively: LA = (L 9 W) 9 f,

where L is the length of each leaf, W is the width of each

leaf, and f is the correction factor (0.66) according to

Piesanti et al. (2018); SLA = LA/LDW, where LDW is the

leaf dry weight; and LAR = LA/SDW, where SDW is the

shoot dry weight.

From 15 to 75 DAS, the absolute and relative growth

rates for plant height (AGRPH and RGRPH, respectively)

were determined adapting the methodology proposed by

Benincasa (2003), as described in the following equations:

AGRPH = (PH2-PH1)/(t2-t1), where PH1 is the plant

height at 15 DAS, PH2 is the plant height at 75 DAS, t1 is

the number of days at the first evaluation (15 DAS), and t2
is the number of days at the second evaluation (75 DAS);

and RGRPH = (InPH2-InPH1)/(t2-t1), where lnPH1 is the

natural logarithm of plant height at 15 DAS, and lnPH2 is

the natural logarithm of plant height at 75 DAS.

At 75 DAS, plant gas exchange was measured using a

portable infrared gas analyzer—IRGA (LI-6400XT model,

LI-COR�, Nebraska, USA) with 300 mL min-1 airflow

and coupled-light source of 1200 lmol m-2 s-1. The fol-

lowing variables were measured: stomatal conductance (gs;

mol H2O m-2 s-1), net assimilation rate of CO2 (A; lmol

of CO2 m-2 s-1), transpiration rate (E; mmol H2O

m-2 s-1), internal concentration of CO2 (Ci; lmol CO2

mol-1), water use efficiency (WUE and iWUE = A/E), and

instantaneous carboxylation efficiency (Ecar = A/Ci).

Analyses were performed at 9–10 a.m. in fully expanded

leaves.

Statistical analyses

Data were submitted to analysis of variance by the F test

and, when significant, regression analysis was performed.

Statistical analysis was performed in R software version

2.13.1. (R Core Team 2016).

Fig. 2 Specific leaf area a and leaf area ratio b of Physalis peruviana L. plants submitted to saline stress and seaweed-based biostimulant doses
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Results

According to the analysis of variance, analyzing the iso-

lated factors, biostimulant doses (BD) significantly affected

all the analyzed variables, except by stem diameter (SD). In

turn, the electrical conductivity of irrigation water (ECw)

significantly affected plant height (PH), leaf area (LA),

number of leaves (NL), absolute growth rate for plant

height (AGRPH), and root length (RL). However, a sig-

nificant interaction between factors was observed only for

specific leaf area (SLA) and leaf area ratio (LAR)

(Table 3).

It was observed that the biostimulant applied up to

9.95 mL L-1 dose attenuated the deleterious effect of

Fig. 3 Number of leaves a, plant height b, root length c, leaf area d, and absolute growth rate for plant height e of Physalis peruviana L. plants

cultivated under irrigation water with different electrical conductivities
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salinity by up to 5.48 dS m-1, in which a maximum

specific leaf area of 247.3 cm2 g-1 was obtained (Fig. 2a).

Likewise, a maximum leaf area ratio of 104.8 cm2 g-1 was

obtained with the application of 9.93 mL L-1 biostimulant

under 5.43 dS m-1 (Fig. 2b).

Salinity of irrigation water negatively influenced the NL

and PH of P. peruviana plants (Fig. 2). The NL (Fig. 3a)

and PH (Fig. 3b) decreased respectively by 30.7% and

32.9% in plants under 5.5 dS m-1 as compared to control

(0.5 dS m-1). Root length decreased with increasing

salinity up to 3.82 dS m-1, in which roots measured

26.6 cm, 18.2% smaller as compared to control (0.5 dS

m-1) (Fig. 3c). Moreover, saline water irrigation at 5.5 dS

m-1 reduced LA by 26.8% (Fig. 3d) and AGRPH by 39.6%

(Fig. 3e) relative to control (Table 4).

The seaweed-based biostimulant negatively influenced

the NL, PH, AGRPH, and RGRPH of P. peruviana, with

reductions of 20.9, 10.9, 17.3, and 9%, respectively

(Fig. 4a–d). LA reduced by 26.5% as the biostimulant dose

increased up to 7.04 mL L-1 (Fig. 4e). In contrast, RL

increased by 15.4% with increasing biostimulant dose up to

4.96 mL L-1, in which roots measured 30.72 cm in length

(Fig. 4f).

Based on the analysis of variance for gas exchanges,

saline water irrigation significantly affected transpiration

rate (E), net assimilation rate of CO2 (A), and instanta-

neous carboxylation efficiency (ICE), while biostimulant

doses affected E and A. Also, a significant interaction

between the factors was observed for stomatal conductance

(gs) (Table 3).

Acadian� biostimulant applied at 6.30 mL L-1 dose

provided positive effects on gs in plants cultivated under up

to 1.93 dS m-1, in which a maximum gs of 0.359 mol de

H2O m-2 s-1 was observed (Fig. 5a). In turn, A decreased

by 31.3% per unitary increase in ECw, with values of 12.12

and 8.33 lmol de CO2 m-2 s-2 (Fig. 5b). Also, E and ICE

decreased by 26.5% and 25%, respectively, per unitary

increase in ECw (Figs. 5c–d).

Biostimulant doses only affected A and E (Fig. 6). The

application of 10.00 mL L-1 biostimulant increased A by

43.4% as compared to control (0.00 mL L-1), in which

plants increased from 8.67 to 12.43 lmol CO2 m-2 s-2 the

assimilation rate (Fig. 6a). In contrast, E decreased with

increasing biostimulant dose. Plants transpired up to 16%

less relative to control plants, with values of 6.88 and

5.78 mmol of H2O m-2 s-2 (Fig. 6b).

Discussion

The beneficial effect of biostimulant for SLA and LAR

may be due to these seaweed extracts, from natural or

synthetic origin, induce plants to express their genetic

potential under abiotic stress conditions, by promoting an

effective hormonal and nutritional balance (Oliveira et al.

2016). Such results showed that bioactive compounds

present in seaweed extracts were effective in improving

plant performance under saline stress conditions (Bat-

tacharyya et al. 2015).

Such a decrease in NL may act as a plant adaptation

mechanism for salt tolerance to minimize water loss by

transpiration. Reduced LA is associated with reduced NL,

which evidence the sensitivity of leaves to salinity. Also,

reduced plant growth in height may be due to excessive

uptake of toxic ions as well as the low capacity of the plant

to perform osmotic adjustment (Nobre et al. 2013).

Excessive salt concentration in the soil solution alters

cellular metabolic activities, restricting cell wall elasticity

and thus limiting cell elongation and, therefore, the vege-

tative growth of the plant (Taiz et al. 2017). Similar results

Table 4 Mean square of the

analysis of variance for gas

exchange of Physalis peruviana
L. cultivated under irrigation

water with different electrical

conductivity (ECw) and

seaweed-based biostimulant

doses (BD)

Source of variation DF Mean squares

gs Ci E A WUE iWUE Ecar

Block 3 0.016** 3009.2** 2.09* 1.84ns 0.31ns 408.3ns 0.00006ns

Treatments 8 0.018** 987.1ns 4.10** 18.96** 0.20ns 212.7ns 0.00026**

BD (L) 1 0.130** 37.47** 1.78** 2.91** 0.05ns 8.02ns 0.00182ns

BD (Q) 1 0.042ns 1.31ns 0.70ns 0.48ns 0.22ns 5.53ns 0.00299ns

ECw (L) 1 0.039ns 15.80ns 0.09ns 0.51ns 0.02ns 5.63ns 0.00153ns

ECw (Q) 1 0.034ns 11.95ns 1.56** 2.29* 0.01ns 1.82ns 0.00644*

BD (L) x ECw (L) 1 0.017* 0.64ns 0.19ns 0.23ns 0.08ns 2.96ns 0.00114ns

CV 15.8 5.70 10.8 13 15.8 20.8 11.1

gs: stomatal conductance (mol m-2 s-1); A: net CO2 assimilation rate (lmol CO2 m-2 s-1); E: transpi-

ration (mmol H2O m-2 s-1); Ci: internal concentration of CO2 (lmol CO2 m-2 s-1); WUE: water use

efficiency (A/E); Ecar: instantaneous carboxylation efficiency (A/Ci); L: linear model; Q: quadratic model;

DF: degrees of freedom; CV: coefficient of variation. *, **: significant at p\ 0.05 and p\ 0.01,

respectively, by the F test; ns: non-significant
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were found in P. peruviana (Miranda et al. 2014) and

watermelon (Citrullus lanatus (Thunb.)) plants (Silva

Junior et al. 2020) under salt stress conditions.

Salt accumulation in the soil due to saline water irri-

gation results in increased sodium and chlorine uptake by

plants. Accumulation of these ions inside the cell reduces

root growth, for instance, due to inhibition of cotyledon

reserve depletion (Marques et al. 2011), which explains the

reduction in root length. Likewise, Oliveira et al. (2015)

observed that roots of Jatropha plants grew 28% less under

5.0 dS m-1 ECw. However, the negative effect of bios-

timulant on plant growth can be attributed to excessive

accumulation of toxic ions, such as Na? since seaweed

extracts contain 3 to 5% of this ion in composition (Garcia

et al. 2014). The previous study also reported similar

results in cashew (Anacardium occidentale L.) seedlings

(Garcia et al. 2014). On the other hand, Oliveira et al.

(2017) found that the application of biostimulants can

Fig. 4 Number of leaves a, plant height b, root length c, leaf area d and absolute e and relative f growth rate for plant height in Physalis

peruviana L. plants cultivated under seaweed-based biostimulant doses
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improve root development by 56.5%, using a concentration

of 10 mL in gherkin (Cucumis anguria L.) seedlings.

The positive effect of the biostimulant on stomatal

conductance of saline-irrigated plants occurs because the

biostimulant improves leaf water relations, thus maintain-

ing cell turgidity and reducing stomatal closure, as reported

by Xu and Leskovar (2015) in spinach (Spinacia oleracea

L.). Kału _zewicz et al. (2017) observed the same behavior

in broccoli (Brassica oleracea var. Italica) under water

stress. However, salinity reduced the net assimilation rate

of CO2 due to excessive accumulation of salts, which

damage the photosynthetic apparatus and thus change CO2

assimilation (Rouphael et al. 2012). In addition, a decrease

in transpiration rate acts as a stress acclimatization mech-

anism in plants, because low transpiration results in low

water loss.

Fig. 5 Stomatal conductance a, net CO2 assimilation rate b, transpiration c, and instantaneous carboxylation efficiency d in Physalis peruviana
L. plants cultivated under seaweed-based biostimulant doses

Fig. 6 Net CO2 assimilation rate a and transpiration b in Physalis peruviana L. plants cultivated under seaweed-based biostimulant doses
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In turn, a decrease in instantaneous carboxylation effi-

ciency may be related to reduced net photosynthesis,

indicating a low carbon fixation rate by Rubisco. As

reported in the present study, the negative effects of saline

water on plant gas exchange have been also reported by

many authors, such as Azizian and Sepaskhah (2014) in

corn (Zea mays L.), Yarami and Sepaskhah (2015) in saf-

fron (Crocus sativus L.), and Huang et al. (2015) in ramie

(Boehmeria nivea L.). However, Abideen et al. (2014)

stated that moderate salinity stimulates growth and photo-

synthesis in Phragmites karka L.

The main effect of biostimulant application showed that

plants increased photosynthetic activity. It was due to the

content of active compounds in seaweed extracts, like

cytokines or other similar (Battacharyya et al. 2015).

Reduction in E, on the other hand, can be attributed to

improved leaf water status induced by the biostimulant (Xu

and Leskovar 2015). Similar results were found by Xu and

Leskovar (2015) in spinach (Spinacia oleracea L.) plants.

Conclusions

An increase in electrical conductivity of irrigation water

negatively affects the growth components and gas

exchange of P. peruviana. Application of seaweed-based

biostimulant improves the photosynthetic capacity, reduces

transpiration, and attenuates the deleterious effects of

salinity in specific leaf area, leaf area ratio and stomatal

conductance in P. peruviana plants. Therefore, results

obtained here allow developing future research under field

conditions, which can directly benefit the local farmers.
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