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Abstract Increasing temperature poses a serious threat to

rice productivity. This study investigated the impact of

various biochar treatments and phosphorous (P) fertiliza-

tion on osmolyte accumulation, ROS development, and

antioxidant activity in two rice cultivars (IR-64 and

Huanghuazhan) under high-temperature stress. All plants

of both cultivars were grown in a controlled environment

under ambient temperatures (AT), high day temperatures

(HDT) or high night temperatures (HNT). The different

fertilization treatments were biochar alone, P alone and

biochar ? P with control. In the leaves and xylem sap of

both rice cultivars, particularly in the susceptible cv. IR-64,

high-temperature stress increased the production of MDA

and H2O2. HDT and HNT decreased total soluble sugars,

protein, and proline levels in both rice cultivars. HNT was

observed as more harmful compared to HDT during most

of the studied characteristics. The response of antioxidant

enzyme activities, viz, SOD, POD, CAT, APX, ASC, GSH,

GR, and GSSC activities, to the temperature treatments

varied between the two cultivars. Antioxidant activities

decreased in the leaves and xylem sap of IR-64 but

increased in those of Huanghuazhan upon exposure to

high-temperature stress. Huanghuazhan exhibited better

heat tolerance compared to IR-64, which was linked to its

increased antioxidant enzyme activation and metabolite

synthesis. As compared to the control, all soil fertilization

treatments considerably reduced the adverse impacts of

high temperature on the rice cultivars. The combination of

biochar and P resulted in better performance compared to

the other treatments in terms of all studied attributes.

Keywords Antioxidants � Biochar � high-temperature

stress � Phosphorus fertilization � Rice cultivar � Reactive

oxygen species

Introduction

The heat stress due to increasing temperature is the central

dilemma in agriculture across the globe these days. Plants

experience several morpho-anatomical, biochemical and

physiological changes resulting from transiently or chron-

ically elevated temperatures that affect plant growth and

development which can lead to decrease in e economic

yield considerably. The Earth’s atmosphere is projected to

warm by 2–4 �C by the end of the twenty-first century due

to anthropogenic and natural factors (IPCC 2007; Eitzinger

et al. 2010). Greenhouse gases (GHGs), such as nitrous

oxide (N2O), carbon dioxide (CO2), and methane (CH4),

released by agricultural processes are reportedly some of

the significant contributors to global warming.

Increasing temperature can lead to changes in agricul-

tural crops’ geographical distribution and growing seasons,

allowing earlier seasonal threshold temperatures and crop

maturity (Porter 2005). Schöffl et al. (1999) reported that

catastrophic cell breakdown, extreme cell injury, and even
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death can occur in minutes at very high temperatures.

Injury or death occurs only after prolonged exposure to

relatively high temperatures. Protein denaturation and

increased membrane lipid fluidity and aggregation are

direct injuries that can be caused by high temperatures.

Mitochondrial and chloroplast enzyme inactivation, mem-

brane integrity loss, protein synthesis inhibition, and

degradation inhibition are examples of indirect or slower-

acting heat injuries (Howarth, 2005). The microtubule

organization in plants is also affected by heat stress, which

causes them to break and elongate, phragmoplast micro-

tubule elongation and microtubule aster development in

mitotic cells (Smertenko et al. 1997). Finally, such damage

leads to growth inhibition, malnutrition, ion flux reduction,

and reactive oxygen species (ROS) and toxic compound

generation (Schöffl et al. 1999; Howarth 2005).

The accretion of certain organic compounds with low

molecular mass, known as compatible osmolytes, is a

critical adaptive mechanism for abiotic stresses such as

extreme temperature, water deficiency, and salinity. Qua-

ternary ammonium compounds, osmolytes such as alcohols

(polyols), tertiary sulfonium compounds, tertiary com-

pounds, and proline accumulate under heat. Such solutes

will increase plants’ stress tolerance by accumulating these

solutes (Hare et al. 1998; Sakamoto and Murata 2002;

Sairam and Tyagi 2004). Tolerant plants have evolved

various enzyme and non-enzyme ROS scavenging and

detoxification processes to protect themselves from ROS’s

harmful effects (Apel and Hirt 2004). The activities of

different antioxidant enzymes are highly susceptible to

temperature, and their activation occurs at various tem-

peratures. Plants are also protected from oxidative stress by

antioxidant metabolites such as ASA, GSH, tocopherol,

and carotene. As a result of increased ASA and GSH

synthesis, heat-acclimated turf grass was shown to develop

fewer ROS (Sairam et al. 2000; Xu et al. 2006).

The majority of the world’s crops have been subjected to

heat stress at different stages of their life cycle due to rising

temperatures. Rice production has also been under pres-

sure as a result of rising temperatures. Rice (Oryza sativa)

is a major cereal crop that is grown throughout the world.

Both wet and dry land cultivation (upland) systems are

very susceptible to drought and other unpre-

dictable weather conditions. Rice production has already

been increased to satisfy the human populations’ growing

demands. The response of rice growth to high temperatures

are still poorly understood, despite rice being used as a

model plant for many years (Cassman and Wood 2005;

Nagai and Makino 2009).

Rice production can be adversely affected by variations

in temperature during the day. Daytime temperatures above

the critical level can have a negative impact on photo-

synthesis by disrupting photosynthetic system II and

altering the thylakoid structural organization. (Zhang et al.

2005). This increases the production of reactive oxygen

species, resulting in the loss of cell material leakage, cell

Table 1 Summary of analyses of variance (ANOVA) for the influence of high temperature, soil fertilization treatments, and their interactions on

metabolites, antioxidants, and ROS production in leaves of two rice cultivars

Source of Variation Sugar Protein Proline SOD POD CAT APX GR GSH GSSG ASC MDA H2O2

IR-64

Temperature treatments ** ** ** ** ** ** ** ** ** ** ** ** **

Soil fertilization treatments ** ** * ** Ns ns ns ** ** ** ** ** **

Temperature 9 SFT ns ns ns ns Ns ns ns Ns ns ns ** ns ns

CV 12.70 12.81 7.07 5.16 7.24 10.84 6.98 11.06 5.37 9.11 7.92 6.79 6.06

HHZ

Temperature treatments ** ** ** ** ** ** ** ** ** ** ** ** **

Soil fertilization treatments ** ** ** * ns ns ns ** * ** ** ** **

Temperature 9 SFT ns ns ns ns ns ns ns Ns ns ns ns ns ns

CV 7.81 11.33 5.98 5.22 6.56 7.91 5.37 6.43 6.o8 7.66 6.95 5.99 4.62

** and * denote significance at the 0.01 and 0.05 probability level, respectively

ns non-significant, CV Coefficient of variation, PGR Plant growth regulators, SOD superoxide dismutase, POD peroxidase, CAT catalase, APX
ascorbate peroxidase, GR glutathione reductase, GSH glutathione, GSSG glutathione disulfide, ASC ascorbate, HHZ Huanghuazhan (heat

tolerant), IR-64 (heat susceptible)

cFig. 1 Influence of high temperature stress and soil fertilization

treatments on the osmolyte production in xylem sap of two rice

cultivars. Error bars above means denote LSD of interaction at the

0.05 probability level. HHZ: Huanghuazhan (heat tolerant), IR-64

(heat susceptible). HDT: high day temperature, HNT: high night

temperature, AT: ambient temperature (control)
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membrane integrity, and, finally, cell death (Howarth,

2005).

Global interest in agriculture’s role in mitigating climate

change by sequestering carbon in stable soil organic matter

forms is increasing (Stavi and Lal, 2013). The development

and application of biochar in agriculture will help mitigate

climate change while also improving the quality and

management of agricultural and forestry waste materials.

Biochar is a carbonaceous material created from the ther-

mal decomposition of residual biomass under low tem-

peratures and low oxygen levels (Lehmann et al. 2006).

Certain biochar properties are responsible for its high

cation exchange capacity, high porosity, and high water

retention ability; these properties prevent nutrient loss and

favour nutrient retention, provide a direct nutrient supply

depending on the biochar form, and give biochar the ability

to serve as a habitat for beneficial microorganisms which

help plants absorb and release nutrients (Atkinson et al.

2010).

Plant tolerance to various biotic stresses is also

improved by using biochar. Since biochar increases the

osmotic values of leaves, it improves plant’s water status,

resulting in greater resistance to future water stress con-

ditions (Barker et al. 1993; Gonzalez et al. 2009; Kammann

et al. 2011). Because of decreased transpiration, with the

application of BC, higher plant growth was observed. This,

combined with increased osmolality, could improve plant

drought tolerance (Kammann et al. 2011). Kammann et al.

(2011) also reported that biochar-treated plants used

slightly less water despite their larger leaf areas. Graber

et al. (2010) hypothesized that plants such as Arabidopsis

thaliana in soil modified with biochar could respond with a

resistance mechanism to the presence of low ( ±)-catechin

levels causing stress due to the lower levels of phytotoxic

compounds within the root zone (Prithiviraj et al. 2007). A.

thaliana growth exhibited an inverted U-shaped reaction to

inundation with ( ±)-catechins, which are phytotoxic at

high concentrations. At low ( ±)-catechin concentrations,

which promote growth, the leaves of plants inoculated with

Pseudomonas syringae pv. tomato, a pathogen of A.

thaliana, developed limited lesions only at inoculation

sites. The control plants exhibited widespread infection,

indicating systemically induced resistance to phytotoxic

compound development (Prithiviraj et al. 2007).

To maintain the plant structural integrity and vital

physiological processes, adequate nutrition is needed. P is

an essential plant macronutrient that accounts for approx-

imately 0.2% of a plant’s dry weight. It is present in nucleic

acids, phospholipids, phosphoproteins, dinucleotides, and

adenosine triphosphate, among other substances. Phos-

phorus is also necessary for energy production and storage

(Waraich et al. 2012; Hasanuzzaman et al. 2013). The

application of exogenous protectants (potassium, K, cal-

cium, Ca, nitrogen, N; phosphorus, P;, etc.) has been found

in recent years to effectively reduce damage caused to

plants by HT stress (Waraich et al. 2011).

bFig. 2 Influence of high temperature stress and soil fertilization

treatments on the osmolyte production in leaves of two rice cultivars.

Error bars above means denote LSD of interaction at the 0.05

probability level. HHZ: Huanghuazhan (heat tolerant), IR-64 (heat

susceptible). HDT: high day temperature, HNT: high night temper-

ature, AT: ambient temperature (control)

Table 2 Summary of analysis of variance (ANOVA) for the influence of high temperature, soil fertilization treatments, and their interactions on

metabolites, antioxidants, and ROS production in xylem sap of two rice cultivars

Source of Variation Sugar Protein Proline SOD POD CAT As GR GSH GSSG ASC MDA H2O2

IR-64

Temperature treatments ** ** ** ** ** * ** ** ** ** ** ** **

Soil fertilization treatments ** ** ** ** * ** ** ** ** ** ** ** **

Temperature 9 SFT ns ns ns * ns ns ns ** ns ns ** Ns ns

CV 11.79 11.38 4.18 5.67 7.24 5.84 7.78 12.53 5.37 9.11 7.92 6.79 6.06

HHZ

Temperature treatments ** ** ** ** * ** ** ** ** ** ** ** **

Soil fertilization treatments ** ** ** * * ** ** ** * ** ** ** **

Temperature 9 SFT ns ns ns ns * ns ns ns ns ns ns ns Ns

CV 10.50 6.88 4.04 4.78 6.56 7.91 6.97 7.38 6.08 7.66 6.95 5.99 4.62

** and * denote significance at the 0.01 and 0.05 probability level, respectively

ns non-significant, CV Coefficient of variation, PGR Plant growth regulators, SOD superoxide dismutase, POD peroxidase, CAT catalase, APX
ascorbate peroxidase, GR glutathione reductase, GSH glutathione, GSSG glutathione disulfide, ASC ascorbate, HHZ Huanghuazhan (heat

tolerant), IR-64 (heat susceptible)
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Few studies have examined the effect of phosphorus and

biochar on plants under different stress conditions. More-

over, no data are available regarding stress from high day

and night temperatures, which creates a significant gap in

the literature on this crucial subject. This study examined

how the antioxidant protection system and osmolyte and

ROS accumulation in the plant leaves and xylem sap of two

rice cultivars under high day and night temperatures were

affected by biochar and P fertilization.

Materials and methods

Crop husbandry

Pot experiments were conducted using two cultivars of rice

(Oryza sativa L.), an indica type, viz, Huanghuazhan

(HHZ), and IR-64. Both cultivars exhibit different response

to temperature stress but have similar plant architecture

(medium stature). IR-64 is highly temperature sensitive,

while Huanghuazhan is tolerant of high-temperature stress.

The rice plants were grown under natural conditions. Both

cultivars’ seeds were retained for two days in a wet towel

to accelerate germination. After germination, the seeds

were planted in seedling growing trays (1 seed per cell).

The seedling plants were transferred into plastic pots three

Fig. 3 Influence of high temperature stress and soil fertilization

treatments on MDA and H2O2 contents in xylem sap of two rice

cultivars. Error bars above means denote LSD of interaction at the

0.05 probability level. HHZ: Huanghuazhan (heat tolerant), IR-64

(heat susceptible). HDT: high day temperature, HNT: high night

temperature, AT: ambient temperature (control)
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weeks after sowing. The plants were grown in the plastic

pots (upper interior diameter, 27.2 cm; height, 27.2 cm;

and thickness, 0.15 cm) with air-dried soil and sand mixed

at a ratio of 2:1 (21.6 cm) after transplantation. A com-

pound (NPK) fertilizer was applied at a rate of 10 g per

pot. The trial was conducted using standard pot test pro-

cedures, and no disease or pest problems were found.

Greenhouse conditions

Three indoor temperature-controlled growth chambers

were established, i.e., HDT (high day temperature,

35 ± 2 �C), HNT (high night temperature, 32 ± 2 �C),

and AT (high ambient temperature, 28 ± 2 �C daily), for

the three temperature treatments (Table 1). The day tem-

peratures were applied from 7 am to 7 pm, and the night

temperatures were applied from 7 pm to 7 am (12 h

duration). The control group plants were cultivated at

29 �C (12-h-day/12-h-night cycles). The heat treatment

was applied before the booting phase since most rice

damage caused by high temperatures occurs during that

period. During the experiment, the humidity was 75%. In

the growth chamber, the photosynthetic flow density was

maintained at 1000 lmol mm-2 s–1. The CO2 concentra-

tion was not measured inside the chamber.

Fig. 4 Influence of high temperature stress and soil fertilization

treatments on MDA and H2O2 contents in leaves of two rice cultivars.

Error bars above means denote LSD of interaction at the 0.05

probability level. HHZ: Huanghuazhan (heat tolerant), IR-64 (heat

susceptible). HDT: high day temperature, HNT: high night temper-

ature, AT: ambient temperature (control)
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Biochar and phosphorous fertilizer treatments

Rice husks were chosen as the biomass waste material for

the biochar samples because they are commonly found in

majority of areas of the World. Sigma-Aldrich in Shanghai,

China, supplied the phosphate fertilizer in the form of TSP

(triple superphosphate [Ca(H2PO4)2.2H2O]). Before being

used in the plant growth experiment, the biochar samples

were ground to a thickness of 2 mm in a stainless steel

mill. All of the biochar (300 g) and phosphorous fertilizer

(at a rate of 2 g) combinations were applied to each pot

prior to transplantation. Biochar and phosphorous were not

applied to the control pots.

Observations

Collection of xylem sap

The xylem sap was collected as described in Rahayu et al.

(2005) and Dodd et al. (2004), with slight modifications.

The root-shoot interface beneath the cotyledons was cut to

2 cm above the root-shoot interface for xylem sap collec-

tion. To prevent contamination of the wounded cells and

phloem sap, each cut stem was washed with distilled water

and then blotted with filter paper after 3 min.

In accordance with Rahayu et al. (2005), a tube of sil-

icon was then placed over the stem. The xylem sap was

driven into the tube using a xylem syringe, removed, and

stored on ice for a short period immediately to avoid tube

overflow. The xylem sap collection effort lasted for 3 h,

and the sap samples were then frozen at - 20 �C before

analysis. The sap was then analysed.

Biochemical analyses of rice leaves and xylem sap

The total soluble sugars were calculated with the ethanol

extract from the plant leaves and xylem sap using the

phenol–sulfuric acid method (Dubois et al. 1956). Two

grams of freshly ground sample was precisely weighed out,

and 5 ml of xylem sap solution was measured and boiled in

80% neutral aquatic ethanol for six hours.

Whatman No. 1 filter paper was used to filter the extract.

The clear solution was filtered and then diluted with

ethanol to a known amount. An aliquot of ethanol extract

(10 ml) was transferred to a clean, dry beaker in a water

bath and heated to dryness. The residues were then dis-

solved in water and transported quantitatively to the

desired level in a volumetric flask of 25 ml. The mixture

consisted of 1 mL of water extract, 1 mL of phenol solu-

tion, and 5 mL of sulfuric acid (96%). Measurements taken

with a Nano-quant Infinite M 200 spectrophotometer were

compared against measurements of a blank prepared with

water instead of the sample and used to determine the O.D.

at 490 nm. A plot of the O.D. values for different standard

glucose solutions was used as a standard curve.

Bradford’s (1976) method was used to determine the

protein content of the leaves and xylem sap, while the

Gilmour et al. (2000) method was used to assess the proline

content. The plant leaves and panicles of every species

were homogenized in 1 mL of 3% (w/v) room temperature

sulfosalicylic acid and then stored at 4 �C overnight. In

addition, acid ninhydrin and glacial acetic acid were mixed

into the supernatant. The mixture was heated to 100 �C in a

water bath for 45 min. An ice bath was then used to halt the

reaction. Toluene was used to extract the mixture, and the

absorbance was measured at 519 nm wavelength with a

Nano-quant Infinite M 200 spectrophotometer. A calibra-

tion curve was used to measure the sample’s proline con-

centration, which was expressed as mg proline g-1 FW.

Lipid peroxidation

The complete thiobarbituric acid-reactive substances

(TBARS) content was used to estimate the oxidative

damage to membrane lipids, which was expressed as MDA

equivalents. The level of MDA was calculated according to

Hendry et al. (1993).

Hydrogen peroxide content

The process described in Velikova et al. (2000) with

modifications was used to measure the hydrogen peroxide

content. Rice leaf extract (0.25 g) and a 5 ml xylem sap

solution were mixed at 0 �C with 3 ml trichloroacetic acid

and 0.1 g activated charcoal. A supernatant aliquot of

0.5 mL (pH 7.1) was applied to 10 mM potassium phos-

phate buffer (PP 7.0) with 1 M KI at 0.5 mL. The content

of H2O2 was expressed in Nmol-1 FW, and the absorbance

was measured at 390 nm.

Antioxidants

Leaves (0.5 g) and 5 ml of xylem sap were homogenized in

a mortar and pestle for enzyme extraction in 50 mM

potassium phosphate buffer (pH 7.8) containing 1 mM

EDTA, 3 mM 2-mercaptoethanol, and 2% (w/v) polyvinyl-

polypyrrolidone. After centrifugation at 16,000 g, the

bFig. 5 Influence of high temperature stress and soil fertilization

treatments on SOD, POD, CAT and APX activities in xylem sap of

two rice cultivars. Error bars above means denote LSD of interaction

at the 0.05 probability level. HHZ: Huanghuazhan (heat tolerant), IR-

64 (heat susceptible). HDT: high day temperature, HNT: high night

temperature, AT: ambient temperature (control)
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enzyme activity in the supernatant was measured at 4 �C
for 30 min.

Peroxidase activity (POD) and catalase activity (CAT)

were also evaluated using the procedures of Bai et al.

(2009). The solution for the POD test contained 50 mM

(pH 7.8) phosphate buffer, 25 mM guaiacol, 20 mM

(H2O2) and 0,50 ml of a 3 ml enzyme extract reaction

solution. One unit of POD activity was expressed as a 0.01-

unit/min shift in absorbance. The CAT reaction solution

contained 50 mM (pH 7.0) phosphate buffer, 200 mM

H2O2, and 50 L enzyme extract (3 ml). The enzyme extract

was used to start the reaction. To measure the reaction

solution uptake at 240 nm every 30 s, a Nano-quant (In-

finite M 200 spectrophotometer was used. As for POD,

absorbance shifts of 0.01 units min-1 in the CAT reaction

solution were used to express CAT activity. Ascorbate

peroxidase activity was determined as described in Nakano

and Asada (1981). To assess ascorbate peroxidase activity,

the decrease in ascorbate absorption at 290 nm was

detected. The enzyme extract, 50 mM (cool, pH 7),

0.5 mM ascorbate, 0.5 mM H2O2, and 0.1 mM EDTA

were included in the reaction mixture, which had a 0.3 ml

final volume. The reaction started after the hydrogen per-

oxide was added. A molar extinction coefficient of

2.8 mM-1 cm-1 was used to calculate the ascorbate per-

oxidase activity. The enzyme activity was measured in

units of mg-1 protein. One enzyme unit at 25 �C was

required to break down 1 mol of the substrate per minute.

Glutathione reductase (GR) activity was assessed using

the Foster and Hess (1980) system. The amounts of enzyme

required to degrade 1 mol H2O2 per minute, resulting in the

formation of 1 mol tetraguaiacol (50% controlled), and to

degrade 1 mol ASA per minute as well as the reduction in

A340 per minute were measured to describe the GR

activity. A 3% sulfosalicylic acid extract was used to assess

the contents of GSH and GSSG, as described in Smith’s

method (1985). The contents of GSH and GSSG were

spectrophotometrically calculated with an enzyme recy-

cling test at 412 nm. 5-dithiobis-2-nitrobenzoic acid and

NADPH reduction in known amounts of GR involves the

sequential oxidation of GSH. The GSSG content in the

extracts was measured using 2-vinyl pyridine.

Monodehydroascorbate reductase (MDHAR) activity

was calculated by monitoring NADH oxidation at 340 nm

(Hossain et al. 1984). The assay used involved 50 mM

K2HPO4 (pH 7.7), 150 lM NADH, 500 lM ASC, 0.4 U

ascorbate, and 50 ll enzyme extract. The difference in the

oxidation rate in the absence of ascorbate oxidase was

determined. At 340 nm, the MDHAR activity was mea-

sured with a 6.22 mM-1 cm-1 coefficient for NADH.

Monodehydroascorbate reductase (DHAR) activity was

calculated as defined by Hossain and Asada (1984), with

slight modifications. The sample was then centrifuged for

20 min at 18,000 g at a temperature of 4 �C in an extrac-

tion buffer (50 mM Tris HCl, pH 7.4, 100 mM NaCl,

2 mM EDTA, and 1 mM MgCl2). The test result was

calculated as the ASC output by measuring the increase in

absorption at 265 nm of 50 mM K2HPO4/KH2PO4, pH 6.5,

0.5 mM DHA and 1 mM GSH. An extinguishing coeffi-

cient of 14 mM-1 cm-1 was used to calculate the DHAR

activity for ASC at 265 nm.

Ascorbate (ASC) and Dehydroascorbate (DHA)

enzyme assays for the rice leaves and xylem sap

The ascorbate content was determined following the Foyer

et al. (1983) method, with some modifications. Ground

samples were added to liquid nitrogen with 0.25 g of per-

chloric acid, and 1 ml 0.25 M perchloric acid was added to

5 ml of sap. The crude extract was centrifuged at 4 �C at

10.000 g for ten minutes, and an aliquot of the supernatant

(0.5 ml) and 0.1 ml 0.12 M NaH2PO4 were decanted into a

different test tube (pH 5.6). Afterward, K2CO3 was added

drop wise to raise the pH to 5–6. In this case, centrifugation

was performed, and the supernatant was removed to test for

ASC, DHA and insoluble KClO4. The ASC content was

calculated spectrophotometrically at 265 nm in 1 M

NaH2PO4 buffer, pH 5.6, with 1 U ascorbate oxidase. After

incubating with 50 mM dithiothreitol, the overall ascorbate

content was measured (DTT). The difference in ascorbate

content from that in the reaction with DHA was taken as

the total ascorbate contents.

Statistical analysis

All treatments were replicated four times. The data col-

lected were analysed using Statistics 9.0 software (Ana-

lytical Software, Tallahassee, FL, USA) in a completely

randomized three-factor design with the least significant

difference (LSD) test. The links between various attributes

were calculated using a SIGMA plot with polynomial

regression (Systat Software Inc, San Jose, CA, USA).

bFig. 6 Influence of high temperature stress and soil fertilization

treatments on ASC, GSH, GR and GSSC activities in xylem sap of

two rice cultivars. Error bars above means denote LSD of interaction

at the 0.05 probability level. HHZ: Huanghuazhan (heat tolerant), IR-

64 (heat susceptible). HDT: high day temperature, HNT: high night

temperature, AT: ambient temperature (control)
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Results

Production of Osmolytes in leaves and xylem sap

In the xylem sap (Fig. 1) and leaves (Fig. 2) of both rice

cultivars, significant variations in the total soluble sugars,

soluble protein, and soluble proline contents were observed

under high-temperature stress and various soil fertilization

treatments. However, the interactive effects of high-tem-

perature stress and soil modifications were not significant

(Tables 1 and 2).

Compared to AT, the high-temperature treatments sig-

nificantly decreased the soluble proline content, soluble

sugar content, and soluble protein content in leaves and

xylem sap (p B 0.01). However, high nocturnal tempera-

tures decreased the osmolyte contents of both cultivars

more compared to HDT, though the xylem sap of both

cultivars was shown to be lower in osmolytes under HDT

than under AT and HNT (Fig. 2). The combined use of

biochar and P was the best treatment for osmolyte pro-

duction of all the other soil modification treatments. Bio-

char alone was the second best treatment for the leaves and

xylem sap of both cultivars, except with regard to the

proline content of young leaves. P resulted in higher pro-

line contents than biochar alone under HNT, followed by

the combined use of biochar ? P.

Lipid peroxidation and Hydrogen peroxide
production in leaves and xylem sap

The contents of H2O2 and MDA in the xylem sap (Fig. 3)

and leaves (Fig. 4) of the two rice cultivars were signifi-

cantly influenced by the high-temperature stress and soil

treatments, as shown in Tables 1 and 2, respectively. In the

leaves and xylem sap of both cultivars, higher MDA and

H2O2 levels were observed under HNT compared to under

HDT and AT (Figs. 3 and 4). Additionally, the H2O2

content in IR-64 seedlings under the high-temperature

treatments ranged between 84–47 nmol/g FW and

37–42 nmol/g FW, whereas that in sap ranged from

29–12 nmol/g FW to 67–43 nmol/g FW. H2O2 levels were

between 59.66 and 83.94 nmol/g FW in leaves and

between 48.95 and 66.57 nmol/g FW in xylem sap. The

combination of biochar and P was shown to be far more

effective at reducing the adverse impacts of high temper-

atures compared to the other soil modification treatments.

Of all treatments, this treatment resulted in the lowest

MDA and H2O2 levels. Biochar alone was the second best

treatment with regard to these characteristics (Figs. 3 and

4).

Antioxidant production in leaves and xylem sap

In the leaves and xylem sap of the rice cultivars, the con-

centrations of antioxidant enzymes such as ASC, GR,

GSSG, SOD, APX, POD, CAT, and GSH were signifi-

cantly different under high-temperature stress and the soil

treatments (Figs. Figs. 5,6,7and8). Nonetheless, there was

an insignificant interactive effect of both factors on the rice

cultivar IR-64, on the SOD and GR concentrations in sap in

HHZ, and in the POD activity in xylem sap (p B 0.05)

(Tables 1 and 2).

The antioxidant activity was higher in young leaves, but

not in xylem sap, under HNT in both IR-64 and HHZ.

Additionally, cv. IR-64 produced fewer antioxidants under

HNT compared to under AT and produced the least under

HDT. HHZ showed the opposite results, exhibiting higher

antioxidant activity under HNT. These results suggest that

HHZ has a more efficient ROS scavenging mechanism than

IR-64. The most effective soil amendment treatment for

minimizing the adverse effects of high-temperature stress

and activating antioxidants in the leaves and xylem sap of

both cultivars was the combination of biochar and P

(Figs. 5,6,7and8).

Under biochar ? P application, all antioxidants were

highly regulated in the leaves and xylem sap of both cul-

tivars, and this treatment resulted in higher antioxidant

activity in both cultivars compared to other treatments. In

both cultivars, applying biochar alone was observed as the

second best treatment in terms of antioxidant activity.

GSSG was the only antioxidant that exhibited contrasting

activity patterns; it showed higher activity under the con-

trol treatment and P alone. This indicates that the use of

biochar can decrease the activity of certain antioxidants

while increasing the activity of other antioxidants.

Discussion

In this study, the impact of biochar use on the accumulation

of osmolytes, the production of ROS, and antioxidation in

leaves and xylem sap in two rice cultivars were examined

with and without P under high-temperature stress. In both

rice cultivars, the accumulation of various metabolites,

such as protein, free proline, and total soluble sugar, was

significantly reduced by high-temperature stress. Jain et al.

bFig. 7 Influence of high temperature stress and soil fertilization

treatments on SOD, POD, CAT and APX activities in leaves of two

rice cultivars. Error bars above means denote LSD of interaction at

the 0.05 probability level. HHZ: Huanghuazhan (heat tolerant), IR-64

(heat susceptible). HDT: high day temperature, HNT: high night

temperature, AT: ambient temperature (control)
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Fig. 8 Influence of high

temperature stress and soil

fertilization treatments on ASC,

GSH, GR and GSSC activities

in leaves of two rice cultivars.

Error bars above means denote

LSD of interaction at the 0.05

probability level. HHZ:

Huanghuazhan (heat tolerant),

IR-64 (heat susceptible). HDT:

high day temperature, HNT:

high night temperature, AT:

ambient temperature (control)
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(2007) have also reported similar results. By reducing

carbohydrate metabolism in some genes, high-temperature

regimens can alter carbon metabolising enzymes, sucrose

synthesis, and starch accumulation. Furthermore, most

upstream molecular malfunctions that result in altered

carbohydrate metabolism and deficiencies under high-

temperature conditions will disrupt invertase-mediated

saccharose hydrolysis in the cell wall, resulting in sac-

charose biosynthesis failure. Previous studies have shown

that the leading substances for regulating osmotic damage

and protecting the cell membrane structure under different

stress conditions are the soluble sugars and protein that are

excreted by plants (Jain et al. 2007; Zhang et al. 2007;

Ruan et al. 2010).

We have observed significant variation in antioxidant

activity in the young leaves and xylem sap of both cultivars

when they were exposed to various high-temperature

treatments. Of the two cultivars, the antioxidant activity of

HHZ, i.e., the GSH, GR, ASC, APX, CAT, POD, and SOD

activities, were higher in the leaves and xylem sap at high

temperatures. In contrast, the antioxidant activity of IR-64

at high temperatures was lower compared to that at AT.

HHZ was more resistant to high temperatures, which may

be attributable to its ability to maintain higher antioxidant

activity even at high temperatures. The high sensitivity of

IR-64 to high-temperature stress could be due to the low

antioxidant activity in its young leaves and xylem sap.

SOD is a metalloenzyme involved in the catabolism of O2-

to O2 and H2O2. It is formed in several cell compartments.

Changes in SOD activity and the upregulation of this

enzyme are used as indicators of changes in O2• output

(Alscher et al. 2002; Faize et al. 2011). The higher SOD

activity in HHZ leaves and xylem sap could indicate that

the O2- output of Huanghuazhan was lower compared to

that of IR-64 or that HHZ plants were better able to sustain

SOD detoxification activity under HNT and HDT stress.

POD, CAT and H2O2 are also essential antioxidants which

directly remove O2. The leaves and xylem of the heat-

stressed HHZ plants in our sample showed higher POD,

CAT, APX, ASC, GR, GSSG, and GSH activities com-

pared to those of IR-64. Additionally, in our experiments,

the activities of GSH, GSSG, CAT, ASC, APX, GR, and

POD were higher in the leaves and xylem sap of the heat-

stressed HHZ plants compared to IR-64. ROS development

was accelerated in some plants in this study, as indicated

by GR, ASC, POD, GSSG, APX, GSH, and CAT beha-

viour. In several studies, CAT and POD levels in various

crops have been observed as higher under high-temperature

stress (Liu and Huang, 2000; Sairam et al. 2000; Alme-

selmani et al. 2006; França et al. 2007; Faize et al. 2011).

Increased POD and CAT activities can detoxify H2O2 due

to stress and in respond to the increased accumulation of

H2O2 during stress. However, in the case of wheat,

increased POD activity did not prevent excessive ROS

production; a decrease in POD activity was reported under

high-temperature stress (Almeselmani et al. 2006; Kumar

et al. 2008).

Similarly, an increase in CAT activity under heat stress

was reported by Demiral and Turkan (2004), while CAT

activity was reduced in rice roots under cadmium stress, as

observed by Hu et al. (2009). The role of APX in H2O2

scavenging in chloroplasts without CAT is well known

(Asada and Takahashi, 1987). Several studies of annual

crops have shown that APX activities have increased due to

heat stress and that heat-tolerant cultivars have increased in

popularity more rapidly compared to heat-sensitive culti-

vars (Dash and Mohanty, 2002; Sairam et al. 2000; Dash

and Mohanty 2002; Almeselmani et al. 2006).

Our results showed that APX activity in rice leaves and

xylem increased under HDT and HNT stress, possibly

because chloroplasts increased H2O2 scavenging mecha-

nisms and prevented the accumulation of H2O2, which led

to less heat damage. Another important antioxidant, GSSG,

is highly regulated when plants are exposed to stress.

However, in our study, this antioxidant was generated by

IR-64 more under HNT compared to under AT and was

more abundant in HHZ under HNT. This may have

occurred because the ratio of ROS production to antioxi-

dant activation was very high ROS production resulted in

excessive ROS accumulation. HHZ showed HNT toler-

ance, on the other hand, which may be due to the higher

GSSG output in its new leaves and xylem sap. GSH is also

a vital sulfur source and an important antioxidant. It

maintains a cellular redox balance and thereby scavenges

ROS (such as H2O2). GSH was shown to reduce ROS and

regenerate an additional antioxidant, ASC, during the

ascorbate glutathione cycle. Through the ascorbate perox-

idase reaction, the GSH reduces ROS and converts H2O2 to

H2O with ASC. Our work suggests that HHZ counteracts

oxidation caused by high-temperature stress by increasing

the output of these antioxidants (Shi et al. 2001). Similar

findings have also been reported by Jha et al. (2014) which

suggests that crop plant tolerance to high-temperature

stress is linked to increased antioxidant enzyme activity.

The treatments with various soil amendments, such as

biochar ? P application, biochar application alone, P

application alone were used to reduce the adverse effects of

high-temperature stress. The biochar ? P treatment was

the most effective soil amendment treatment for preventing

oxidation in rice plants by modulating antioxidant activity

and osmolyte accumulation (Glaser et al. 2002; Beesley

et al. 2010). Previous research has shown that biochar has a

positive impact on plant growth and regulation under

drought and salt stress and in polluted soil, but this study

aimed to determine how biochar affects rice plants under

high-temperature stress (Parvage et al. 2013). Our results
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revealed that the accumulation of proline, soluble protein,

and soluble sugars in the leaves and xylem sap of both rice

cultivars increased, but IR-64 plants exhibited lower

accumulation than HHZ plants. This may have been due to

differences in the cultivars’ genetic capacity to withstand

high temperatures, as well as differences in osmolyte

accumulation in the rice plant leaves and xylem sap. Under

water-stressed conditions, biochar may be used as an

ameliorating agent to improve tomato crop productivity

(Akhtar et al. 2014). According to recent studies, the

application of biochar may be a viable tactic for increasing

the productivity of crops (Major et al. 2010; Ventura et al.

2013; Basso et al. 2013). Some studies have shown that

high temperatures minimize enzyme activity and result in

metabolome reconfiguration (i.e., alterations in signalling

molecules, hormones, and other metabolic intermediates)

(Kaplan et al. 2004; Cook et al. 2004). Our observations

suggests the efficiency of biochar and resulted in improved

thermal stability and high-temperature production in rice.

Increased levels of antioxidants can help protect

enzymes and cell membrane integrity from damage caused

by heat stress-induced ROS. We observed that MDA and

H2O2 production in the xylem sap and leaves of both cul-

tivars was lower in the control treatment compared to when

biochar was applied alone. Compared to the control, P

application alone resulted in a significant reduction in

peroxidation in the young leaves and xylem sap. This may

be associated with the increased production and up regu-

lation of many ROS antioxidants. Rice plants respond to

increased oxidation in leaves and xylem sap by accumu-

lating osmolytes for osmotic regulation and producing

more antioxidants to scavenge ROS. However, compared

to a control to which no soil amendments were applied for

amelioration, our soil amendment treatments accelerated

the process of osmolyte accumulation. By increasing

osmolyte accumulation and antioxidant activity, bio-

char ? P was observed as the most suitable combination

for preventing the oxidation of various biological mem-

branes and organelles. This is supported by our results

showing that after biochar ? P, biochar alone was the

second most effective treatment, followed by P alone. This

indicates that biochar may have a synergistic effect on P

consumption, which would increase ATP production and

provide the plants with energy to resist high-temperature

stress (Cui et al. 2011; Parvage et al. 2013). Similar results

have been published in other studies on the application of

biochar to soils, indicating that biochar can increase or

decrease P uptake (Rondon et al. 2007).

Furthermore, the use of biochar can increase the activity

of certain enzymes as well as mineral absorption. Our

observations are consistent with those of Wang et al.

(2014), who suggested that use of biochar increased GPX,

CAT, POX, and SOD activity. They also observed that

biochar improved plant antioxidant capacity and mitigated

oxidative stress damage by lowering phenolic acid

concentrations.

Conclusion

High-temperature stress reduced osmolyte synthesis,

increased ROS production, and altered the antioxidative

defence systems of both rice cultivars, particularly at night.

Compared to the control, the biochar and phosphorus

(P) fertilization treatments significantly reduced the

harmful effects of high-temperature stress. For the majority

of the tested characteristics, biochar ? P application out-

performed the other treatments. Compared to IR-64,

Huanghuazhan performed better and accumulated more

osmolytes and fewer ROS under high-temperature stress.

The better tolerance of Huanghuazhan was correlated with

increased antioxidant activities under HDT and HNT

stress.
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