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Abstract Increasing the vulnerability of plants especially

crops to a wide range of cold stress reduces plant growth,

development, yield production, and plant distribution. Cold

stress induces physiological, morphological, biochemical,

phenotypic, and molecular changes in plants. Transcription

factor (TF) is one of the most important regulators that

mediate gene expression. TF is activated by the signal

transduction pathway, together with cis-acting element

modulate the transcription of cold-responsive genes which

contribute to increasing cold tolerance in plants. Here,

AP2/ERF TF family is one of the most important cold

stress-related TF families that along with other TF families,

such as WRKY, bHLH, bZIP, MYB, NAC, and C2H2

interrelate to enhance cold stress tolerance. Over the past

decade, significant progress has been found to solve the

role of transcription factors (TFs) in improving cold tol-

erance in plants, such as omics analysis. Furthermore,

numerous studies have identified and characterized the

complexity of cold stress mechanisms among TFs or

between TFs and other factors (endogenous and exoge-

nous) including phytohormones, eugenol, and light. The

role, function, and relationship among these TFs or

between TFs and other factors to enhance cold tolerance

still need to be clarified. Here, the current study analysed

the role of AP2/ERF TF and the linkages among AP2/ERF

with MYB, WRKY, bZIP, bHLH, C2H2, or NAC against

cold stress tolerance.

Keywords Abiotic stress � Cold stress � Cold tolerance �
Low temperature � Transcription factors

Abbreviations

CA Cold acclimation

TF Transcription factor

TFs Transcription factors

ABA Abscisic acid

JA Jasmonic acid

SA Salicylic acid

CAMP Cyclic adenosine monophosphate

ROS Reactive oxygen species

CBL Calcineurin-B Like proteins

CPKs/

CDPKs

Ca2?-dependent protein kinases

CIPKs CBL-interacting protein kinases

CBF C-repeat Binding Factor

DREB Dehydration-Responsive Element-Binding-

Factor

ICE1 CBF expression 1

COR Cold regulated genes

AP2/ERF APETALA2/Ethylene responsive factor

DRE/CRT Dehydration-responsive C-repeat

ChIP-seq Chromatin Immunoprecipitation-sequencing

ChIP-PCR Chromatin Immunoprecipitation

Polymerase Chain Reaction

SOD Superoxide

POD Peroxide
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CAT Catalase

APX Ascorbate peroxidase

BIN2 Brassinosteroid-Insensitive2

HOS1 Osmotically Responsive Gene1

GA Gibberellic Acid

phyA Phytochrome A

phyB Phytochrome B

PIFs Phytochrome-Interacting Factors

bHLH Basic helix-loop-helix

LEA Late embryogenesis abundant

bZIP Basic leucine zipper

MYB Myeloblastosis

Introduction

Global warming drives a drastic change in climate, which

is accompanied by an increase in intensity and frequency of

abiotic stresses including temperature, salinity, and drought

stress (Watt et al. 2020; Zandalinas et al. 2021). Mean-

while, plants are sessile and acclimatize to these abiotic

stresses (Beloiu et al. 2020). Cold stress (0–15 �C) and

freezing stress (\ 0 �C) are the major stresses in temperate

and few subtropical areas that adversely influence plant

growth and development, reduce yield production (Kang

et al. 2020; Ritonga et al. 2021), and also cause worldwide

economic losses in crop production. Cold stress generally

alters all physio-chemical pathways of a living cell that

influences enzyme activity, solute diffusion rates, mem-

brane fluidity, and reverse the interactions of macro-

molecules like DNA, RNA, and proteins (Gualerzi et al.

2003).

Cell membrane and cell structure stability is the key

point for plants survival under cold stress (Chen et al.

2018). Freezing stress leads to ice formation in plant tissues

(Puhakainen et al. 2004). This phenomenon causes into the

extracellular space of plant cells filled with ice crystals

which leads to dehydration due to the water flowing (Ri-

tonga and Chen 2020). Moreover, cold stress alters meta-

bolic pathways of anthers to induce pollen sterility (Sharma

and Nayyar 2016). Cold stress induces ovule infertility,

flower abortion, fertilization breakdown and low quality of

seed, and eventually lead to low grain yield in plants

(Thakur et al. 2010; Alisoltani et al. 2019). Cold/freezing

stress also leads to withered, dwarfism, and chlorosis in

plants (Yadav 2010; Gu et al. 2019).

The ability of plants to survive under cold stress is

referred to cold acclimation (CA) process (Kargiotidou

et al. 2010). It was shown that non acclimated Arabidopsis

thaliana is more sensitive to freezing stress (-20 �C)

compared to 4 �C cold-acclimated A. thaliana under (Yu

et al. 2021). The severity of the cold stress effect is related

to species genotype, stress intensity, and the duration of

cold exposure (Carvallo et al. 2011; Londo et al. 2018;

Mehrotra et al. 2020). Prerostova et al. (2021) found that

hormones such as salicylic acid (SA), jasmonic acid (JA),

and abscisic acid (ABA) were elevated in the crowns,

leaves, and plant roots under cold stress. Besides, antioxi-

dant enzyme activities protect plants from higher H2O2 and

O2
- content under cold stress (Zhao et al. 2021). Over the

past ten years (2010–2020), numerous studies had revealed

that transcription factors (TFs) are primary regulators

associated with cold stress (Mitsis et al. 2020). TFs play

vital roles in regulating signal transduction, as well as gene

expression under cold stress (Chen et al. 2015a). Several

cold stress-responsive TF families have been analyzed and

identified in numerous plant species (Mehrotra et al. 2020),

including AP2/ERF (Byun et al. 2015; Lv et al. 2019),

NAC (Nakashima et al. 2012), WRKY (Zhang et al. 2016),

bZIP (Liu et al. 2018a), bHLH (Yao et al. 2018), and MYB

(Su et al. 2014). Interestingly, TFs and stress-responsive

genes regulate the plant’s responses during and after cold/

freezing stress (Mizoi et al. 2012).

Kashyap and Deswal (2017) reported the expression of

C-repeat binding factor (CBF) gene from Hippophae

rhamnoides (HrCBF) initially increased after 0.5 h of 4 �C
exposure and continue to increase at 1 h, 3 h, 6 h, 24 h,

and 1 week of cold exposure. Overexpression of CBF1 of

Prunus persica (PpCBF) in Malus domestica was observed

for three years in three growing seasons. It was revealed

that PpCBF1 regulated anthocyanine and carotenoid con-

tent of transgenic apple during fall seasons, while PpCBF1

regulated plant height and lateral branches of transgenic

apple during summer. These results illustrated that

PpCBF1 functions during and after cold stress in trans-

genic M. domestica (Artlip et al. 2014). Some TFs also

interact with other TFs to activate or repress the general

transcriptional process (Eulgem and Somssich 2007). The

current study summarized the role of AP2/ERF TF and the

understanding of different TFs involved in cold stress to

develop plant species resistant to low temperatures to

achieve agricultural and forestry sustainability through TFs

utilization.

Cold stress tolerance mechanism in plants

Plants utilize structural modifications such as alteration of

membrane fluidity, protein structure transformation, and

cytoskeleton movement, to respond and adapt to cold stress

(Mehrotra et al. 2020). Previous studies have revealed that

plants have different sensory levels under cold stress (Luo

et al. 2020a). However, cold stress is initially sensed by

receptors on plant membrane, which alter membrane flu-

idity and subsequently induce calcium cation (Ca2?),

cyclic adenosine monophosphate (CAMP), and reactive

1954 Physiol Mol Biol Plants (September 2021) 27(9):1953–1968

123



oxygen species (ROS) production. Chloroplast also acts as

a signal modulator to the nucleus through ROS production.

Ca2? signaling acts as a mediator of plant response to cold

stress (Yuan et al. 2018). Meanwhile, Ca2?, CAMP, and

ROS signaling mediate signal transduction via Calcineurin-

B Like proteins (CBL), Ca2?-dependent protein kinases

(CPKs/CDPKs) and CBL-interacting protein kinases

(CIPKs) to the nucleus via a pathway interceded by ICE-

CBF/DREB TFs.

In general, cold stress mechanism in plants involves the

inducer of CBF expression 1 (ICE1), an inducer of CBF/

Dehydration-Responsive Element-Binding-Factor (DREB),

which is interacted with cold regulated genes (COR) sig-

naling pathway (Yang et al., 2019; Zhang et al., 2020).

Thus, AP2/ERF, WRKY, bZIP, MYB, bHLH, C2H2, and

NAC TFs regulate the expression of gene to activate cold

stress-responsive genes (CORs), resulting in physiological

responses to cold stress (Byun et al. 2015).

AP2/ERF, a key TF family in cold stress

The APETALA2/Ethylene responsive factor (AP2/ERF) is

a large transcription factor (TF) family in plants involved

in plant developmental processes and multiple environ-

mental stimuli (Klay et al. 2018). The most famous family

members of the AP2/ERF involved in cold stress are

DREBs, also known as CBFs. CBFs act as pioneers of plant

regulatory networks in response to cold stress and has

homologs in many plants. Overexpression of CBF homo-

logs from Oryza sativa, L. perenne, Zea mays, Hordeum

vulgare, and T. aestivum in transgenic tobacco or A.

thaliana have been found to increase the expression of

cold-regulated genes belonging to the CBF regulon and

cold/freezing tolerance (Mizuno et al. 2006; Medina et al.

2011; Rasmussen et al. 2013; Zhu et al. 2020).

Gene expression is an intricate mechanism, as well as

CBFs regulatory network in the plant during cold stress

(Shi et al. 2018). The role of CBFs in enhancing cold/

freezing tolerance in plants has been well established in

many species (Winfield et al. 2010; Artlip et al. 2014).

CBFs activate cold stress-responsive genes through specific

binding to the dehydration-responsive C-repeat (DRE/

CRT) cis-acting element (A/GCCGAC) in RD29A pro-

moters (Mizoi et al. 2012) to increase cold stress tolerance

in plants (Hao et al. 2017). However, CBFs may have

differential functions in cold stress response because dif-

ferent CBFs may activate disparate cis-acting elements.

Transient transactivation tests have revealed that all Vitis

riparia CBFs, except CBF5, can bind to DRE/CRT ele-

ments, whereas CBF3 and CBF4 prefer the CRT element

(Carlow et al. 2017). In Zoysia japonica, ZjDREB1.4

demonstrated solid transactivation activity under -8 �C
treatment, but weak binding to the DRE with ACCGAC as

the core sequence. The ZjDREB1.4 protein preferentially

binds to GCCGAC rather than ACCGAC (Feng et al.

2019). Using a TF-centered yeast one-hybrid (Y1H)

experimental system, Lv et al. (2019) showed that

BpERF13 activated the reporter gene by binding to

LTRECOREATCOR15 and MYBCORE cis-elements

under low temperature. Chromatin Immunoprecipitation-

sequencing (ChIP-seq) and Chromatin Immunoprecipita-

tion Polymerase Chain Reaction (ChIP-PCR) experiments

further proved that BpERF13 binds to the promoter of CBF

genes as well (Lv et al. 2019).

The up-regulated capacity of CBFs by low temperature

is related to species genotype (Sakuma et al. 2002) and

might be influenced by polymorphisms within promoter

sequences of plants (Pan et al. 2013). For instance, the

response of a cold-tolerant cultivar is slightly slower than

the cold-sensitive cultivar under cold stress in Brassica

rapa. Three OsCBFs genes (OsCBF1-3) showed a tempo-

rary induction in the CA process (10 �C) and were much

more intense in Indica rice (93–11 variety) than Japonica

rice (Nipponbare variety). OsLIP5 and OsLIP9 (the can-

didate downstream genes) were induced in Indica rice but

not in Japonica rice. This result indicates that polymor-

phisms within promoter sequences caused differential

expression of CBF regulon (Pan et al. 2013).

In addition, overexpression of CBFs improves cold

tolerance through elevating antioxidant enzymes, including

catalase (CAT), ascorbate peroxidase (APX), peroxidase

(POD), superoxide (SOD), and proline, and also reduce EL,

MDA, H2O2, and O2- contents under cold stress condition

(4 �C) (Sun et al. 2019; Hu et al. 2020). Li et al. (2018)

used Clustered Regularly Interspaced Short Palindromic

Repeats Associated Protein 9 (CRISPR-Cas9) system to

generate slcbf1 mutants. The mutants had lower proline and

higher antioxidant enzyme activity compared to wild-type.

The transgenic plants developed by the AP2/ERF TF

family have been listed in Table 1.

CBF genes are rapidly and transiently induced by low

temperature and attenuated during the later stages of the

cold stress response. In A. thaliana, the attenuation process

of CBFs is mediated by protein kinase Brassinosteroid-

Insensitive2 (BIN2) under freezing assay. The A. thaliana

seedlings were moved to 4 �C conditions for 3 d and fol-

lowed by - 9 �C treatment for 0.5 h. BIN2 associates with

and phosphorylates ICE1 under prolonged low-temperature

stress to facilitate the interaction between the E3 ubiquitin

ligase High Expression of Osmotically Responsive Gene1

(HOS1) and ICE1, resulting in degradation of ICE1 in A.

thaliana (Ye et al. 2019). On the contrary, cold-responsive

protein kinase 1 (CRPK1) which is acts as a negative cold

regulator phosphorylates 14–3-3 proteins. In the cytosol,

the phosphorylated 14–3-3 proteins were translocated to

nucleus and in association with CBFs disturbed the key
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cold-responsive CBF proteins under 4 �C for 3 h (Liu et al.

2017). Furthermore, when A. thaliana is imposed from

4 �C to -2 �C (2 �C per hour), the defense regulatory

genes, such as PAD4, SAG101, and EDS1 increased

the freezing tolerance by enhancing CBFs and their regu-

lons (Chen et al. 2015b).

It has been shown that CBFs/DREBs play a key role in

CORs induction to increase cold tolerance in plants.

Recently, it was revealed that the MEKK1–MKK2–MPK4

cascade and six additional mitogen-activated protein

kinases are involved in a gene regulatory network to reg-

ulate transcription factors and cold tolerance genes in Be-

tula platyphylla (Chen et al. 2021). Meanwhile, proteins

involved in reducing detrimental effects associated with

cold stress have also been developed and divided into three

categories: signaling molecules and regulatory proteins,

degradative and defensive proteins, and protective proteins.

It was proved that signaling, degradative, and defensive

proteins function from upstream to downstream levels and,

consequently, lead to cold tolerance improvement

(Kazemi-Shahandashti and Maali-Amiri 2018).

More importantly, DELLAs play a significant role in

plant growth and development which is act as pivotal

components of the GA signal transduction pathway in

plants. DELLA genes contribute to inhibiting plant growth

under cold stress (4 �C) in Glycine soja (Li et al. 2011).

DELLAs work jointly with CBFs to retard plant growth.

DELLAs contribute to the cold induction of CBF1, CBF2,

and CBF3 through JA signaling. In addition, CBF3

encourages DELLAs accumulation by suppressing GA

biosynthesis (Zhou et al. 2017). Taken together, JA plays a

pivotal role in modulating multiple plant growth and

development. It is an oxylipin compounds group that is

ubiquitous in the plant kingdom (Hu et al. 2017). Low

temperature-induced endogenous JA to activate ICE1 and

ICE2, resulting in the activation of CBF/DREB1 tran-

scriptional cascade (Hu et al. 2013).

Hu et al. (2017) also stated that JA positively modulates

the transcriptional pathway of CBF to up-regulate COR

genes, resulting in the cold tolerance improvement. In

addition, JA associates with several hormones signaling

pathways including ethylene, auxin, and gibberellin to

regulate cold tolerance (Liu and Timko 2021). In specific

circumstances, the outcome of hormone signaling may

induce Brassinazole-Resistant 1 (BZR1) and consequently

upregulates the expression of CBFs. BZR1 acts as an

upstream of CBF1 and CBF2 and directly regulates CBF1

and CBF2 expression to increase cold stress tolerance

without affecting plant growth (Barrero-Gil and Salinas

2017). Previous findings have also shown that BZR1 reg-

ulates other COR genes uncoupled with CBFs to regulate

plants response to freezing stress (-4 �C – (-7) �C) (Li

et al. 2017).

It has been reported that CBFs expression was also

influenced by several factors such as exogenous ABA,

circadian clock, eugenol, and light condition under cold

stress (Yang et al. 2005; Jung and Seo 2019). In S. mel-

ongena, CBFs were strongly, rapidly, and transiently

induced by exogenous ABA, indicating that SmCBFs might

be affected plant response to ABA (Zhou et al. 2018). Light

signaling components like phytochrome A (phyA), phy-

tochrome B (phyB), and Phytochrome-Interacting Factors

(PIFs) are involved in the expression of CBFs (Xu and

Deng 2020). The interaction of CBFs with PIF3 was

assumed to attenuate the mutually guaranteed destruction

of PIF3–phyB. The interaction of phyB and CBFs posi-

tively regulates freezing tolerance (-5 �C and -9 �C) by

degrading PIF1, PIF4, and PIF5 and eventually modulating

the expression of COR genes in A. thaliana (Jiang et al.

2020).

Light and cold signals were integrated and transduced

by molecular regulators to downstream signaling pathways.

These molecular regulators also control the transcription

process of numerous cold responsive and growth promot-

ing genes, consequently balancing plant growth and

development and increasing cold tolerance. Furthermore,

investigations on the effect of eugenol fumigation on the

chilling injury at 4 ± 0.5 �C to S. melongena have

revealed that eugenol treatment increased SmCBF expres-

sion. This finding suggests that eugenol has a potential

effect on alleviating cold injury in S. melongena (Huang

et al. 2019). In addition to CBF genes, Cytokinin Response

Factor2 (CRF2) and Cytokinin Response Factor3 (CRF3),

members of AP2/ERF, contribute to cold-responsive genes

and increase the lateral root adaptation of the plant to face

cold stress (1 �C) (Jeon et al. 2016).

Other cold stress-related TFs

Basic helix-loop-helix (bHLH) is eukaryotes second-lar-

gest protein family, which has important functions in plant

growth, survival, and the response to multiple abiotic

stresses, especially chilling and freezing stress. Many

studies have revealed that MYC-type bHLH activates the

expression of CBF genes. Overexpression of SlICE1a, a

member of MYC-type bHLH TF in N. tabacum, activated

the expression of CBF3/DREB1A and their target genes,

consequently increased proline levels, sugar contents, and

late embryogenesis abundant (LEA)proteins under 4 �C
treatment (Feng et al. 2013). In addition, expression of

CBFs, such as AtCBF1-3, cold-responsive genes

(AtCOR15A, AtCOR47, AtRD29A, and AtKIN1), and stress-

responsive genes NtDREB1-3, NtLEA5, NtP5CS, and

NtERD10C was also significantly increased in DlICE1 and

RmICE1-overexpressing lines under cold stress (4 �C)

(Yang et al. 2019; Zuo et al. 2019; Luo et al. 2020b).
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Protein–protein interaction analysis in transgenic N.

tabacum showed that MabHLH1, MabHLH2, and

MabHLH4 interacted with each other to form heterodimers

in the nucleus. Indeed, those genes also interacted with

MaICE1, an important upstream component of cold sig-

naling. The interaction of MabHLHs with MaICE1 might

form a vast protein complex in the nucleus (Peng et al.

2013a). PuICE1 can physically interact with PuHHP1

protein to increase PuDREBa transcriptional levels under

cold stress conditions (Huang et al. 2015). On the other

hand, the interaction of MYC67 and MYC70 with ICE1

adversely affects cold tolerance in A. thaliana. Overex-

pression of MYC67 and MYC70 enhanced the cold sensi-

tivity and down-regulated the cold-responsive gene

expression. The cis-elements in the CBF3/DREB1A pro-

moter bound by MYC proteins disrupt ICE1 interaction

with the cis-elements (Ohta et al. 2018).

The overexpression of basic leucine zipper (bZIP) genes

and CBFs significantly enhanced the resistance of chilling

injury and cold storage in P. persica (Monteagudo et al.

2018). bZIP genes are involved in freezing stress and act as

positive regulators (Cai et al. 2018). However, TabZIP6

has been found to negatively regulating freezing tolerance,

where CBFs and several COR genes were down-regulated

in TabZIP6-overexpressing lines by cold treatment.

Other studies also revealed that the overexpression of

C2H2 Zinc finger proteins family gene (SlCZFP1) in

transgenic O. sativa and A. thaliana induced the COR gene

constitutive expression and increased freezing tolerance for

non-acclimate transgenic plants under freezing stress con-

ditions (Zhang et al. 2011). In banana, MaC2H2-2 and

MaC2H2-3 were specifically induced by cold stress, which

subsequently repressed MaICE1 expression (Han and Fu

2019). Sequence analyses revealed that a CRT/DRE ele-

ment was found in ZFP245 promoter region and ZFP182

(Huang et al. 2005, 2012).

Another TF family that contributes to cold stress is

Myeloblastosis (MYB) TF. The overexpressing of

MdMYB15L in red-fleshed apple callus prevented the

expression of MdCBF2 and resulted in decreased cold

tolerance but did not give any effect on anthocyanin levels

after cold treatment. ChIP-PCR and electrophoresis

mobility shift assay (EMSA) analysis indicated that

MdMYB15L binds to type II cis-acting element found in the

promoter of MdCBF2 under 4 �C treatment (Xu et al.

2018). A study of MdMYB108L expression under cold

stress showed that MdMYB108L upregulated MdCBF3 by

binding its promoter region to increase cold tolerance in M.

domestica. Conversely, the expression of MdHY5 was

significantly downregulated by MdMYB108L (Wang et al.

2019d). EMSA and transient expression assay proved that

MdHY5 positively regulated the transcription of MdCBF1

by binding to the G-Box motif of its promoter (An et al.

2017). Furthermore, CBF-independent cold-regulated

genes expressions were also regulated by MdHY5 under

4 �C for ten days. Similar to MdMYB108L, MdMYB73

increased the expression of MdCBF2- MdCBF5 in trans-

genic M. domestica (Wang et al. 2019d), illustrating that

MdMYB73 enhanced cold tolerance through CBF cold

response pathway under 4 �C condition (Zhang et al.

2017).

The interactions of some cold stress-related genes in

plants were shown in Fig. 1. The current study identified

the interaction network using STRING version 11.0

(https://string-db.org/cgi/) (STRING 2021). AtACS2

showed co-expression patterns with other genes such as

AtERF2, AtWRKY46, AtMYB73, AtABF2, and AtRHL41.

Co-expression is the simultaneous expression of two or

more genes which makes it impossible to determine whe-

ther AtERF2 activates AtACS2 and AtMYB73 activates

AtRHL41, or AtMYB73 activates AtWRKY46, or whether

another gene activates them in A. thaliana under cold

stress. In addition, RHL41 and MYB73 were experimentally

found that enhance CA and abiotic stress tolerance in

plants (Iida et al. 2000; Rasmussen et al. 2013; Barrero-Gil

et al. 2016).

MdMYB88 and MdMYB124 are examples of genes that

promote anthocyanin accumulation in response to cold

stress. MdMYB88/MdMYB124 from R2R3-MYB TF acts as

a key regulator of the MdCCA1, which enhances the

expression of MdCBF3 under cold stress (4 �C) in M.

domestica or A. thaliana (Xie et al. 2018). Interestingly,

VcMYB4a expression in Vaccinium corymbosum was

downregulated by cold, salt, and drought treatment, but it

was induced by freezing and heating. Additionally, gene

expression enhanced abiotic sensitivity under cold, freez-

ing, heat, drought, and salt stress in V. corymbosum callus,

illustrating that VcMYB4a might act as an important

repressor of abiotic stress in this species (Zhang et al.

2020). OsMYB30 down-regulated a few b-amylase (BMY)

genes during cold stress (4 �C), bonded to the promoters of

BMY genes and interacted with OsJAZ9 to repress BMY

gene expression (Lv et al. 2017).

Regarding the OsMYB30, the use of CRISPR–Cas9

significantly increases yield production and cold stress

resistance in O. sativa. Zeng et al. (2020) used the

CRISPR–Cas9 system to edit two target sites of OsMYB30

with high efficiency 63% for OsMYB30-site1, and 58% for

OsMYB30-site2. The results showed that the osmyb30

mutants exhibited enhanced cold tolerance. The study

proved that cold stress resistance and high performance

rice varieties can be resulted via gene-editing techniques.

However, there is still little information concerning how

PLANT U-BOX 25 and 26 (PUB25 and PUB26) contribute

the enhancement of CBF gene expression by degrading
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MYB15 to improve cold tolerance in A. thaliana under 4 �C
treatment (Wang et al. 2019c).

Meanwhile, cold signaling pathway was positively reg-

ulated by CsWRKY46 in an ABA-dependent manner.

Numerous cis-regulatory elements were found in the

upstream region of WRKY genes in C. sativus. Phytohor-

mones (MeJa, ABA, SA, GA, auxin, and zeatin) were

associated with WRKY expression to obtain cold tolerance

enhancement (Zhao et al. 2015; Govardhana and Kumudini

2020). CsWRKY46 associates with the W-box (TTGACC/

T) in the ABA-responsive transcription factor (ABI5) to

increase the expression of RD29A and COR47, the member

of stress-inducible genes. Consequently, C. sativus over-

expressing CsWRKY46 and A. thaliana over-expressing

CsWRKY46 had higher survival rates, higher proline

accumulation, and less EL and MDA levels under 4 �C
cold stress (Zhang et al. 2016). An increase in cold stress

tolerance can be seen by a higher survival rate (Ju et al.

2020).

Overexpression of SlNAM1, a member of NAC TF

family in transgenic N. tabacum increased minor wilting,

photosynthetic rates (Pn), germination rates, and osmolytes

contents under chilling stress. Reduction in H2O2 contents

under cold stress has a pivotal role in minimizing the cell

membrane’s oxidative damage in transgenic N. tabacum

overexpressed SlNAM1. The increased cold stress tolerance

in transgenic N. tabacum was also assumed to increase

transcripts of NtDREB1, NtP5CS, and NtERD10s (Li et al.

2016). Activation of the DREB/CBF–COR pathway caused

by over-expression of GmNAC20 under freezing stress may

promote and control lateral root formation through auxin

signaling-related genes alteration (Hao et al. 2011). Like-

wise, PbeNAC1 protein associates with PbeDREB1 and

PbeDREB2A to enhance mRNA levels in some stress-as-

sociated genes in P. betulifolia under cold stress (Jin et al.

2017).

Other studies in NAC genes from M. domestica found

that MdNAC029 acts as a negative regulator of cold stress.

Fig. 1 Interaction network

analysis of TFs genes identified

in A. thaliana by using

STRING. The interaction

network has significantly more

interactions than expected. This

means that 42 A. thaliana
proteins have more interactions

among themselves, indicating

the proteins are at least partially

biologically connected as a

group. The line color is related

to the type of interaction. The

green line shows gene

neighborhood, the pink line

means experimentally

determined, the black line

means co-expression, the dark

blue line means gene co-

occurrence, and the blue line

means protein homology. (For

more interpretation of the color

codes in this figure legend, the

reader is referred to the web

version of this network analysis

(https://string-db.org/cgi/

network?taskId=

btbDj6SKVsTf&sessionId=

b4DLtXYWAftY)
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Over-expression of MdNAC029 decreased cold tolerance in

calli of M. domestica and transgenic A. thaliana. These

findings were supported by EMSA and transient expression

assays which illustrated that MdNAC029 suppressed the

MdCBF1 and MdCBF4 expression by binding to their

promoters (An et al. 2018). Moreover, Liu et al. (2018b)

found that ShNAC1 has a negative role in cold stress tol-

erance in plants. ShNAC1 acts as a negative regulator in

cold tolerance in S. lycopersicum by regulating the ethy-

lene biosynthesis and signal transduction pathways.

A potential transcriptional regulatory network, including

AP2/ERF, MYB, bZIP, bHLH, and NAC, is directly

associated with other gene expressions (Wang et al.

2019b). CsLEA (a novel gene encoding a late embryoge-

nesis abundant protein from LEA_3 subfamily protein) was

significantly induced by cold stress, illustrating that CsLEA

associated with TFs increases cold tolerance in plants.

Furthermore, it was assumed that low molecular weight

and high hydrophilicity of CsLEA1 might be related to the

heterologous expression of CsLEA1 which increased the

cold stress tolerance of Escherichia coli and yeast (Wang

et al. 2019b). MfNAC3, an NAC TF from M. falcate

increased MtICE3, MtCAS15, and MtCAS31 expression

under cold treatment in M. truncatula. ICE1 is an important

TF in regulating the expression of CBFs, while CASs are

important regulons of CBFs. Consequently, MfNAC3 binds

to the CATGTG and CACG motifs in the promoter region

of MtCBF4 to increase cold tolerance in M. truncatula (Qu

et al. 2016). In transgenic A. thaliana overexpressed

LlNAC2 from L. lancifolium, various stress-related cis-

acting regulatory elements were demonstrated in the

LlNAC2 promoter and this promoter was able to enhance

GUS activity under cold stress. LlDREB1 and LlZFHD4

bind and interact with the LlNAC2 promoter to enhance

stress tolerance (Yong et al. 2019). Besides the CBF-de-

pendent pathway, NAC genes improve freezing stress tol-

erance through ABA-dependent pathway, a phenomenon

that might be related to the enhancement of expression

level of stress-responsive genes and scavenging capability

of ROS (Zhao et al. 2016).

Conclusion and future perspective

Molecular approaches have been used to identify the role,

function, regulation, interaction, and changes of AP2/ERF

TF and other TFs under cold stress, such as transgenic

breeding (overexpression and gene silencing), Y2H,

EMSA, ChIP Seq, omics analysis, and CRISPR-Cas9 along

with bioinformatics tools and web-based genetic database

as well to improve cold stress resistance in plants (Fig. 2).

Though transgenic technique promises to be a good source

of cold stress resistance plant (Shahzad et al. 2021), but this

technique still has several shortcomings such as unexplored

metabolic pathways. Therefore, the omics analysis oupled

with CRISPR-Cas9 and bioinformatics tools have been

used to reveal several functional features in the plant

genome to provide the best plant characteristics (Raza et al.

2021; Razzaq et al. 2021).

As shown in Fig. 3, CBFs (a member of AP2/ERF TF

family) were activated or upregulated by the bHLH, bZIP,

C2H2, MYB, WRKY, and NAC TFs. CBFs bind to the

promoter of COR genes and induce the cold stress genes

expression to improve cold/freezing tolerance. Contrary,

TCP TF contributed to repressing CBFs expression resulted

in reducing cold tolerance in plants. In addition, other

novel genes and factors such as light, hormones, and other

exogenous treatments related to cold stress are needed to

improve our understanding of cold stress mechanisms in

plants. The intricate physiological and molecular mecha-

nism in plants under cold/freezing stress calls for

researchers to identify other possible factors related to the

cold stress mechanism. An understanding of such factors

could allow scientists to identify the most

Fig. 2 Schematic illustration of improvement techniques particularly

targeted modifications in TFs via transgenic breeding and CRISPR/

Cas9. Different TFs that can be used for incorporation of cold or

freezing stress tolerance in plants. TFs activate or modify different

signal transduction pathways such as up-regulate or down-regulate

targeted genes. TFs alleviate cold/freezing stress and consequently

increase cold stress resistance
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suitable molecular breeding technique that can provide the

best cold stress tolerance plants.
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