
Chemical-genetic interrogation of RNA polymerase mutants 
reveals structure-function relationships and physiological 
tradeoffs

Anthony L. Shiver1,2, Hendrik Osadnik3, Jason M. Peters3,4, Rachel A. Mooney5, Peter 
I. Wu6, Kemardo K. Henry7, Hannes Braberg8,9, Nevan J. Krogan8,9,10,11, James C. Hu6, 
Robert Landick5,7,*, Kerwyn Casey Huang2,12,13,*, Carol A. Gross3,14,15,*,†

1Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, 
USA

2Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, 94305, 
USA

3Department of Microbiology and Immunology, University of California San Francisco, San 
Francisco, CA 94158, USA

4Present address: Pharmaceutical Sciences Division, School of Pharmacy, University of 
Wisconsin—Madison, Madison, Wisconsin, USA, Department of Bacteriology, University of 
Wisconsin—Madison, Madison, Wisconsin, USA, Department of Medical Microbiology and 
Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA, Great Lakes 
Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin—Madison, 
Madison, Wisconsin, US

5Department of Biochemistry, University of Wisconsin—Madison, Madison, WI, 53706 USA

6Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843

7Department of Bacteriology, University of Wisconsin—Madison, Madison, WI, 53706 USA

8Department of Cellular and Molecular Pharmacology, University of California San Francisco, San 
Francisco, CA 94158, USA

9Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 
94158, USA

10Gladstone Institutes, San Francisco, CA 94158, USA

11Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA

*Corresponding authors: landick@bact.wisc.edu, kchuang@stanford.edu, cgrossucsf@gmail.com.
†Lead contact: Carol Gross (cgrossucsf@gmail.com)
Author Contributions
Conceptualization, A.L.S., H.B., N.J.K., R.L., C.A.G.; Methodology, A.L.S., H.B., N.J.K., C.A.G.; Software, A.L.S., P.I.W.; 
Investigation, A.L.S., H.O., J.M.P., R.A.M., K.K.H.; Resources, A.L.S., H.O., J.M.P., K.K.H.; Data curation, A.L.S., P.I.W.; Writing 
- Original Draft, A.L.S., R.L., K.C.H., C.A.G.; Writing - Review and Editing, A.L.S., H.O., J.M.P., R.A.M., P.I.W., K.K.H., H.B., 
N.J.K., R.L., K.C.H., C.A.G.; Visualization, A.L.S., P.I.W.; Supervision, N.J.K., J.C.H., R.L., K.C.H., C.A.G.; Funding Acquisition, 
A.L.S., N.J.K., J.C.H., R.L., K.C.H., C.A.G.

Declaration of interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Mol Cell. Author manuscript; available in PMC 2022 May 20.

Published in final edited form as:
Mol Cell. 2021 May 20; 81(10): 2201–2215.e9. doi:10.1016/j.molcel.2021.04.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



12Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, 
CA 94305, USA

13Chan Zuckerberg Biohub, San Francisco, CA 94158, USA

14Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, 
CA 94158, USA

15California Institute of Quantitative Biology, University of California San Francisco, San Francisco, 
CA, 94158, USA

Abstract

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out 

transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP 

mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry­

relevant environments, yet a paucity of systematic analyses hampers our understanding of the 

fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis 

of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that 

clustering mutant phenotypes increases their predictive power for drawing functional inferences, 

and demonstrate that some RNA polymerase mutants both decrease average cell length and 

prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical­

genetic interactions provide a general platform for interrogating structure-function relationships 

in vivo and for identifying physiological trade-offs of mutations, including those relevant for 

disease and biotechnology. This strategy should have broad utility for illuminating the role of other 

important protein complexes.
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Introduction

Multi-subunit RNA polymerases are responsible for transcription in all organisms. The 

core RNA polymerase (RNAP) enzyme (β’, β, α2, ω) is conserved across all domains of 

life (Jokerst et al., 1989; Lane and Darst, 2010; Sweetser et al., 1987). Bacterial-specific 

initiation factors, called sigmas (σs), transiently associate with the core complex to provide 

promoter recognition and assist in melting promoter DNA during initiation (Gruber and 

Gross, 2003). During elongation, RNAP associates with NusA, which enhances pausing and 

intrinsic termination at specific sequences (Artsimovitch and Landick, 2000), and NusG 

(Spt5 in archaea and eukaryotes), the only universally conserved elongation factor, which 

modulates elongation and ρ-dependent termination (Burova et al., 1995; Li et al., 1993). 

Termination in eubacteria is facilitated either by RNA structure (intrinsic termination) or 

by the termination factor ρ, which uses its helicase activity to release the transcript and 

recycle the RNAP complex (Figure 1A). Additionally, bacterial RNAPs differ from archaeal 

and eukaryotic RNAPs, for which the core enzymes acquired peripheral subunits (e.g., 
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Rpb4,5,7–10,12 in RNAPII), by instead having acquired lineage-specific insertions in β’ 

and β (called sequence insertions 1–3 (SI1–3) in E. coli) whose functions remain largely 

unknown (Artsimovitch et al., 2003; Lane and Darst, 2010).

The central role played by this enzyme complex, both in orchestrating transcription and 

integrating diverse signals, is reflected in the pleiotropic phenotypes that arise from 

mutations in RNAP. Efforts to evolve E. coli in maladapted environments, such as growth 

on glycerol (Cheng et al., 2014), ethanol (Haft et al., 2014), or at elevated temperatures 

(Tenaillon et al., 2012), have all recovered mutations in RNAP as a predominant class, 

highlighting the intimate ties of RNAP to a wide range of cellular processes. Adaptation in 

these conditions is highly relevant for biotechnology applications, as directed mutagenesis 

of RNAP could serve as a rapid means of adapting bacteria to new production environments 

(Alper and Stephanopoulos, 2007). However, without a deeper understanding of how RNAP 

mutations affect cellular physiology, it will be difficult to predict the extent to which 

mutations in RNAP will have unintended physiological side effects.

Chemical-genetic screens measure the effect of stressful environments, such as the presence 

of an antibiotic, on growth across a large library of mutations (Brochado and Typas, 2013). 

By discovering novel growth phenotypes and identifying mutants with highly correlated 

growth phenotypes across conditions, such screens generate new hypotheses regarding 

biological pathways and gene functions (Nichols et al., 2011). Chemical screens can also 

be used to analyze a large collection of mutations in a single protein complex (Braberg 

et al., 2013), wherein discovery of new phenotypes and correlations between phenotypic 

profiles make possible in vivo structure-function analyses based on the effects of mutations 

on cellular physiology. By interrogating chemical-genetic interactions across a wide range 

of environments, these screens are also uniquely situated to identify the secondary effects of 

adaptive mutations.

In this work, we conducted a chemical-genetic screen focused on RNAP mutations in E. coli 
K-12, with the goal of interrogating connections between RNAP and cellular physiology 

and dissecting in vivo structure-function relationships within RNAP and its associated 

factors. We generated an isogenic library of 68 unique mutations in RNAP and essential 

transcription factors and screened the library in 83 unique conditions to generate a chemical­

genetic dataset that we integrated with existing data from the Keio library (Baba et al., 

2006) of all nonessential gene deletions. We confirmed that mutations in RNAP are highly 

pleiotropic, with altered sensitivities to antibiotics that target peptidoglycan synthesis, folate 

biosynthesis, DNA replication, and translation. We shed light on the effect of understudied 

features of RNAP like β-SI2 on transcription. Finally, we identified an antibiotic resistance 

phenotype of RNAP mutations that is associated with decreased average cell length, and 

showed that neither slow growth rate, altered UDP-glucose/OpgH regulation, nor increased 

FtsZ protein levels are sufficient to explain this phenomenon. Taken together, these data 

illustrate the power of chemical-genetic screens to illuminate in vivo structure-function 

landscapes.
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Results

Construction of a library of strains with chromosomal mutations in the transcription 
machinery

Decades-long study of the E. coli transcriptional apparatus has generated a large set of 

mutations with diverse phenotypes, particularly in the two largest subunits of RNAP (β’ 

and β) and to a lesser extent in σ70, NusA, NusG, and ρ. Unfortunately, the phenotypes 

of these mutant strains are not immediately comparable, as RNAP mutations are in diverse 

genotype backgrounds and are often only found as episomal merodiploids with a wild-type 

chromosomal copy. Following a literature review to manually annotate and collate the 

existing mutants, we selected and successfully reconstructed 68 mutations (Figure 1B, 

Supplemental Table 1) at their endogenous locus in the BW25113 strain background, 

enabling comparison with published chemical genetics datasets (Nichols et al., 2011; 

Shiver et al., 2016). Some mutations were introduced via transduction using a closely 

linked antibiotic resistance cassette; others were reconstructed by λ-Red oligo-mediated 

recombineering into a strain containing that cassette (Figure 1C). RifR mutants that confer 

resistance to rifampicin and M+ mutants that restore growth in minimal media to strains that 

lack or are deficient in the mediators of the stringent response ppGpp and DksA (Murphy 

and Cashel, 2003) are overrepresented in this collection (32/68) because they could be 

identified by selection. Some M+ mutants have been shown to form innately unstable open 

promoter RNAP complexes in vitro, mimicking the effects of ppGpp and DksA binding to 

RNAP, likely explaining their phenotype in minimal media (Rutherford et al., 2009). The 

RifR and M+ mutants in our library have been isolated previously (Supplemental Table 1). 

Our library also included a wide variety of other mutants that ensured our capacity to detect 

diverse phenotypic profiles.

A chemical-genetic screen of the transcription library reveals residue-level phenotypes of 
transcription mutants in vivo

We performed a chemical-genetic screen of the arrayed mutant library using sub-inhibitory 

concentrations of 83 chemical stressors (Supplemental Table 2) that overlapped with 

previous screens (Nichols et al., 2011; Shiver et al., 2016). The screen was performed 

in duplicate with technical and biological replicates of the mutants (Figure 1D) as well 

as control strains with the antibiotic marker alone and a subset of deletion strains from 

the Keio library. Where possible, at least two independent isolates of the same mutant 

were distributed between two arrays as biological replicates. When only one strain was 

isolated, it was included in both arrays. We included a subset of the Keio deletion 

strains to facilitate direct comparison of our results to previous efforts (STAR Methods) 

(Nichols et al., 2011; Shiver et al., 2016). We quantified colony opacity from images 

of the colony arrays at a single time point to calculate S-scores (Figure 1E) (Collins 

et al., 2006; Kritikos et al., 2017). The S-score is a modified t-statistic that reflects the 

statistical significance of the deviation of colony opacity in a particular growth condition 

from the average behavior of the mutant across all growth conditions in the dataset. 

Positive S-scores in this study report chemical resistance and negative S-scores report 

chemical sensitivities (Collins et al., 2010; Collins et al., 2006). Our S-scores were internally 

reproducible (r=0.73 for the same mutant compared across the two arrays), and S-scores 

Shiver et al. Page 4

Mol Cell. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for the nonessential gene deletions were correlated with those determined in a previous 

screen (r=0.65) (Shiver et al., 2016). This final S-score dataset was used in subsequent 

analyses examining chemical sensitivities and mutant-mutant correlations (Figure 1F, 

Supplemental Dataset 1). The entire dataset is available in an interactive, searchable format 

on the Ontology of Microbial Phenotypes website at https://microbialphenotypes.org/wiki/

index.php?title=Special:RNAPchemicalgenetics.

We used a cutoff based on hierarchical clustering of the S-scores to define 14 statistically 

significant clusters and 9 singletons of transcription mutants, which are numbered together 

from 1–23 (Supplemental Figure 1). Mutations largely clustered with others in the same 

polypeptide chain (Figure 2A), except for mutations in β and β′, which frequently 

clustered together. β and β′ are interwoven to form the core of the RNAP complex, 

and many of the mutations in these subunits are found on either side of the same DNA 

binding cleft. Clustering of mutations in these subunits likely reflects their tight functional 

coordination in the complex. Setting aside interactions between β and β′, only 1 of 171 

co-clustering interactions was between mutations in different polypeptide chains (odds 

ratio=205, p=10−53). This interaction was between β-I1112S and NusA-R258G, which 

comprised cluster 22 (Figure 2A,B). β-I1112S and NusA-R258G were isolated from the 

same screen for ethanol tolerance (Haft et al., 2014).

We calculated the enrichment of chemical-genetic interactions in clusters and mutant classes 

(Supplemental Table 3). Focusing on the three largest clusters of β and β’ mutations 

(out of 7 total) (Figure 3A), we found that each cluster could be associated with unique 

chemical-genetic interactions made by the mutants. The largest cluster (14) was enriched for 

sensitivities to aminoglycosides such as spectinomycin (Figure 3B). Cluster 15 was enriched 

for resistance to the tetracycline family of antibiotics (Figure 3C). Cluster 16 was enriched 

for sensitivity to tetracycline (Figure 3C) and resistance to sulfamonomethoxine (Figure 

3D). Interestingly, this clustering did not necessarily follow the transcriptional classifications 

of the mutations: cluster 14 is comprised of both RifR and M+ mutations on the β-side of the 

RNAP cleft, cluster 15 is comprised predominantly of M+ mutations on the β’-side of the 

RNAP cleft, and cluster 16 contains mutations spread across the complex and with different 

known phenotypes (Figure 3A). Our identification of mutant clusters that are not aligned 

with previously defined classifications suggests that the chemical-genetic interactions in our 

dataset contain more detailed information regarding the effects of these diverse mutations on 

cellular physiology, a proposition we explore in the following sections as we investigate the 

phenotypes of specific RNAP mutations.

Chemical-genetic profiling of the β subunit non-essential sequence insertions reveals 
environmental sensitivities

Strains with deletions of the large, non-essential sequence insertions β-SI1 and β-SI2 did not 

cluster with other transcription mutants (Figure 2B), suggesting that their impacts on RNAP 

function are unique within the library. β-ΔSI1 correlates with auxotrophic gene deletions, 

consistent with a role in the binding and function of the transcription factor DksA (Parshin et 

al., 2015). By contrast, β-ΔSI2 was not significantly correlated with any other transcription 
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mutants or any mutants from the larger gene deletion library, making it difficult to ascertain 

its function by comparison to well-characterized mutants.

β-SI2 has alternatively been proposed to be dispensable for RNAP function (Borukhov 

et al., 1991; Nene and Glass, 1984; Severinov et al., 1992) or important for growth on 

M9 minimal media (Artsimovitch et al., 2003). In our dataset, we identified significantly 

negative S-scores for β-ΔSI2 in multiple treatments, including ethanol, trimethoprim, and 

hydroxyurea. To explore these potential sensitivities further, we monitored growth of β­

ΔSI2 and its parental control in LB medium with increasing concentrations of all three 

compounds. At sub-lethal doses of ethanol, growth of the parental control slowed near the 

transition to stationary phase (Figure 4A). For β-ΔSI2, this phenotype was more pronounced 

and occurred at lower concentrations (Figure 4A). We found a similar chemical-genetic 

interaction with trimethoprim and hydroxyurea. In each case, growth of β-ΔSI2 was 

impacted by lower concentrations of the compounds but the mutant had no discernible effect 

on the MIC (Figure 4B). Thus, our screen revealed conditions under which deleting β-SI2 

has an impact on growth, but mostly confirmed previous work that concluded the impact of 

deleting β-SI2 on cellular physiology is mild.

Phenotypic clustering uncovers residue-level RNAP phenotypes

Similar to a previous study examining the genetic interactions of yeast RNA Pol II mutations 

(Braberg et al., 2013), we observed a statistical association between distance in the structure 

and pairwise phenotypic correlations between mutants in our dataset (Figure 4C) (Pearson’s 

r=−0.25, R2=0.06, p=7×10−16). In work published separately, this association provided 

sufficient information to use pairwise comparisons of mutant phenotypic profiles as a 

distance constraint to perform structural modeling of the core complex (Braberg et al., 

2020).

Cluster 16 includes a high-correlation clique of three mutations: β-I966S, β′-N458A, and 

β′-P1022L. This clique was exceptional in that the phenotypic profiles of its members 

were highly correlated despite occurring in separated structural features of the RNAP 

complex (Figure 4C). Since β′-P1022L was isolated in a screen for increased transcription 

attenuation (Weilbaecher et al., 1994), we tested whether the other two mutants in the clique 

share this phenotype. As predicted by their high phenotypic correlation with β′-P1022L, 

both β-I966S and β′-N458A were resistant to 5-MAA (Figure 4D), indicative of increased 

transcription attenuation at the trp locus. To determine whether the 5-MAAR phenotype 

was widespread among the transcription mutant set, we tested three additional mutants in β 
(β-ΔSI2, β-P1081L, and β-I1112S), two additional mutants in the active site and secondary 

channel (β′-D643G and β′-V1141S) and two RifR mutations (β-S531F and β-I572F). Only 

the two RifR mutations were as resistant to 5-MAA as the members of the three-mutant 

clique (Supplemental Figure 2). These results indicate that the 5-MAAR phenotype is not 

universal among transcription mutants.
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Resistance of β-P153L to mecillinam and A22 does not result from a classical stringent 
response

Both cluster 14 and the M+ class of mutations were enriched for resistance to the cell wall­

targeting drugs mecillinam and A22 (Supplemental Table 3). At the sub-lethal doses used 

in our screen, A22 resistance was mostly restricted to a subset of cluster 14 mutants near 

the rifampin binding pocket, while mecillinam resistance was found throughout the complex 

(Figure 5A). To investigate these connections mechanistically, we focused on β-P153L, an 

M+ mutant in cluster 14 with the highest positive S-score for A22 and robust resistance to 

mecillinam (Figure 5A).

M+ mutants have some stringent-like transcriptional responses (Rutherford et al., 2009; 

Zhou and Jin, 1998). Moreover, either lowering the nutritional content of the growth 

medium or artificially inducing the stringent response leads to high-level resistance to 

mecillinam and A22 in E. coli (Bendezú and de Boer, 2008). We therefore explored whether 

β-P153L resistance to these antibiotics arises from a gene expression program locked into 

a stringent-like state. We measured differential gene expression in β-P153L and its parental 

strain without and with induction of the stringent response. We achieved induction of the 

stringent response by expressing a constitutively active allele of RelA (relA*) and compared 

our results to a published dataset that used the same method (Sanchez-Vazquez et al., 2019) 

(Supplemental Dataset 2).

Steady-state gene expression in β-P153L without relA* showed limited similarity to 

stringent response gene expression. While induction of relA* in wild-type E. coli resulted 

in significant expression changes in >2,000 genes, only 344 genes were significantly 

differentially expressed in β-P153L, and only 36% of these overlapped with the changes 

associated with a stringent response (Figure 5B). Moreover, in the overlapping set, only 

inhibited genes were significantly enriched (p=0.02, odds ratio=1.6 for inhibited genes; 

p=0.09, odds ratio=1.3 for activated genes). Analysis by functional category reinforced the 

differences between β-P153L expression and the stringent response. Whereas ribosomal 

protein expression was uniformly repressed during the stringent response, in β-P153L 

only 8 genes for ribosomal proteins (14%) were significantly repressed and only 5 (8%) 

were repressed >2-fold (Figure 5C). Moreover, rather than repressing tRNA-aminoacylation 

genes, β-P153L significantly activated 12 (46%) (Figure 5C). Rather than prevalent 

activation of amino acid biosynthesis genes, only those for histidine biosynthesis were 

significantly upregulated in β-P153L (Figure 5D). Induction of relA* resulted in a response 

highly overlapping with the classic stringent response in both β-P153L and its parent 

(Supplemental Figure 3A, Supplemental Dataset 2), and the response of the mutant was 

greater than that of its parent (Supplemental Figure 3B), even though the fold induction of 

relA* was similar (Supplemental Figure 3C). Thus, despite in vitro behaviors of M+ mutants 

that mimic ppGpp binding (Rutherford et al., 2009; Zhou and Jin, 1998), the steady-state 

transcriptional program of β-P153L in vivo is largely distinct from the canonical stringent 

response.
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β-P153L protects against death caused by loss of rod shape in rich media

Mecillinam and A22 target PBP2 (Spratt, 1977) and MreB (Gitai et al., 2005), respectively, 

two components of the cell wall elongation machinery that directs lateral cell wall insertion 

and maintains rod shape in E. coli. They are essential during rapid growth (e.g. in LB), 

but dispensable in nutrient-poor environments (e.g. M9) (Bendezú and de Boer, 2008). As 

the stringent response is not obviously responsible for resistance in β-P153L, we sought to 

understand the origin of resistance by determining the full range of resistance responses and 

morphological changes associated with growth in the antibiotics.

We compared liquid growth curves in LB for β-P153L and its parental control over a range 

of A22 and mecillinam concentrations. β-P153L exhibited >10-fold higher MICs than the 

control (Figure 6A). To investigate how β-P153L protects E. coli under A22 or mecillinam 

treatment, we followed single-cell growth and morphology after exposure to supra-MIC 

concentrations of mecillinam using time-lapse microscopy. Wild-type cells stopped dividing 

and grew increasingly large, their membranes invaginated, and they eventually lysed (Figure 

6B). By contrast, β-P153L cells morphed from small rods to small cocci that continued to 

grow and divide (Figure 6B). β-P153L cells displayed a similar morphological transition 

to small cocci in A22 (Supplemental Figure 3D), and fluorescent D-amino acid labeling 

(Kuru et al., 2012; Kuru et al., 2015) during growth with mecillinam revealed that β-P153L 

cocci retained a cell wall (Supplemental Figure 3E), as opposed to forming cell-wall-less 

spheroplasts.

These results predicted that β-P153L should also render the genes encoding PBP2 and 

MreB (mrdA and mreB, respectively) non-essential during rapid growth conditions. We 

constructed ΔmreB and ΔmreB β-P153L mutants under permissive conditions (minimal 

medium, 30 °C), and tested growth of the double mutant after shifting to non-permissive 

conditions (LB, 37 °C). The ΔmreB β-P153L double mutant exhibited essentially normal 

growth, while the ΔmreB control quickly halted growth after the transfer (Figure 6C). 

Whole-genome resequencing confirmed that the strains did not contain second-site 

suppressors (Supplemental Table 4). We conclude that β-P153L renders mreB non-essential 

in rich media by preventing lysis after a loss of rod shape.

Decreased cell length is associated with A22 resistance in M+ mutants

It has been proposed that the irreversible step toward death in A22-treated cells is the 

expansion of cell width beyond a limit at which division can no longer occur, leading to 

run-away cell widening and eventual lysis (Bendezú and de Boer, 2008). According to 

this model, the small size of β-P153L cells during treatment could keep the mutant below 

the non-reversible threshold and prevent death. However, the basis for the small size of 

β-P153L cells was not immediately clear. E. coli and many other rod-shaped bacteria have 

well-known a log-linear relationship between cell size and growth rate when the nutrient 

content of the medium is varied (Schaechter et al., 1958; Taheri-Araghi et al., 2015). This 

relationship, termed the Growth Law, suggested that the smaller size of β-P153L in LB 

might be simply due to its lower growth rate.
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To test this idea, we measured cell size and growth rate across four media with different 

nutritional contents. If the small size of β-P153L were due to a growth rate defect alone, the 

overall relationship between growth rate and cell size would be indistinguishable between 

the two strains. Instead, we found that β-P153L was significantly smaller than its parental 

strain across all growth rates (Figure 7A). To determine whether our conclusions could 

be generalized to other M+ mutants, we chose 6 additional M+ mutants and measured the 

relationship between cell size and growth rate. We found that only a subset of M+ mutants 

had a slow growth phenotype in LB, but all M+ mutants had reduced size, with even the 

most subtle M+ mutant exhibiting a 27% reduction in cross-sectional area (Figure 7B). We 

conclude that M+ mutants exhibit a spectrum of reduced sizes and that their size reduction is 

not due solely to slower growth.

Finally, we asked whether cell length, cell width, or growth rate was correlated with A22 

resistance of M+ mutants by determining the final OD600 in a supra-MIC concentration 

of A22 as a function of average cell width and length. We found that growth in A22 was 

strongly negatively correlated with cell length (R2=0.74, p=0.006), but not with cell width 

(R2=0.14, p=0.36) or growth rate (R2=0.17, p=0.31) (Figure 7C, Supplemental Figure 3F,G). 

This result is in stark contrast to mutations in MreB, for which cell width is the critical 

factor in A22 sensitivity (Shi et al., 2017), and suggests that altered division in M+ mutants 

both shortens the average cell length and protects against death.

The decreased cell length of β-P153L is independent of UDP-glucose signaling

The glucosyltransferase OpgH and the small molecule UDP-glucose link nutrient status to 

cell size in E. coli. OpgH localizes to the cell septum under nutrient rich conditions (high 

UDP-glucose), where it binds to and destabilizes FtsZ-rings to delay division (Hill et al., 

2013). Deletion of opgH has a mild effect on cell size, while cells lacking pgm, which 

encodes a phosphoglucomutase necessary for UDP-glucose biosynthesis, have a pronounced 

decrease in cell length (Hill et al., 2013). Since OpgH sensing of UDP-glucose is the 

major known pathway for controlling cell length in response to nutrient availability, we 

investigated whether the decreased cell length of β-P153L was dependent on this pathway or 

reflected an independent mechanism of cell-size control.

Expression changes in genes related to the UDP-glucose sensing pathway were mild in 

β-P153L (Supplemental Table 5). However, as changes in protein levels are not always 

reflected in RNA levels, we performed a direct genetic test of the hypothesis. If the β-P153L 

small size phenotype resulted from a disturbance in OpgH/UDP-glucose signaling, then the 

small size phenotype of Δpgm cells would be epistatic to that of β-P153L. We compared 

cell length as a function of growth rate in the β-P153L Δpgm double mutant, single mutants, 

and wild-type strain. We found that the decrease in cell length due to the pgm deletion was 

independent of β-P153L, as the double mutant resulted in a combination of both the lowered 

slope of β-P153L and the negative length offset of Δpgm (Figure 7D). This result indicates 

that the cell size phenotype of β-P153L is independent of OpgH/UDP-glucose signaling. 

In this experiment and in the following experiment measuring FtsZ expression, we remade 

the β-P153L mutation in a MG1655 background without the rpoBC-cat marker to avoid 

potential complications from the cat cassette (see Microbial strains subsection in STAR 
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Methods). However, we found that β-P153L had the same decrease in cell length regardless 

of strain background (Figure 7D). This, along with the observation that rpoBC-cat does not 

change the MIC of BW25113 for either A22 or mecillinam (Supplemental Figure 3 H,I) 

supports the conclusion that the M+ mutants do not simply correct the cell length phenotype 

of the parental strain (BW25113 rpoBC-cat).

Increased FtsZ expression does not explain the decreased length of β-P153L cells

Motivated by reports that the stringent response results in overexpression of FtsZ, which 

suppresses filamentation (Vinella and D’ari 1994), and other studies showing that FtsZ 

overexpression is sufficient to suppress mreB essentiality (Bendezú and de Boer, 2008), 

we next asked whether the lower cell length of β-P153L resulted from increased FtsZ 

levels. Using single-cell fluorescence microscopy, we quantified the concentration of an 

FtsZ-msfGFP translational fusion in β-P153L and MG1655 across media. FtsZ-msfGFP 

concentration was on average 19% higher in β-P153L (p=0.03, 95% confidence interval: 

3–36%), consistent with the 68% increase in RNA levels of ftsZ in β-P153L (p-adj=0.0003) 

(Supplemental Table 5).

The cell length phenotype of β-P153L is exacerbated in richer nutrient environments (Figure 

7 A,D). We reasoned that if increased FtsZ levels were the sole explanation for its decreased 

average cell length, then differences in FtsZ-msfGFP concentration between β-P153L and 

MG1655 would be negatively correlated with their respective differences in cell length 

across the media tested, with the highest concentration difference in rich media, where 

β-P153L cells are especially short. Instead, we found a non-significant positive correlation 

between the two variables (Figure 7E) (r=0.25, 95% confidence interval: −0.81–0.93). We 

conclude that β-P153L has somewhat elevated levels of FtsZ, but other factors are likely to 

underlie the decreased cell length of this mutant.

Discussion

As the enzyme responsible for bacterial transcription and the integrator of transcriptional 

control, RNAP has been the focus of an enormous amount of research. In addition to 

structural, biochemical, and evolutionary analyses, multiple studies have utilized RNAP­

centric genetic approaches, including early work on resistance to RNAP-targeting drugs 

such as rifampicin (Jin and Gross, 1988) and streptolydigin (Heisler et al., 1993), 

temperature-sensitive (Saito et al., 1986) and dominant-negative mutations (Sagitov et 

al., 1993), mutations altering the function of RNAP (e.g. attenuation (Weilbaecher et al., 

1994), mutations that increase survival in minimal media in sensitized genetic backgrounds 

(Rutherford et al., 2009)), and structure-guided mutational analysis (Wang et al., 2006). In 

addition to revealing the inner workings of RNAP, this top-down body of work has resulted 

in novel physiological discoveries. Furthermore, the repeated isolation of RNAP mutations 

during adaptation to biotechnology-related environments (Cheng et al., 2014; Haft et al., 

2014; Tenaillon et al., 2012) has made evident the value and need for a deeper understanding 

of transcription-related pleiotropy (Alper and Stephanopoulos, 2007).

Here, we showed that a bottom-up approach based on unbiased, expansive screening 

and clustering of the phenotypes of large numbers of RNAP mutations is a powerful 
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tool for functional discovery, illuminating structure-function relationships of RNAP at the 

single-residue level and systems-level connections between transcription and other cellular 

processes. That our strategy was successful even though our library is overrepresented in 

RifR and M+ mutants underscores the point that mutations isolated under the same selective 

pressure can have distinct, pleiotropic phenotypes.

Our analysis of the phenotypes of lineage-specific insertions in the β-subunit highlight both 

the strengths and challenges of chemical genetic screens. Although neither the β-ΔSI1 nor 

the β-ΔSI2 strain exhibited chemical sensitivities that clustered with other RNAP mutations, 

the strong chemical sensitivities of β-ΔSI1 were correlated with ΔdksA, providing a starting 

point for analysis. The proximity of β-SI1 to the known binding site of DksA on RNAP 

allowed us to predict a role for β-SI1 in the binding and function of DksA that was validated 

with biochemical and genetic evidence (Parshin et al., 2015). Further work by others has 

fleshed out this interaction by identifying the required conformational changes (Molodtsov 

et al., 2018), finding that additional secondary channel regulators bind to β-SI1 (Chen et 

al., 2019; Molodtsov et al., 2018), and identifying a role of ppGpp in the DksA–RNAP 

interaction (Molodtsov et al., 2018; Ross et al., 2016). By contrast, β-ΔSI2 displayed minor 

chemical sensitivities (Figure 4A,B) and the lack of phenotypic clustering information 

for β-ΔSI2 prevented hypothesis generation through traditional chemical-genetic inference. 

Our ability to successfully predict the attenuation-proficient phenotype of the β-I966S 

mutant in β-SI2 (Figure 4C,D), consistent with previous predictions of a hyper-termination 

phenotype (González-González et al., 2017), further highlights the higher predictive power 

of correlations between mutants for identifying the function of uncharacterized mutations 

compared with the interpretation of individual sensitivities, as has been the case for 

most high-throughput genetic screens to date (Schuldiner et al., 2005). The three mutants 

comprising the clique within cluster 16 that includes β-I966S are outliers to the negative 

correlation between phenotypic profile similarity and pairwise distance on the RNAP 

structure (Figure 4C), highlighting the potential for other long-distance interactions in 

RNAP that remain to be discovered.

Finally, our analysis of A22 and mecillinam resistance in M+ mutants demonstrates the 

power of this approach in discovering unexpected phenotypes. With prior knowledge that the 

stringent response confers resistance to A22 (Bendezú and de Boer, 2008) and mecillinam 

(Bendezú and de Boer, 2008; Vinella et al., 1992), and that M+ RNAP enzymes exhibit 

certain behaviors associated with the stringent response (Rutherford et al., 2009; Zhou and 

Jin, 1998), we first explored the possibility that A22 and mecillinam resistance reflected 

stringent-like transcription by M+ mutants. However, we found that the transcriptional 

program of β-P153L was largely dissimilar to the stringent response (Figure 5B-D). This 

finding was somewhat surprising given the clear effect of M+ mutants on transcriptional 

fusion reporters of rrn operon promoters (Zhou and Jin, 1998). One explanation worth 

investigating in future work is if long-term adaptation is capable of compensating for some 

of the transcription defects of M+ polymerases. Instead, we found that M+ mutants exhibited 

varying degrees of reduction in cell length relative to the parental strain (Figure 7B) and 

the extent of the reduction in average cell length was correlated with survival at high 

A22 concentration (Figure 7C). We presented evidence that none of the best-characterized 

mechanisms could explain this observation. Decreased growth rate wasn’t sufficient to 
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explain the decrease in cell length in M+ mutants (Figure 7A,B,D). The gene expression 

program was largely dissimilar to that of the stringent response (Figure 5). Changes in FtsZ 

expression were not correlated with changes in cell length (Figure 7E), and the cell length of 

Δpgm is not epistatic to that of β-P153L (Figure 7D). These results suggest that an unknown 

mechanism underlies the decreased cell length of M+ mutants and motivate future work to 

uncover this mechanism.

The success of this proof-of-principle study motivates using chemical-genetics to explore 

structure-function relationships in additional protein complexes and machineries. The cell 

wall synthesis machinery of E. coli, for which extensive libraries of mreB and mrdA 
point mutations have recently been created (Shi et al., 2017) is an attractive first target. 

The simplicity of a chemical-genetic approach also motivates the study of RNAP function 

in a broader set of bacterial species, which could generate fascinating insights into the 

evolutionary conservation of structure-function relationships and physiological connections 

of this essential enzyme complex.

Limitations

The power of this proof-of-principle experiment highlights the value of a bottom­

up chemical-genetic approach to interrogating structure-function relationships in vivo. 

However, the insight that we gained was limited by the modest number of mutations that 

we included in the study. New mutagenesis approaches such as CRISPR editing hold the 

promise of both increasing the scale of mutant libraries in essential genes and expanding the 

scope of mutations beyond those with easily selectable phenotypes, thereby enhancing the 

breadth and power of future screens. Moreover, a pooled deep sequencing approach could 

enable screening many more conditions simultaneously, increasing the capacity of screens 

such as ours to discover novel phenotypes.

STAR Methods

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Carol Gross (cgrossucsf@gmail.com).

Materials Availability—Strains, plasmids, and oligonucleotides generated in this study 

are available upon request from the Lead Contact.

Data and Code Availability—Raw images and Iris data files for the chemical-genetic 

screen along with two datasets generated in this work have been published on Dryad. Raw 

sequencing reads for whole genome resequencing and RNA sequencing have been deposited 

at NCBI. Reproducible compute capsules have been published on Code Ocean for the major 

findings and results of this study. Accession codes for deposited data are listed in the Key 

Resources Table.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Microbial strains—Microbial strains used in this work are summarized in Supplemental 

Table 1 and in the Key Resources Table. Mutations used in the chemical-genetic screen 

were transduced into or generated in the E. coli K-12 BW25113 (CAG67001) genetic 

background. During subsequent work to confirm sensitivities found in the screen, we 

generated some strains in an MG1655 genetic background (KC001).

Our parental strain for mutations in β and β′ (BW25113 rpoBC-cat) exhibited an increase in 

mean cell length, sometimes resulting in filamentous cells >10 μm in length. This phenotype 

likely resulted from insertion of the chloramphenicol resistance cassette (cat) between rpoB 
and rpoC, as the strain had no additional mutations (Supplemental Table 4). The rpoBC-cat 
marker did not change the MIC of BW25113 in A22 or mecillinam (Supplemental Figure 3 

H,I).

To test if the decreased cell length of M+ mutants (Figure 7B) was due to suppression of 

the rpoBC-cat phenotype, we remade β-P153L in a MG1655 background without the cat 
cassette (used in Figure 7D,E). The β-P153L mutation had the same cell length phenotype 

regardless of strain background (Figure 7D), suggesting the M+ mutant phenotype is not just 

due to a genetic interaction with rpoBC-cat.

Growth conditions are described in the Method Details section of the STAR Methods.

METHOD DETAILS

Oligonucleotide design—All oligonucleotides used in this study are listed in 

Supplemental Table 6. Oligonucleotides were synthesized by Integrated DNA Technologies 

(Skokie, IL) with standard desalting purification. Oligonucleotides used for recombineering 

were designed to anneal to the lagging strand to increase efficiency (Ellis et al., 2001). 

Recombineering oligonucleotides were 79 nucleotides long, unless high efficiency of 

mutagenesis was required in which case the length was extended to 89 or 90 nucleotides. 

For all recombineering oligonucleotides, mismatch(es) were located in the center of the 

sequence. For recombineering oligonucleotides that required highly efficient mutagenesis, 

four phosphorothioation modifications were included between the five bases closest to the 5’ 

end of the oligonucleotide to prevent 5’ degradation (Wang et al., 2009).

Oligonucleotide recombineering mutagenesis—We generated some mutations 

reported in this study de novo using oligonucleotide recombineering. We transformed strains 

of the appropriate genetic background with pSIM6 to introduce the λ-Red system (Datta et 

al., 2006), made electrocompetent cells using published methods (Thomason et al., 2014), 

and electroporated the cells with mutagenic oligonucleotides. To prepare recombineering­

competent cells, an overnight culture was grown at 30 °C in LB with 100 μg/mL ampicillin 

and 500 μL of this culture was diluted into 35 mL of fresh LB with 100 μg/mL ampicillin 

in a 250-mL baffled flask and grown in a shaking water bath (Gyrorotory® Water Bath 

Model G76, New Brunswick Scientific Co., Incorporated) at 32 °C. The culture was shaken 

at 330 rpm throughout early log phase until it reached an OD600 of 0.4–0.6 as measured on 

a Genesys 20 spectrophotometer (Thermo-Scientific). Fifteen milliliters of culture were then 
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transferred to a 125-mL baffled flask in an orbital shaking water bath set to 42 °C and 200 

rpm for 15 min. After heat shock to induce the λ-Red system from pSIM6, cultures were 

chilled on ice for 10 min.

Chilled cells were transferred to a 50-mL conical tube, pelleted at 3,709g for 4 min (Allegra 

X-30R, C0650 adaptor, Beckman Coulter), and resuspended in 50 mL of ice-cold deionized 

water (MilliQ Biocel A10, Millipore). Cells were pelleted again at 3,709g for 4 min and 

resuspended in 800 μL of ice-cold deionized water. Finally, cells were transferred to a 

1.5-mL Eppendorf tube, pelleted in a tabletop centrifuge (Centrifuge 5417 C, Eppendorf) at 

10,000g for 30 s, and resuspended in 200 μL of ice-cold deionized water. These competent 

cells were kept on ice until they were electroporated. Before electroporation, 50 μL of 

competent cells were mixed with 2 μL of 100 μM oligonucleotide solution before being 

transferred to an electroporation cuvette. Transformation mixtures were electroporated at 

18 kV/cm (Gene Pulser Cuvettes (0.1-cm gap), E. coli Pulser, Gene Pulser Attachment, 

Bio-Rad).

Electroporated cells were immediately resuspended in 500 μL of LB, transferred to a 5-mL 

test tube, and incubated on a roller drum at 37 °C for 1 h. Recovered cells were plated 

according to the selection scheme necessary to isolate the intended mutations.

Selection of RifR mutants—RifR mutations were selected in rpoB in BW25113 rpoBC­
cat. Two hundred microliters of recovered transformants were plated on LB with 10–50 

μg/mL rifampicin. Resistant colonies were struck on rifampin plates a second time to purify 

the colonies and confirm the RifR phenotype. Mutations were confirmed using Sanger 

sequencing.

Selection of M+ mutants—We selected for M+ mutations in rpoB and rpoC in BW25113 

rpoBC-cat ΔdksA::kan using a standard genetic selection (Rutherford et al., 2009). After 

recovery in LB, cells were pelleted at 10,000g for 30 s in a tabletop centrifuge and 

resuspended in 1 mL of M9 minimal medium with 0.2% glucose. Two hundred microliters 

were then plated on M9 minimal medium plates with 0.2% glucose. Colonies that grew 

in the first 48 h were struck again on M9 minimal medium plates to confirm growth. 

Mutations were transduced into BW25113 using the genetically linked cat gene. Separation 

of the rpoBC locus from ΔdksA::kan was confirmed by testing for a Kans phenotype. 

Co-transduction of the mutations with cat was confirmed with Sanger sequencing.

Screening for attenuation mutants—We screened for attenuation-enhancing mutations 

in a BW25113 rpoBC-cat ΔtrpR::kan genetic background. Recovered cells were plated 

in a dilution series on LB agar, and 200 μL of the 10−3, 10−4, and 10−5 dilutions were 

plated on LB agar plates and grown at 37 °C overnight. Single colonies were patched onto 

a grid on an LB plate and replica-plated onto M9 minimal glucose plates supplemented 

with L-cysteine (400 μg/mL), L-methionine (400 μg/mL), L-leucine (400 μg/mL), indole 

(5 μg/mL), and 5-methyl anthranilic acid (5-MAA, 100 μg/mL) and grown at 30 °C. 

Patches with robust growth in the presence of 5-MAA were considered to be potential 

mutants (Weilbaecher et al., 1994; Yanofsky and Horn, 1981). Single colonies were isolated 

by streaking from the non-selective patch, and the mutation was confirmed with Sanger 
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sequencing. Finally, the mutant was transduced into BW25113 using the genetically linked 

cat gene. Separation of the mutation from ΔtrpR::kan was confirmed by testing for a Kans 

phenotype. Co-transduction of the mutation with cat was confirmed with Sanger sequencing.

Screening for mutants with PCR—Some of the mutations that we generated using 

oligonucleotide recombineering had no available selective phenotype, so we directly 

screened for these mutations using a PCR-based assay. For point mutations, we used the 

BW25113 rpoBC-cat genetic background. We designed oligonucleotides that introduced 

silent mutations in the codons surrounding the mutation of interest to increase the efficiency 

of mutagenesis (Thomason et al., 2014) and improve our ability to distinguish between 

the mutant and wild-type alleles through primer annealing. After transformation with the 

mutagenic oligonucleotide, recovered cells were plated in a dilution series on LB agar. 

Single colonies were isolated and suspended in 50 μL of PCR buffer. One microliter of 

this suspension was used for colony PCR (KAPA2G Robust HotStart PCR Kit, Roche), 

wherein a ~500-bp amplicon was amplified by a primer pair in which the 3’ end of one 

primer was complementary to the mutant allele. A colony that led to amplification with the 

mutation-specific primers was considered to be a positive hit. To further purify the putative 

mutant, the colony suspension was struck on LB agar plates, grown overnight at 37 °C, 

and the PCR screen was repeated. We then verified the mutation of interest using Sanger 

sequencing.

To generate deletions of the lineage-specific insertions SI1 and SI2, we used the strain 

BW25113 rpoBC-cat ΔmutS::kan. Primers were designed to detect the deletions through a 

shift in amplicon size. After transformation with the mutagenic oligonucleotide, recovered 

cells were plated in a dilution series on LB agar. Single colonies were isolated and 

suspended in 50 μL of PCR buffer. One microliter of this suspension was used for colony 

PCR (KAPA2G Robust HotStart PCR Kit, Roche). Samples with a small amplicon size were 

considered positive hits. The colony suspension was struck on LB, grown overnight at 37 

°C, and the PCR screen was repeated on single colonies. After confirmation of the deletion 

with PCR, the suspensions were used to inoculate 5 mL of LB and grown to an OD600 

of ~0.6. This culture was used to create a P1vir lysate for transduction into BW25113. 

Co-transduction of the deletions with the cat antibiotic resistance gene was confirmed with 

PCR and Sanger sequencing. Separation from the ΔmutS::kan locus was confirmed by 

testing for a Kans phenotype.

P1vir transduction—Some of the mutants used in our study were collected from the 

scientific community and transduced into a BW25113 background. We first introduced the 

relevant antibiotic markers into the original strain using λ-Red recombineering with the 

pSIM6 plasmid. We then transduced the mutations into BW25113 using P1vir and selected 

for the antibiotic resistance cassette that we introduced in the previous step. Co-transduction 

of the genetically linked mutations was confirmed with Sanger sequencing.

Assembly of the 1536-colony arrays—We split biological replicates for each 

transcription mutation or gene deletion into two sets (Array #1 and Array #2). We then 

arrayed the mutants within each set in triplicate with randomized positions in a 32×48 array 

of 1536 colonies. To minimize edge effects (French et al., 2016), we filled the outermost 

Shiver et al. Page 15

Mol Cell. Author manuscript; available in PMC 2022 May 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two columns and rows of the 1536-colony array with wild-type controls and only analyzed 

the inner positions. Mutants were split according to antibiotic resistance phenotype (Camr 

and Kanr) into 16 groups that corresponded to each of the 16 96-well plates that would 

comprise the 1536 array. Based on the final position in the 1536-well array, spaces in each 

96-well plate were devoted to wild-type (either BW25113 or BW25113 rpoBC-cat) and used 

as “dummy” colonies that would grow in all conditions.

For storage, plates were grown overnight at 37 °C with shaking at 900 rpm in a humidified 

platform shaker (Infors HT). Glycerol was added to a final concentration of 12.5%, and 

aliquots of each plate were stored at −80 °C in a 96-well format. The two 1536-colony 

arrays were assembled by thawing copies of the 2×16 96-well plates and using a Rotor 

pinning robot (Singer Instruments) to spot the plates, first into 2×4 384-colony plates, and 

finally into two 1536-colony format plates (Array #1 and Array #2).

Screening the mutant library—We pinned Array #1 and Array #2 in parallel onto 

agar plates with antibiotics and other chemical stressors added to the agar. Screens 

were performed in four batches with 30 or more conditions in each batch to allow for 

normalization within each batch (Collins et al., 2010). Chemical perturbations were chosen 

to overlap with existing chemical-genetics datasets (Nichols et al., 2011; Shiver et al., 2016). 

For the dataset from (Nichols et al., 2011), which used three concentrations per chemical, 

the concentration with the highest number of significant interactions was chosen. For the 

dataset from (Shiver et al., 2016), Array #1 and Array #2 were screened at the same time 

using the same batch of chemicals as used for the gene deletion library.

For each condition, drug was added to melted LB agar and 45 mL was poured into 

PlusPlates (Singer Instruments). Source plates were generated by pinning the colony arrays 

onto LB agar plates, and each source plate was used to pin the array onto multiple drug 

plates. Plates were incubated at 37 °C for a time interval over which colonies had grown 

appreciably but had not overgrown to the point that colony edges overlapped. Images were 

taken with a Powershot G10 camera (Canon) and a custom illumination configuration. 

Colony opacity was estimated using the software Iris v. 0.9.4 (Kritikos et al., 2017).

Liquid growth curves—Growth curves were measured in a Synergy H1 (BioTek ® 

Instruments) or an Epoch 2 (BioTek ® Instruments) plate reader using Gen5™ v. 3.04 

(BioTek Instruments). Data were collected for approximately 24 h at 37 °C using a 2-min 

discontinuous loop comprised of a read step at 600 nm and 1 min of double-orbital shaking 

at slow orbital speed and an orbital frequency of 237 cycles per minute.

All experiments used clear, flat-bottom, polystyrene 96-well plates (Greiner Bio-one) 

covered with a clear polystyrene lid (E&K Scientific). All conditions other than ethanol 

used a final culture volume of 200 μL per well. Ethanol experiments used a final culture 

volume of 150 μL per well and 50 μL of mineral oil was overlaid on the culture to reduce 

ethanol evaporation.

All cultures to measure chemical sensitivities were inoculated at an OD600 of 0.01. Growth 

curves of ΔmreB strains were inoculated at an OD600 of 10−4 because we found that a 
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lower inoculation density clarified the growth defects of MG1655 ΔmreB. For growth in 

mecillinam, A22, and minimal medium, the inoculum was log-phase culture that had been 

kept below an OD600 of 0.3 using sequential dilutions in the same medium as the growth 

curve for 6–8 h. For transition experiments of ΔmreB strains, the inoculum was log-phase 

culture that had been kept at a low OD600 using sequential dilutions in M9 minimal medium 

with 0.2% glucose at 30 °C. For sensitivity to ethanol, hydroxyurea, and trimethoprim, 

the initial inoculum was a stationary-phase culture that had grown for 16–24 h in LB. 

Stationary-phase cultures were used in these measurements to enhance sensitivity of β-ΔSI2 

to the compounds.

trp-locus attenuation assay—We used the trp-locus attenuation assay from 

(Weilbaecher et al., 1994; Yanofsky and Horn, 1981) to test for a hyper-attenuation 

phenotype. We transduced mutations and controls from the BW25113 background to an 

MG1655 ΔtrpR genetic background using P1vir transduction and selected for the linked 

rpoBC-cat antibiotic resistance cassette. Sequences of all transductants were verified with 

Sanger sequencing.

We used resistance to 5-MAA to test for hyper-attenuation at the trp locus. Strains were 

grown overnight in M9 minimal medium with 0.2% glucose at 30 °C, pelleted using 

centrifugation, and resuspended at a normalized OD600 of 1.0 in M9 minimal salts. We 

then spotted 2.5 μL of the resuspended cultures onto M9 minimal medium agar plates 

supplemented with 0.2% glucose, L-cysteine (400 μg/mL), L-methionine (400 μg/mL), 

L-leucine (400 μg/mL), and indole (5 μg/mL) to which 5-MAA had either been excluded (−) 

or added at a concentration of 100 μg/mL (+). The spots were allowed to grow at 30 °C for 2 

days before pictures were taken with an EOS Rebel T5i (Canon).

Sample preparation for RNA-seq—The parental rpoBC-cat and β-P153L strains were 

first transformed with the pALS13 (Ptrc::relA*) and pALS14 (Ptrc::relA-) plasmids. Cells 

were grown overnight in Teknova Rich Defined Media (EZ-RDM) with 100 μg/mL 

ampicillin to maintain plasmid selection. Overnight cultures were inoculated into fresh 

EZ-RDM with 100 μg/mL ampicillin to maintain plasmid selection. After strains had grown 

to mid-log phase, samples were taken for the uninduced control, 10 mg/mL isopropyl 

β-d-1-thiogalactopyranoside (IPTG) was added to induce expression of the relA alleles, and 

samples were taken 5 min after induction. All samples were immediately stored on ice with 

a 1:8 volume of 5% phenol in ethanol as a stop solution. Samples were transferred to a −80 

°C freezer for storage before further processing.

RNA isolation and library prep—RNA was isolated from frozen cell pellets using 

Trizol (Invitrogen) extraction according to the manufacturer’s protocol. One microgram of 

purified RNA was fragmented at 95 °C for 7 min in 1X T4 RNA Ligase buffer (NEB, 

B0216L) with an equal volume of 2X alkaline fragmentation buffer (0.6 volumes of 100 

mM Na2CO3 plus 4.4 volumes of 100 mM NaHCO3). After 3’-end healing with T4 

Polynucleotide Kinase (NEB, M0201L) in T4 RNA ligase buffer for 1 h, 3’ ligation to a pre­

adenylated, barcoded TruSeq R1 adapter with 5 random bases at its 5’ end was performed 

overnight using T4 RNA Ligase 2 truncated KQ (NEB, M0373L). The barcoded samples 

were then pooled and run on a 6% TBE-Urea gel for size selection (>15 nucleotide insert 
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size), eluted, and ethanol precipitated before performing ribosomal RNA subtraction (Ribo­

Zero rRNA Removal Kit, Illumina, MRZGN126). Reverse transcription with SuperScript 

IV (Thermo Fisher Scientific, 18090010) was performed using a TruSeq R1 RT primer, 

followed by ligation of the TruSeq R2 adapter to the 3’ end of the cDNA overnight using 

T4 RNA ligase 1 (NEB, M0204L), prior to another gel size selection as described above. A 

final PCR of the library was performed with indexed TruSeq PCR primers to add the index 

and P5/P7 flowcell adapters, followed by gel extraction, precipitation, and a BioAnalyzer 

(Agilent) run for quality control before sequencing on a HiSeq4000 platform (Illumina).

Fluorescent D-amino acid incorporation—Fluorescent D-amino acid labeling of the 

cell wall was performed according to published protocols (Kuru et al., 2015). β-P153L was 

grown into log phase in LB broth and transferred to LB broth with 30 μg/mL mecillinam. 

The strain was grown for two doublings in the presence of mecillinam, diluted to an 

OD600 of 0.05 in LB broth with 30 μg/mL mecillinam and 500 μM HCC-amino-D-alanine 

(HADA), and grown for 1.5 h. The culture was then washed three times in phosphate 

buffer saline, and 1 μL was spotted onto phosphate buffer saline 1% (w/v) agarose pads. 

Fluorescence microscopy images were collected using a Ti-E microscope (Nikon) with a 

100X (NA: 1.4) objective and a Zyla 5.5 sCMOS camera (Andor).

Quantifying the relationship between growth rate and cell size—For the data 

in Figure 7A, we individually inoculated the parental control (CAG67202) and β-P153L 

(CAG68095) into 5 mL test tubes filled with one of four media (8 total cultures). The media 

used were MOPS minimal medium+0.2% glucose, MOPS minimal medium+0.2% glucose 

supplemented with 12 amino acids (L-methionine, L-histidine, L-arginine, L-proline, L­

threonine, and L-tryptophan, L-serine, L-leucine, L-tyrosine, L-alanine, and L-asparagine 

at 500 μg/mL each and L-aspartate at 12.5 μg/mL), EZ-RDM (Teknova), and Tryptic Soy 

Broth (Taheri-Araghi et al., 2015). For the data in Figure 7B,C, we individually inoculated 

8 strains into 5 mL test tubes filled with lysogeny broth (8 total cultures). For the data 

in Figure 7D, we individually inoculated the four strains (MG1655, MG1655 β-P153L, 

MG1655 Δpgm, and MG1655 Δpgm β-P153L) into one of four media (M9 minimal medium 

with 0.2% (w/v) glucose, M9 minimal medium with 0.2% (w/v) glucose and supplemented 

with 12 amino acids (L-methionine, L-histidine, L-arginine, L-proline, L-threonine, and L­

tryptophan, L-serine, L-leucine, L-tyrosine, L-alanine, and L-asparagine at 500 μg/mL each 

and L-aspartate at 12.5 μg/mL), lysogeny broth (LB), and LB with 0.2% (w/v) glucose). 

For Figures 7A,B, after incubating for ~16 h at 37 °C on a roller drum, each culture was 

diluted 1:200 into 3 mL of pre-warmed (37 °C) medium of the same type in 5 mL tubes and 

incubated in a roller drum at 37 °C. All cultures were continuously monitored and repeatedly 

diluted into pre-warmed media over 6 h to ensure that even the slowest growing cultures 

had grown in log phase long enough for cell size to stabilize. For Figure 7D, overnight and 

log-phase cultures were treated similarly except that cultures were agitated on a platform 

shaker instead of a roller drum. All subsequent steps were equivalent for the four figure 

panels.

After growing all cultures into log phase, each culture was split into two experiments. In 

the first, culture densities were normalized to an OD600 of 0.1, then used to inoculate the 
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same media in a 96-well plate at a final volume of 200 μL and an initial inoculum with an 

OD600 of 0.01. Growth curves were measured as described above, and maximum growth 

rates were computationally extracted from the growth curves. For the data in Figure 7C and 

Supplemental Figure 3 F,G, in addition to growing the M+ mutants in LB, we also generated 

liquid growth curves in LB with 13.5 μg/mL of A22 or mecillinam. Maximum OD600 was 

computationally extracted from the growth curves in the presence of drug and normalized 

against maximum OD600 of the same strain in LB without antibiotic.

In the second experiment, cultures were directly spotted onto either a phosphate buffer saline 

1% (w/v) agarose pad (Figure 7A,B,C) or a lysogeny broth 1% (w/v) agarose pad (Figure 

7D) and phase-contrast images were acquired using a Ti-E microscope (Nikon) with a 100X 

(NA: 1.4) objective and a Zyla 5.5 sCMOS camera (Andor). Phase-contrast images were 

segmented and meshed using Morphometrics (Ursell et al., 2017) and shape parameters were 

computationally extracted from the mesh.

Single-cell quantification of FtsZ concentration—P1vir transduction was used to 

introduce the ftsZ-msfgfp::kan allele into the MG1655 and MG1655 β-P153L strain 

backgrounds. To quantify FtsZ-msfGFP, overnight cultures grown in one of five media (M9 

minimal medium with 0.2% (w/v) glycerol, M9 minimal medium with 0.2% (w/v) glucose, 

M9 minimal medium with 0.2% (w/v) glucose and supplemented with 12 amino acids 

(L-methionine, L-histidine, L-arginine, L-proline, L-threonine, and L-tryptophan, L-serine, 

L-leucine, L-tyrosine, L-alanine, and L-asparagine at 500 μg/mL each and L-aspartate at 

12.5 μg/mL), LB, and LB with 0.2% (w/v) glucose) were inoculated into tubes with fresh 

media. Strains were kept in log phase via repeated dilution for 3–8 h. After growth in log 

phase, cells were spotted on phosphate buffer saline agarose pads with 1% (w/v) agarose and 

images were collected. Phase and fluorescence microscopy images were collected using a 

Ti-E microscope (Nikon) with a 100X (NA: 1.4) objective and a Zyla 5.5 sCMOS camera 

(Andor).

Cells were segmented from phase-contrast images using Morphometrics (Ursell et al., 2017). 

We background-corrected the fluorescence images by subtracting the median value of pixels 

that were not contained within a cell contour from the entire image and calculated the 

fluorescence concentration as the sum of background-subtracted fluorescence within each 

contour divided by the calculated volume for each cell. Cell volume was estimated as series 

of cylinders with dimensions defined by the pill mesh of Morphometrics. The dataset was 

filtered to eliminate poorly fit contours.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis to generate S-scores—Data were analyzed using similar 

algorithms to the gene deletion library (Collins et al., 2006; Nichols et al., 2011; Shiver 

et al., 2016), with several specialized steps added to or modifying the analysis. Data 

in the outer rows and columns were immediately discarded. After normalizing average 

colony size on each plate and the spatial bias in colony size due to the amount of colony 

transferred to the uneven agar surface during pinning (Collins et al., 2006), we performed 

an additional normalization to account for effects in the transcription mutants that were due 
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to the genetically linked antibiotic marker alone. For every control strain (antibiotic marker 

alone), we computed the multiplicative factor required to make its average colony size equal 

to the average of the entire plate. We then multiplied the control strain and every associated 

mutant by this factor to normalize for marker-specific effects.

S-scores were computed for every colony position in the library, and S-scores of the same 

strain were averaged within Array #1 and Array #2 separately. S-scores for each mutant 

were then averaged between Array #1 and Array #2. Measurements of mutation-condition 

combinations for which only one of the two plates passed quality control were transformed 

by a pseudo-averaging mapping (Collins et al., 2006).

Finally, we leveraged the Keio deletion mutants included in our screen to compare our 

results to a previously published genome-wide deletion dataset (Shiver et al., 2016) on a 

condition-by-condition basis. There were two goals: first, to decide whether our results 

sufficiently matched previous efforts in order to warrant inclusion in the final dataset; 

second, for chemicals that were screened previously at multiple concentrations, to identify 

the concentration from previous work that best matched results from our current screen. To 

achieve these goals, we used S-scores for Keio gene deletions that overlapped between our 

dataset and the previous study to calculate a pairwise correlation between each condition 

in the current study and those in the previously reported gene deletion dataset. We 

labeled these cross-dataset comparisons as either matched (same stress condition label, 

any concentration) or unmatched (all other comparisons). We expected correlations between 

matched comparisons to be high and correlations between unmatched comparisons to be 

relatively low. To achieve our first goal, we threw out any condition in our screen where the 

strength of the correlations for all matched comparisons were less than the 95th percentile of 

all non-matched correlations. If the correlation of at least one matched condition was in the 

95th percentile of non-matched correlations, we achieved our second goal by choosing the 

most correlated concentration within the matched set.

Because of the early normalizations, S-scores of marker-only alleles of the transcription 

genes were close to zero (Supplemental Dataset 3). Including the marker-only alleles from 

analysis would lead to their co-clustering as a distinct group in the hierarchical clustering 

analysis (Supplemental Figure 4).

Defining and visualizing clusters—We used hierarchical clustering to cluster the 

dataset, which is standard for chemical-genetic (Nichols et al., 2011) and genetic-interaction 

(Schuldiner et al., 2005) datasets. To separate the dendrogram that results from hierarchical 

clustering into discrete clusters, we developed an approach for defining a statistically 

significant distance cut-off based on randomization of the S-score dataset, as has been done 

previously to identify statistically significant pairwise correlations in chemical-genomic 

screens of the Keio deletion library (Nichols et al., 2011; Shiver et al., 2016).

First, we hierarchically clustered a randomized copy of the dataset. We then calculated the 

smallest cophenetic distance in the randomized dendrogram. After repeating these steps 

30,000 times, we used the 5th percentile of the distribution of cophenetic distances as 

a cutoff to define significant clusters in the original dataset. This cutoff represents the 
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cophenetic distance that is closer than the closest pairwise distance in 95% of randomized 

matrices. Linkage was calculated using average correlation and distance was calculated 

using correlation. To speed up iteration over randomized matrices, missing values were 

imputed with a zero value. The matrix was randomized in one dimension only using shake v. 

5.0 from the MATLAB File Exchange (Jos(10584), 2019).

Notably, the cophenetic distance between cluster 14 and 15 was very close to the cutoff 

used to define statistically significant clusters. Estimating the cutoff using fewer iterations 

(~1,000) led to run-to-run variation in the determination of whether cluster 14 and cluster 

15 were separated; increasing the number of iterations stabilized their separation into two 

distinct clusters.

The full dendrogram along with statistically significant clusters is shown in Supplemental 

Figure 1. The undirected graphs in Figure 2 were generated by exporting mutant-mutant 

correlations that exceeded the cutoff into Cytoscape v. 3.7.2 (Shannon et al., 2003).

This analytical approach was taken because of the difficulty in identifying a priori the 

optimal number of clusters to use in k-means clustering. We then used the 23 clusters 

defined with our approach (14 clusters + 9 singletons, k=23) as input to k-means clustering 

and compared the performance of the two approaches. Overall, the clusters defined by 

the two methods are similar but not equivalent, with an adjusted mutual information 

score of 0.70 (Supplemental Figure 5 A,B). Clusters defined by hierarchical clustering 

are less dispersed, with an average silhouette score 0.046 higher than clusters defined by 

k-means clustering (Supplemental Figure 5C). The k-means approach also resulted in 4 

co-clustering interactions between strains with mutations in different polypeptide chains 

of the transcription complex (excluding the common co-clustering of mutations in β and 

β′), as compared to the single intra-chain co-clustering interaction defined by hierarchical 

clustering (Supplemental Figure 5D).

Interestingly, enrichment analysis between the clusters and conditions revealed a larger 

difference between the two approaches. Analysis of the hierarchical clustering involved 

enrichment analysis using the software Gene Set Enrichment Analysis (GSEA) v. 3.0 

(Subramanian et al., 2005) to identify enrichment of chemical interactions between clusters 

and conditions from the screen. Using multiple hypothesis-corrected significance from 

GSEA as the only criterion for significant enrichments, clusters defined by hierarchical 

clustering had 70 significant enrichments with stress conditions while clusters defined by 

k-means clustering had only 41 (Supplemental Figure 5E). Of the significant enrichments, 

those from hierarchical clustering also had 0.054 higher average normalized enrichment 

score than those from k-means clustering (Supplemental Figure 5E). Notably, neither the 

difference in average silhouette score nor the difference in average normalized enrichment 

score were significant at the p=0.05 level. Therefore, we conclude that hierarchical 

clustering with a statistically defined cut-off performs as well as, if not better than, k-means 

clustering in defining groups of similar mutations with similar chemical sensitivities, at least 

at the level of clustering (k=23) examined in this work.
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The undirected graphs in Supplemental Figure 5 were generated with the plot and graph 

functions of MATLAB. Adjusted mutual information score was calculating using ami 

v.1.0.0.0 from MATLAB File Exchange (Nguyen, 2021).

Generating enrichment tables—Enrichment tables were created by combining two 

metrics for the significance of chemical genetic interactions. First, we calculated the 

significance of individual S-scores based on the distribution of S-scores in each condition 

(Nichols et al., 2011). Second, we determined the significantly enriched chemical 

perturbations in groups of genes defined either by clustering or by previous knowledge. 

We then combined this information.

We calculated the enrichment of S-scores within mutant groups using the software Gene 

Set Enrichment Analysis (GSEA) v. 3.0 (Subramanian et al., 2005). Ranked lists of S­

scores for all transcription mutants were exported for every individual screen condition. 

Groups were defined from hierarchical clusters and from predefined classes such as ethanol­

tolerant mutations or M+ mutations. GSEA was run on every condition individually to 

identify enrichment of mutant groups in either positive or negative S-scores. Options for 

GSEA included running the analysis for pre-ranked lists and the flags “-norm meandiv”, 

“-scoring_scheme weighted”,“-create_svgs false”,“-make_sets true”, “-plot_top_x 20”, “­

rnd_seed 081889”,“-set_max 500”,”-set_min 3”,”-zip_report true”, and “-gui false”. The 

output for each condition was collected into a single table and the combined set of nominal 

p-values was corrected using the Benjamini-Hochberg FDR correction.

Separately, the significance of a chemical-genetic interaction was calculating using the 

overall distribution of S-scores in the same condition to calculate a null hypothesis 

(Nichols et al., 2011). Mutant x condition interactions that were significant above a cut-off 

(FDR<0.05) were considered individually significant.

If a chemical condition was both significantly enriched within a group (adjusted p<0.05 

from GSEA) and had at least one individually significant chemical interaction within 

the group, it was recorded as a significant enrichment. Supplemental Table 3 contains 

enrichment tables for hierarchical clusters and previously defined classes.

Quantification of β-ΔSI2 chemical sensitivities—The β-ΔSI2 strain did not have an 

appreciably different minimum inhibitory concentration, maximum OD600, or maximum 

growth rate from the parental control in any of the conditions measured. Instead, growth 

of β-ΔSI2 slowed at an earlier OD600 value at lower concentrations of the compounds. 

To quantify this effect, we measured area under the curve (AUC). To define a range for 

the AUC, we used the growth curve of each strain with no drug as a reference point. We 

extracted maximum growth rate from the curve, computed the time at which the growth 

rate first dropped below 10% of this value, and added two hours to define the time t2 that 

determines the upper limit of the area to be measured for every drug concentration for that 

strain. This calculation sets the upper limit for the area of integration to two hours into the 

transition phase of the strain when grown without stressors. The lower limit of the area to 

be integrated was the initial time t1 that measurements started. The area integrated was the 

blanked OD600 between times t1 and t2. OD600 was not log-transformed for this calculation. 
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We then normalized mean AUC for every combination of strain and drug concentration to 

the no-drug control. The no-drug control was included in every plate and every measurement 

was compared to the control on the same plate.

Differential gene expression analysis—Indexed raw sequencing data were 

demultiplexed according to their R1 barcodes and the degenerate linker sequence was 

clipped using a custom script. Mapping of individual reads to the E. coli genome (GenBank 

ID U00096.3) was performed with STAR (Dobin et al., 2013), followed by read counting for 

individual genome regions according to gene annotations from assembly ASM584v2.

Raw read counts for all samples were used as input for DESeq2 v. 1.22.2 (Love et al., 2014). 

Information on the strain (parental or mutant), plasmid (pALS13 or pALS14), and induction 
(yes or no) was used to group samples for statistical analysis.

Estimates for the differential expression of genes in response to induction of RelA* 

were obtained using the full factorial linear model y ~ strain + plasmid + induction + 
strain:plasmid + strain:induction + plasmid:induction + strain:plasmid:induction.

To estimate the response of the parental strain with pALS14 to induction of RelA−, reference 

levels for the three factors were set to (strain: parental), (plasmid: pALS14) and (induction: 

no). The (induced: yes) versus (induced: no) contrast was used as output.

To estimate the response of the parental strain with pALS13 to induction of RelA*, 

the same model and reference factors were used as above, but the interaction term of 

plasmid:induction was used as output.

To estimate the response of the mutant strain with pALS14 to induction of RelA−, reference 

levels for the three factors were set to (strain: mutant), (plasmid: pALS14) and (induction: 

no). The (induced: yes) versus (induced: no) contrast was used as output.

To estimate the response of the mutant strain with pALS13 to induction of RelA*, 

the same model and reference factors were used as above, but the interaction term of 

plasmid:induction was used as output.

Finally, to estimate the effect of the mutant strain alone, we used the average contrast 

between mutant and wild-type for strains with pALS14 across induced and uninduced 

conditions. The linear model used was y ~ strain + plasmid + induction + strain:plasmid + 

strain:induction. The reference factors were set to (strain: parental), (plasmid: pALS14), and 

(induction: no). The (strain: mutant) versus (strain: parental) contrast was combined with 

50% of the strain:induction interaction term as output.

Before counting the overlap between β-P153L and the relA* condition, we filtered both 

datasets so that they only included genes that were measured in both experiments. The list of 

significant genes was combined with a flag indicating the direction of change (activated or 

repressed) and this modified gene set was used as input for generating the Venn diagram in 

Figure 5B. Intersections between sets were calculated and used as input to the venn package 

in MATLAB File Exchange (Darik, 2011).
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Quantification of A22 and mecillinam sensitivity—Certain combinations of mutants 

and growth conditions led to a clear shift in the minimum inhibitory concentration of both 

A22 and mecillinam. To quantify this shift, maximum OD600 (ODmax) of each culture 

was computationally extracted from growth curves. To account for plate-to-plate, reader-to­

reader, and day-to-day variability in OD600 measurements, as well as idiosyncratic growth 

curves of the strains and growth conditions, ODmax of every combination of strain and drug 

concentration was normalized by a no-drug control that was run within the same plate.

Whole genome resequencing of ΔmreB strains—Raw reads from whole genome 

resequencing were used as input into breseq v.0.33.2 (Deatherage and Barrick, 2014) to 

elucidate potential mutations.

ADDITIONAL RESOURCES

The entire dataset is available in an interactive, searchable format on the 

Ontology of Microbial Phenotypes website https://microbialphenotypes.org/wiki/index.php?

title=Special:RNAPchemicalgenetics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: A chemical-genetic screen focused on the bacterial transcription machinery dissects 
structure-function relationships of RNA polymerase in vivo.
A) The core essential subunits of RNA polymerase (α2ββ′) form a complex with sigma 

factors such as σ70 during transcription initiation. During elongation, factors such as NusA, 

NusG, NusE, and ρ associate with RNAP to regulate pausing and termination.

B) A library of 68 mutations in RNAP was created in an isogenic background to dissect 

RNA polymerase function in vivo.

C) Mutations were introduced de novo using oligo-based recombineering or transduced from 

the original isolate using P1vir.
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D) Independent isolates of the same mutation (red and blue) were split between parallel sets 

of colony arrays (Array #1 and Array #2). Each isolate was arrayed in triplicate and the 

position of each mutant was randomized between the two arrays. The randomized positions 

of the biological replicates are shown as red (Array #1) and blue (Array #2) colonies in a 

32-row x 48-column array of colonies. The remaining mutants are gray.

E) At an appropriate time for each condition, a single image was taken of every plate 

and colony opacity was estimated using image analysis software. Following appropriate 

normalizations and filtering steps, the distribution of colony opacity measurements for 

a given mutant/condition pair were compared to the entire distribution of opacity 

measurements of the mutant across all conditions to generate an S-score. The S-score 

is a modified t-statistic that measures the significance of the difference between colony 

opacity (closely related to colony size) of a specific mutant/condition pair (red colonies, 

red distribution of colony opacity) and the control of the same mutant across all conditions 

(black colonies, black distribution of colony opacity). In this example, colony opacity is 

lower on the given condition, leading to negative S-scores that are interpreted as chemical 

sensitivity. Conversely, higher colony opacities would lead to positive S-scores that are 

interpreted as resistance. Importantly, S-scores are proportional to the statistical significance 

of an interaction, not the direct magnitude of the interaction itself.

F) The final dataset was a 68 × 83 matrix of mutant x condition S-scores. Individual S-scores 

were investigated to identify new mutant-phenotype connections, hierarchical clustering 

of mutants was used to assign new functions to mutations, and enrichments of chemical 

interactions were identified within mutant clusters. The colored boxes overlayed on the 

dendrogram represent a partitioning of the mutant set into discrete clusters (different colors) 

based on a distance cutoff (the extent that the colored boxes extend to the right) (see 

Supplemental Figure 1).
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Figure 2: Mutations in the transcription machinery cluster mainly according to the polypeptide 
chain in which they occur.
A) Summary statistics of clustering in the dataset are superimposed onto the structures 

of the 7 RNAP proteins with mutations included in the chemical-genetic screen. Two 

points connected by a line represent a cluster of ≥2 mutations as defined by the screen. A 

single point represents a singleton mutation with no significant correlation with any other 

transcription mutant. The number next to the points represent the number of each type (e.g., 

x2: either two clusters or two singletons). Mutations in ρ form a single cluster. Most NusA 

mutations form one intra-polypeptide chain cluster, but one NusA mutation clusters with 
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a mutation from core RNAP. Mutations in σ70 form two clusters and two are singletons. 

Mutations in β/β′ form seven clusters, 5 mutations are singletons, and 1 mutation clusters 

with a mutation from NusA. The lone mutation in NusG is a singleton. Mutations in NusE 

form two clusters and one is a singleton.

B) The full clusters are shown color-coded and arranged according to polypeptide chain. The 

width of the edge connecting two mutations is proportional to their correlation in the dataset 

(Pearson’s r). Cluster 22, highlighted in red, is the only cluster that connects mutations from 

different polypeptide chains other than the β/β′ subunits of core RNAP.
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Figure 3: Mutations in core RNAP can be separated into clusters based on chemical sensitivities.
A) Three major clusters of point mutations within the core complex of β and β′ were 

identified. Cluster 14 (orange) is centered around the rifampicin binding site, cluster 15 

(purple) is found mostly in the β′-clamp, and cluster 16 (green) is distributed throughout the 

complex, including β′-SI3, the active site, and β-SI2. Point mutations in RNAP not included 

in clusters 14–16 are shown in white. The alpha carbon of mutated residues is shown as a 

sphere in the structure.

B) Representation of S-scores indicating the extent of sensitivity to spectinomycin (enriched 

in Cluster 14). The alpha carbons of mutated residues are shown as spheres colored by the 

magnitude and direction of the mutant’s S-score in the dataset. Red indicates resistance and 

blue indicates sensitivity.

C) Representation of S-scores indicating the extent of resistance to doxycycline (enriched in 

Cluster 15) and sensitivity to doxycycline (enriched in Cluster 16). Mutations are presented 

in the structure as in (B).

D) Representation of S-scores indicating the extent of resistance to sulfamonomethoxine 

(enriched in Cluster 16). Mutations are presented as in (B).
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Figure 4: Mutations in β-SI2 have distinct phenotypes that include hyper-attenuation at the trp 
locus.
A) β-ΔSI2 has mild sensitivity to ethanol. Left: sublethal doses of ethanol hampered growth 

of the parental strain starting during the transition to stationary phase. Right: β-ΔSI2 has a 

more pronounced response to ethanol that begins at a lower concentration of ethanol.

B) β-ΔSI2 has mild sensitivity to ethanol, trimethoprim, and hydroxyurea. The normalized 

area under the curve (AUC) of growth curves as shown in (A) was calculated by integrating 

OD600 over time and normalizing by the AUC of the same strain without added drug. For 

ethanol (top), trimethoprim (middle), and hydroxyurea (bottom), growth of β-ΔSI2 was 

affected at lower (sub-inhibitory) concentrations, but the minimum inhibitory concentration 

remained the same. Error bars represent 95% confidence intervals. Drug concentrations for 
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which the difference in relative AUC between β-ΔSI2 and its parental control is statistically 

significant are marked with asterisks (p<0.05).

C) Mutant-mutant correlations show a statistically significant association with distance 

between the residues in the RNA polymerase structure. Mutant-mutant correlations were 

calculated using Pearson’s r from the chemical-genetic dataset. Residue-residue distance 

was calculated based on the linear distance between alpha carbons of residues with 

mutations in the dataset as determined from the 3-dimensional structure. The PDB structure 

4JKR was used for distance calculations. A three-mutant clique comprised of β-I966S, β′­

N458A, and β′-P1022L was an exception to this rule, with high mutant-mutant correlations 

despite containing the largest inter-residue distance in the library (β-I966S to β′-P1022L).

D) Correlations among β-I966S, β′-N458A, and β′-P1022L were predictive of a shared 

hyper-attenuation phenotype that was originally identified for β′-P1022L (Weilbaecher et 

al., 1994). In a ΔtrpR background, expression of the trp locus is mainly controlled by 

attenuation. Hyper-attenuation reduces trp expression and makes cells resistant to a toxic 

analogue of a tryptophan biosynthesis intermediate, 5-methyl anthranilic acid (5-MAA) at 

100 μg/mL.
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Figure 5: Gene expression in β-P153L only weakly overlaps with the stringent response.
A) Resistance to A22 and mecillinam was enriched among M+ mutants and cluster 14. 

Left: In the screen, resistance to A22 was more concentrated in cluster 14 mutants around 

the rifampicin binding pocket (Figure 3A). Right: resistance to mecillinam was widespread 

throughout β and β′ at the sub-inhibitory concentration used in the screen. The mutation 

β-P153L had the highest level of resistance to A22 and had high resistance to mecillinam. 

Alpha carbons of residues with mutations are colored according to their S-score in the 

chemical-genetic dataset.

B) There was a small degree of overlap in the significantly differentially expressed genes in 

β-P153L (red, data collected in this study) and 10 min post-induction of a constitutively 

active relA* allele (blue, from (Sanchez-Vazquez et al., 2019)). 36% of differentially 

expressed genes in β-P153L overlapped with the much larger set from relA*.

C) Repression of ribosome gene expression was weak in β-P153L (red), but consistent with 

results from relA* induction (blue) and with the lower growth rate of the mutant in LB. 

The activation of tRNA-aminoacylation genes is opposite to the repression in the relA* 

dataset. Individual genes are plotted as circles. The set average is shown as a sold black line. 

Two-fold changes in expression are marked with a solid gray line.

D) Activation of genes involved in histidine biosynthesis in β-P153L (red) was consistent 

with the stringent response and comparable in magnitude to the relA* dataset (blue). 
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However, histidine biosynthesis was the only biosynthetic pathway differentially expressed 

in the β-P153L mutant; for example, the lack of differential expression of the arginine 

biosynthetic pathways in β-P153L contrasted with the relA* dataset. Individual genes are 

plotted as circles. The set average is shown as a sold black line. Two-fold changes in 

expression are marked with a solid gray line.
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Figure 6: β-P153L renders loss of rod shape non-lethal in rich media
A) β-P153L is highly resistant to both mecillinam and A22, with MICs for both antibiotics 

that are higher by at least an order of magnitude. Maximum OD600 (ODmax) was extracted 

from growth curves of β-P153L (red curves) and its parental control (black curves) and 

normalized by the ODmax of each strain in the absence of antibiotic. Error bars represent 

95% confidence intervals.

B) In the parental strain growing on agarose pads with LB+10 μg/mL mecillinam, division 

rapidly halted and cells expanded dramatically in volume, with the formation of apparent 

membrane invaginations (red arrows) and eventual lysis.

β-P153L cells growing on agarose pads with LB+10 μg/mL mecillinam lost rod-like shape 

but remained small and continued dividing without lysis. Elapsed time since imaging started 

is indicated in hours and minutes (H:MM) using white lettering at the top left of each panel. 

Scale bar: 5 μm.

C) β-P153L suppresses the lethality of ΔmreB in rich media. The ΔmreB deletion was 

introduced into the backgrounds of β-P153L and its parental control under permissive 

conditions (M9 minimal medium at 30 °C). Growth curves were measured after transitioning 

these strains to non-permissive conditions (LB at 37 °C). Left: ΔmreB halted bulk growth 

after a transition to non-permissive conditions. Right: β-P153L ΔmreB retained luxuriant 

growth in LB. The average OD600 from multiple growth curves is shown as an opaque line. 

The 95% confidence interval is shown is shown as a shading with the same color.
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Figure 7: Decreased cell length in M+ mutants is associated with A22 resistance.
A) β-P153L cells are smaller than the parental control, even after controlling for growth 

rate. β-P153L (red) and its parental control (black) were grown for multiple generations 

in log phase in four media: MOPS minimal medium+0.2% glucose, MOPS minimal+0.2% 

glucose supplemented with 12 amino acids (see Methods), MOPS complete medium+0.2% 

glucose, and Tryptic Soy Broth. Maximum growth rate was extracted from growth curves 

started with log-phase cultures. Phase-contrast images of log-phase cells grown at steady 

state were acquired after spotting the cultures on PBS+1% (w/v) agarose pads, and cell area 

was computed from the segmented single-cell contours. Straight lines are linear regressions. 

Error bars on both axes are 95% confidence intervals for individual measurements.

B) M+ mutant cells are smaller than the parental control. Seven M+ mutants from different 

clusters were grown into log phase in lysogeny broth (LB) along with their parental control. 

Cultures were simultaneously spotted onto PBS+1% (w/v) agarose pads to measure cell size 

and used to inoculate growth curves to measure maximum growth rate. All M+ mutants 

were significantly smaller than their parental control, while only β-P153L, β-H551P, and 

β′-G1354C exhibited a statistically significant decrease in maximum growth rate.

C) A22 resistance is correlated with cell length. Maximum OD600 of the 7 M+ mutants 

and their parental control in LB with 13.5 μg/mL A22 was extracted from growth curves 
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and normalized by growth curves in LB without antibiotic. Normalized ODmax values were 

strongly correlated with cell length from measurements in (B) (R2=0.74, p=0.006).

D) Δpgm is not epistatic to β-P153L. MG1655 (black), β-P153L (red), Δpgm (green), and 

β-P153L Δpgm (magenta) were grown for multiple generations in log phase in four media: 

M9 minimal medium with 0.2% (w/v) glucose, M9 minimal medium with 0.2% (w/v) 

glucose and supplemented with 12 amino acids (see Methods), LB, and LB with 0.2% (w/v) 

glucose. Growth curves were started in a plate reader with log-phase cultures. Phase-contrast 

images of log-phase cells grown in steady were acquired after spotting the cultures on 

LB + 1% (w/v) agarose pads, and cell length was calculated from the mesh computed for 

segmented single-cell contours. Straight lines are linear regressions. Error bars on both axes 

are 95% confidence intervals for individual measurements. If the length phenotype of Δpgm 
was epistatic to that of β-P153L, then the double mutant would have resembled Δpgm. 

Instead, Δpgm β-P153L exhibited a combination of the length phenotypes of both single 

mutants.

E) The relative change in FtsZ protein concentration is not correlated with decreases in 

average cell length in β-P153L as compared to MG1655. MG1655 FtsZ-msfGFP and 

MG1655 β-P153L FtsZ-msfGFP were grown in log phase for multiple generations in 5 

media: M9 minimal medium with 0.2% (w/v) glycerol (circles), M9 minimal medium 

with 0.2% (w/v) glucose (leftwards-pointing triangles), M9 minimal medium with 0.2% 

(w/v) glucose and supplemented with 12 amino acids (downwards-pointing triangles), LB 

(squares), and LB with 0.2% (w/v) glucose (diamonds). Phase-contrast and fluorescence 

images of single cells were acquired after spotting log-phase cultures on PBS agarose 

pads with 1% (w/v) agarose. FtsZ-msGFP concentration was calculated from single-cell 

contours segmented from phase-contrast images by integrating the background-subtracted 

fluorescence within the contour area and normalizing by calculated cell volume. Relative 

cell length decreases the most in β-P153L in rich media like LB and LB 0.2% glucose, 

but this does not correspond to a proportional increase in FtsZ concentration. A linear fit 

to the data is shown as a red line. The correlation between the relative changes in FtsZ 

concentration and cell length is largely indeterminate as shown by the 95% confidence 

interval (Pearson’s r=0.25, 95% confidence interval: −0.81–0.93)
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

For the list of bacterial strains generated in this work, 
see Supplemental Table 1

this study Supplemental Table 1

Chemicals, Peptides, and Recombinant Proteins

For the list of chemicals used in the chemical-genetic 
screen, see Supplemental Table 2

this study Supplemental Table 2

Trizol LS Invitrogen Catalog No. 10296028

T4 RNA ligase buffer NEB Catalog No. B0216L

T4 RNA ligase 2 truncated KQ NEB Catalog No. M0373L

T4 Polynucleotide Kinase (PNK) NEB Catalog No. M0201L

T4 RNA Ligase 1 NEB Catalog No. M0204L

SuperScript IV Thermo Fisher Scientific Catalog No. 18090010

HCC-amino-D-alanine (HADA) Michael vanNieuwenhze 
lab

N/A

Teknova EZ rich defined media kit (EZ-RDM) Teknova Catalog No. M2105

Critical Commercial Assays

Ribo-Zero rRNA removal kit (Gram-negative 
bacteria)

Illumina MRZGN126

Deposited Data

Images and data from the paper this study https://doi.org/10.5061/dryad.z612jm68q

Raw sequences and processed data for gene 
expression analysis of β-P153L.

this study GSE151022 (NCBI GEO)

Raw sequences for whole genome resequencing of 
ΔmreB strains.

this study PRJNA632897 (NCBI SRA)

Code Ocean compute capsule: Generating the 
chemical genetic interaction dataset (Supplemental 
Dataset 1)

this study https://doi.org/10.24433/CO.9507705.v1

Code Ocean compute capsule: Running DESeq2 on 
RNA-seq counts.

this study https://doi.org/10.24433/CO.2313056.v1

Code Ocean compute capsule: Generating 
Supplemental Dataset 2, figures, and statistics cited 
in the main text of the paper.

this study https://doi.org/10.24433/CO.8886448.v3

Code Ocean compute capsule: Generating the list 
of conditions and concentrations used in the screen. 
(Supplemental Table 2)

this study https://doi.org/10.24433/CO.2239948.v1

Code Ocean compute capsule: Generating the 
enrichment tables. (Supplemental Table 3)

this study https://doi.org/10.24433/CO.1521219.v3

Code Ocean compute capsule: Generating mutation 
reports using breseq. (Supplemental Table 4)

this study https://doi.org/10.24433/CO.6559033.v1

Code Ocean compute capsule: Collating the table 
of gene expression changes in genes of interest. 
(Supplemental Table 5)

this study https://doi.org/10.24433/CO.3392553.v1

Code Ocean compute capsule: Generating chemical 
genetic interaction datasets for the marker-only 
alleles. (Supplemental Dataset 3 and Supplemental 
Figure 4)

this study https://doi.org/10.24433/CO.5034235.v1
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REAGENT or RESOURCE SOURCE IDENTIFIER

Code Ocean compute capsule: Comparing the results 
of hierarchical clustering with a cut-off to k-means 
clustering with k=23. (Supplemental Figure 5)

this study https://doi.org/10.24433/CO.3570885.v2

Oligonucleotides

For the list of oligonucleotides and plasmids used in 
this study, see Supplemental Table 6

this study Supplemental Table 6

Software and Algorithms

MATLAB R2020b v. 9.9.0.1495850 Mathworks https://www.mathworks.com

Python v. 3.7.3 Python Software 
Foundation

https://www.python.org/

R v. 3.5.1 R Foundation for 
Statistical Computing

https://www.r-project.org/

Gene Set Enrichment Analysis v. 3.0 (Subramanian et al., 2005) https://www.gsea-msigdb.org/gsea/index.jsp

Cytoscape v. 3.7.2 (Shannon et al., 2003) https://cytoscape.org/

Gen5 ™ v. 3.04 BioTek ® https://www.biotek.com/products/software-robotics­
software/gen5-software-features-for-imaging­
microscopy/

Iris v. 0.9.4 (Kritikos et al., 2017) http://critichu.github.io/Iris

breseq v. 0.333.2 (Deatherage and Barrick, 
2014)

https://github.com/barricklab/breseq

DESeq2 v. 1.22.2 (Love et al., 2014) http://www.bioconductor.org/packages/release/bioc/
html/DESeq2.html

shake v. 5.0 (Jos(10584), 2019) https://www.mathworks.com/matlabcentral/
fileexchange/10067-shake

ami v. 1.0.0.0 (Nguyen, 2021) https://www.mathworks.com/matlabcentral/
fileexchange/33144-the-adjusted-mutual-information

venn v. 1.7.0.0 (Darik, 2011) https://www.mathworks.com/matlabcentral/
fileexchange/22282-venn

Other

Data browser for chemical-genetic interaction dataset this study https://microbialphenotypes.org/wiki/index.php?
title=Special:RNAPchemicalgenetics
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