Skip to main content
. 2021 Sep 17;12:687447. doi: 10.3389/fpsyg.2021.687447

Table 4.

Regression results of different funding.

Post-allowance Housing allowance Team allowance
Coefficient (SE) Coefficient (SE) Coefficient (SE)
Personality
Age 0.36*** (6.27) 1.44*** (7.07) 1.94*** (5.54)
Hometown −0.72 (−0.96) −2.09 (−0.79) −6.79 (−1.48)
Gender 0.67 (0.72) 2.41 (0.73) 0.10 (0.02)
Human capital
Initial academic degree 0.55 (0.99) 2.99 (1.53) 6.16* (1.82)
Final academic degree 1.31*** (4.38) 5.33*** (5.03) 4.34** (2.37)
Key university 0.50 (1.37) 2.80** (2.14) −0.27 (−0.12)
Length of service in Guangxi 0.04 (1.20) −0.23** (−2.02) −0.41** (−2.06)
Skills certificate 1.48* (1.89) 7.25*** (2.61) 6.17 (1.29)
Cumulative advantage
Professional qualification 0.54 (1.04) 1.63 (0.89) 0.16 (0.05)
Overseas talent −0.88 (−0.76) −0.20 (−0.05) 0.43 (0.06)
Number of national-level title 2.50*** (3.34) 10.67*** (4.01) 20.72*** (4.51)
Number of national-level funding 3.46** (2.41) 15.54*** (3.05) 19.28** (2.19)
Number of provincial-level title −2.73*** (−3.92) −8.86*** (−3.59) −5.85 (−1.37)
Fixed effects
Location1 0.39** (2.53) −0.19 (−0.34) 0.60 (0.63)
Professional field1 0.15** (2.34) 0.60*** (2.66) 0.31 (0.79)
Institution1 0.04 (0.14) −1.12 (−1.23) −0.07 (−0.04)
_cons −22.22*** (−8.09) −58.11*** (−5.95) −101.55*** (−6.03)
N 499 499 499
Pseudo R2
*

p < 0.10,

**

p < 0.05,

***

and p < 0.01.