TABLE 4.
Flow or hemodynamics prediction accuracy reported by other machine or deep learning studies.
Method | Output object | Data set size | Input data format | Error function or accuracy |
The proposed deep learning method | 3D cerebral aneurysm hemodynamics | 500 | Flexible point cloud | NMAE < 6.5%, MRE < 13% |
Itu’s machine-learning model | Fractional flow reserve (FFR) value | 12,000 | Geometric parameter | Error = 0.03% |
Lee’s CNNs | 2D unsteady flow field | 500,000 | Fixed meshes | 32.8% < Error < 1% |
Guo’s DCNNs | 2D/3D steady flow | 400,000 | Fixed pixels | MRE < 3% |
Liang’s DNNs | 3D thoracic aorta hemodynamics | 729 | Fixed meshes | NMAE < 6.5% |