Skip to main content
. 2021 Sep 17;12:733444. doi: 10.3389/fphys.2021.733444

TABLE 4.

Flow or hemodynamics prediction accuracy reported by other machine or deep learning studies.

Method Output object Data set size Input data format Error function or accuracy
The proposed deep learning method 3D cerebral aneurysm hemodynamics 500 Flexible point cloud NMAE < 6.5%, MRE < 13%
Itu’s machine-learning model Fractional flow reserve (FFR) value 12,000 Geometric parameter Error = 0.03%
Lee’s CNNs 2D unsteady flow field 500,000 Fixed meshes 32.8% < Error < 1%
Guo’s DCNNs 2D/3D steady flow 400,000 Fixed pixels MRE < 3%
Liang’s DNNs 3D thoracic aorta hemodynamics 729 Fixed meshes NMAE < 6.5%