
The American Journal of Pathology, Vol. 191, No. 10, October 2021
ajp.amjpathol.org
Artificial Intelligence and Deep Learning in Pathology Theme Issue
MINI-REVIEW

Artificial Intelligence and Cellular

Segmentation in Tissue Microscopy Images

Madeleine S. Durkee,* Rebecca Abraham,y Marcus R. Clark,y and Maryellen L. Giger*
From the Department of Radiology and the Committee on Medical Physics,* and the Department of Medicine,y Section of Rheumatology and Gwen Knapp
Center for Lupus and Immunology Research, University of Chicago, Chicago, Illinois
Accepted for publication
C

h

May 17, 2021.

Address correspondence to
Madeleine S. Durkee, Ph.D.,
Department of Radiology, Uni-
versity of Chicago, 5841 S.
Maryland Ave, Chicago, IL,
60637; or Maryellen L. Giger,
Ph.D., Department of Radi-
ology, University of Chicago,
5841 S. Maryland Ave.,
MC2026, Chicago, IL
60637. E-mail: durkeems@
uchicago.edu or m-giger@
uchicago.edu.
opyright ª 2021 American Society for Inve

ttps://doi.org/10.1016/j.ajpath.2021.05.022
With applications in object detection, image feature extraction, image classification, and image
segmentation, artificial intelligence is facilitating high-throughput analysis of image data in a
variety of biomedical imaging disciplines, ranging from radiology and pathology to cancer biology
and immunology. Specifically, a growth in research on deep learning has led to the widespread
application of computer-visualization techniques for analyzing and mining data from biomedical
images. The availability of open-source software packages and the development of novel, trainable
deep neural network architectures has led to increased accuracy in cell detection and segmentation
algorithms. By automating cell segmentation, it is now possible to mine quantifiable cellular and
spatio-cellular features from microscopy images, providing insight into the organization of cells in
various pathologies. This mini-review provides an overview of the current state of the art in deep
learninge and artificial intelligenceebased methods of segmentation and data mining of cells in
microscopy images of tissue. (Am J Pathol 2021, 191: 1693e1701; https://doi.org/10.1016/
j.ajpath.2021.05.022)
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This article is part of a mini-review series on the applications of artificial
intelligence and deep learning in advancing research and diagnosis in
pathology.
Machine learning has led to rapid advancements in the
biomedical sciences, particularly image quantitation. Deep
learning, a branch of machine learning focused on artificial
neural networks, is driving the growth of research in the
imaging sciences, radiomics, and computational pathology.
In conjunction with more conventional machine-learning
methods, deep learning has facilitated the automation of
image-analysis tasks such as cell classification and tissue-
type identification, thereby reducing the time and effort
needed for analyzing microscopy data. This mini-review
discusses the recently developed applications of artificial
intelligence (AI) to digital pathology and cell-image anal-
ysis, focusing on novel machine-learning and deep-learning
methods and associated challenges.

Artificial Intelligence in Digital Pathology

Computer visualization and machine learning have been
applied in medical imaging for decades. Early computer-
visualization techniques in medical imaging were developed
stigative Pathology. Published by Elsevier Inc
for application in radiography and have since been widely
applied in histopathology.1,2 Digital pathology produces a
wealth of complex data, making automated, high-
throughput analysis desirable. Manual annotation of
. All rights reserved.
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cell-level features (eg, surface marker expression) and
tissue-level features (eg, tumor boundaries) from micro-
scopy data is a resource-intensive task that usually requires
time and the experience of a trained pathologist. The
extraction of quantitative information from image data sets
for research purposes has historically been limited by the
availability and participation of these clinical experts. AI
provides a means for high-throughput, standardized, quan-
titative analysis of pathology images.3e5

The development of early machine-learning applications
in medical imaging was facilitated by digitization, which
allowed for mathematical operations to be performed on
image data.1,4 For lesion grading and assessment in radi-
ology and pathology, imaging specialists worked in tandem
with clinicians to identify the qualitative features recogniz-
able to the well-trained eye, then mathematically designed
filters to enhance such characteristics, leading to comput-
erized lesion detection and segmentation. Once segmented,
a lesion can be quantitatively described using human-engi-
neered features such as size, shape, pixel intensity, and local
texture.4,6 Texture analysis and lesion classification are two
of the early building blocks of computational and digital
pathology and have been applied in clinical tasks such as
diagnosis and grading, and in studies of disease
pathogenesis.4,6

Deep learning was widely adopted in the imaging sci-
ences after AlexNet, a deep convolutional neural network
(DCNN), achieved a 15% error rate (nearly 10% better than
its competitors) on the ImageNet Large Scale Visual
Recognition Challenge.7 The implications for medical
image analysis were immediately apparent. Within a year,
multiple studies were published in which DCNNs were
applied in medical image analysis, followed by continued
growth in the application of deep learning to biomedical
image analysis.8,9 Since the success of AlexNet, a variety of
DCNN architectures have been developed for specialized
medical and biological imaging tasks, ranging from lesion
detection in magnetic resonance imaging to cell segmenta-
tion in microscopy.4,10 DCNNs recognize patterns in raw
image data without the constraints of human-defined equa-
tions. These patterns may not be interpretable by human
observers but are determined by the network to be the fea-
tures most useful in making robust and accurate decisions in
image classification or segmentation.
Deep Learning in Multiplexed Microscopy

Deep learning facilitates the rapid analysis of high-content,
experimental imaging modalities, including multiplexed
microscopy. Multiplexed microscopy refers to the use of
image data in which the spatial distribution of multiple
biological markers, such as cell surface proteins, has been
captured via immunohistochemistry analysis or immuno-
fluorescence. Previously, these type of data were either
analyzed manually or used only for the purpose of
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presenting representative examples of biological phenom-
ena. DCNNs have been particularly useful for automating
the segmentation and classification of regions, structures,
and cells in tissue.10 This automation has facilitated previ-
ously intractable quantification of microscopy data.
Simultaneously, multiplexed microscopy has advanced to

the point of generating novel computational challenges.
Improved microscope designs and staining protocols have
greatly increased the number of markers that can be
captured in a given sample, allowing for co-localization of
upward of 40 markers per individual frame.11e13 This level
of phenotypic resolution was previously accessible only
through tissue-destructive methods such as flow cytometry
and RNA sequencing. The destructive processing required
for these methods does not conserve the spatial arrangement
of cells and other tissue structures. In contrast, highly
multiplexed imaging produces rich data sets that include
detailed information on phenotype and cell spacing. Novel
AI solutions have been implemented in the location and
segmentation of these phenotype-rich images.11,13

Cell Detection and Segmentation in Tissue
Microscopy Images

A key application of machine learning in tissue microscopy
is in the automation of the identification of structures and
individual cells within images. Cell segmentation is ach-
ieved through iterative training of AI computer-visualization
algorithms (Figure 1). These trained models can then be
deployed for predicting cell segmentation in new data,
allowing for high-throughput mining of quantitative de-
scriptors of tissue pathology. This section describes deep-
learning architectures and open-source programs used for
performing cell segmentation in microscopy data.

DCNN Architectures for Analyzing Cells in
Microscopy Images

The detection and segmentation of cells in ex vivo tissue
allow for high-throughput quantification of cell features,
including cell frequency, cell morphology, cell-specific
signal intensity, and spatial distribution of cells. Biomed-
ical image segmentation is often conducted using U-Net or
similarly structured architectures, which provide pixel-level
classification, referred to as semantic segmentation.14

However, these methods can underperform in dense re-
gions of cells. Object-detection and semantic-segmentation
tasks can be combined to perform instance segmentation,
which can be accomplished through object-based detection
networks such as Mask R-CNN or by combining a U-Net
with a region-proposal network.15,16 Image-translation
methods have also shown potential in segmentation of mi-
croscopy images.17 These generative methods can also
improve image quality by converting the image to a higher
resolution or converting between image modalities.18,19
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Figure 1 Supervised AI computer-vision algorithms are trained using manual ground truth to achieve accurate cell segmentations on a specific domain of
image data (left). A trained algorithm can then be deployed to automatically extract quantitative features from microscopy data to answer clinic- and biology-
related questions (right). CNN, convolutional neural network; GAN, generative adversarial networks. Fiji, NIH, Bethesda, MD; https://imagej.nih.gov/ij. Ilastik;
http://ilastik.org. ImageJ, NIH; http://imagej.nih.gov.ij.

AI and Segmentation in Cell Microscopy
Semantic Segmentation

Encoderedecoder architectures have dominated biomedical
image segmentation since the advent of U-Net and its de-
rivatives. These have been applied to semantic segmentation
tasks in medical imaging across scales, with excellent per-
formance on full-organ segmentation in computed tomog-
raphy and nuclear segmentation in high-resolution
microscopy.14,20,21 The contracting, or encoder, portion of
the architecture captures contextual features within the
image, while the expanding, or decoder, portion of the ar-
chitecture generates precise localization. In pathology im-
ages, semantic segmentation has been used to differentiate
between tumor and healthy tissue, or segment pathogenic or
prepathogenic areas of tissue. Cell and cell-nucleus seg-
mentation can also be performed through semantic seg-
mentation schemes. Quantitative characteristics acquired
from these segmentations, such as nucleus-to-cytoplasm
ratio, can be indicative of cancer grade.22 However, se-
mantic segmentation of cells can fail in crowded regions or
in images with a low signal-to-noise or signal-to-
background ratio.

Instance Segmentation

While semantic segmentation alone is not always sufficient
for accurate cell counting in images, it can be combined
with object-detection methods to generate object-level seg-
mentation of cells rather than image-level segmentation.
This combined task, called instance segmentation, generates
pixel-level segmentation of individual cells in an image,
which allows for the separation of clustered or overlapping
cells in an image, resulting in improved cell-frequency data.
Region-based CNNs from the Fast R-CNN family perform
The American Journal of Pathology - ajp.amjpathol.org
multi-object, multi-class segmentation with high accuracy in
natural images, and have also shown promise in biomedical
image analysis tasks, including cell segmentation in a va-
riety of contexts.23,24 Additionally, region-proposal net-
works have been incorporated into U-Net architectures to
perform object-level cell segmentation in biomedical im-
ages.15,25 NuSeT, a U-Net þ region proposal network ar-
chitecture, has shown high accuracy in nuclear segmentation
in a variety of contexts, including segmentation in images
from different modalities and different tissues and
pathologies.15
Generative Networks for Segmentation

Generative adversarial networks (GANs) have also been
successfully implemented in segmentation in biological
images.17 However, GANs take a different approach to
image segmentation. A typical GAN architecture consists of
two networks, a generator and a discriminator, which are
trained competitively to generate a simulated version of the
input image as it would present in a different context, for
example translating a daytime landscape image to appear as
if it were taken at night. GAN segmentation works by
converting an input image into the mask domain, in which
each class is represented as a specific pixel value. In addi-
tion to image segmentation, image conversion can also
mitigate generalizability-related problems in deep learning.
de Bel et al17 have shown the ability of GANs to normalize
staining variability across multiple institutions and multiple
tissue types. Additionally, generative architectures have
been trained to rectify image artefacts, to de-noise low
signal-to-noise ratio images, and to generate isotropic res-
olution in three dimensions.19 These de-noising and
1695
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resolution adjustments have led to improved segmentation
of cells in three-dimensional images, videos, and image
projections. Keikhosravi et al18 have trained generative
networks to perform cross-modality synthesis on images of
hematoxylin and eosin (H&E) staining to produce second
harmonic generation images of collagen organization in
biopsy samples. A second harmonic generation system is
not feasible to operate in the clinic, but by converting
standard H&E images, deep-learning methods can provide
more detailed information on samples.

Examples of Current Open-Source Software

Several open-source implementations of machine-learning
tools have been designed for scientists who may not have
the extensive background in programming required for low-
level algorithm control. Many of these programs employ
pretrained networks for common tasks such as nuclear
segmentation. Some enable the training of machine-learning
models from scratch. One of the benefits of these open-
source pipelines is that they include graphical user in-
terfaces, making them user-friendly and accessible to a
broader audience. However, the user-friendly environment
comes at the expense of the user losing low-level control of
the algorithm, making task-specific optimization via
hyperparameter tuning or transfer learning challenging.

ImageJ

ImageJ (NIH, Bethesda, MD; http://imagej.nih.gov.ij; alias
Fiji) is an open-source tool that has been used extensively
for many image-analysis tasks. Users frequently build and
share plug-ins that can be used to perform complex ana-
lyses. To date, several plug-ins have been developed to
make machine learningebased segmentation more acces-
sible. For example, the Trainable Weka segmentation
plug-in allows users to train segmentation algorithms
using the ImageJ software graphical user interface.26

Similarly, the laboratory that invented U-Net developed
a U-Net plug-in (Unet-segmentation), which uses the
Caffe deep-learning framework (University of California,
Berkeley, CA) to implement the architecture in ImageJ.20

DeepImageJ can run pretrained TensorFlow models in
ImageJ, and is bundled with a set of models for particular
tasks. One of the bundled models is a deep CNN that can
virtually stain an unlabeled tissue autofluorescence image
to produce an approximation of the corresponding H&E,
Masson trichrome, or Jones stain image.27

CellProfiler

CellProfiler is a widely used software that has been cited
>9000 times since the publication on its original release
in 2006.28 It has a point-and-click graphical user interface
that allows users with minimal programing experience to
string together several image-analysis modules into an
1696
analytical pipeline. CellProfiler comes with >50 modules
that allow for standard image-analysis procedures, and
further allows users to write their own modules. As of
2018, CellProfiler software version 3.0 featured a pre-
trained U-Netebased semantic segmentation module
(ClassifyPixels-Unet).29 A drawback is that no task-
specific training or fine-tuning can be applied, which
can limit its utility in tissue microscopy analysis, as tissue
background can have a substantial impact on network
generalizability. However, the modularity of CellProfiler
allows users to integrate trained models from other
sources into a large analytical pipeline. For example,
Sadanandan et al30 wrote a module that allowed users to
run pretrained, Caffe-based models within CellProfiler
pipelines.

Ilastik

Ilastik is a deep-learning software package used for per-
forming semantic segmentation tasks by extracting a series
of predefined pixel-level features to train random forest
classifiers.31 It provides a user interface that enables the
generation of sparse training labels, and an interactive mode
in which users can provide feedback to the network during
training. This flexibility has made it a useful tool in the
context of highly multiplexed imaging, in which training-set
generation is an expensive process.32,33 Several recent pa-
pers have reported on the combination of CellProfiler with
Ilastik for segmenting cells in tissue-microscopy images.
For example, a CellProfiler pipeline can be generated to
perform preprocessing steps, then Ilastik can be used to
produce a probability map for semantic segmentations.34,35

This map is then returned to CellProfiler for object
detection.

QuPath

QuPath, an open-source platform designed specifically for
whole-slide image analysis, can be used for both immu-
nohistochemistry analysis and immunofluorescence im-
aging.36 Like Ilastik, it employs random forest classifiers
that can be trained to segment cell classes based on cell
surface marker expression. It is useful for quantifying the
distribution of a particular marker across a whole-tissue
section.
Downstream Applications of Algorithm Outputs

The output of a given machine-learning or deep-learning
algorithm is often not the culmination of a digital pathology
analysis. These techniques are widely applied to automate
the extraction of quantifiable metrics from cell images to
answer biology-related questions. This section addresses
how machine-extracted features are used in downstream
analyses.
ajp.amjpathol.org - The American Journal of Pathology
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Extracting Human-Interpretable Features from Deep-
Learning Algorithms

Beyond automating the laborious parts of image analysis,
deep learning provides the advantage of utilizing image
features that are not generated or perceived by the user.
However, the black-box nature of DCNNs is a common
critique of applying deep learning to medical and biological
image analysis. DCNNs are excellent for recognizing pat-
terns, but to optimize and apply DCNNs, it needs to be
understood whether they are recognizing either patterns
specific to the imaging system or protocol, or biological
features such as cell density and tissue structure. Minimal
insight into how a DCNN arrives at a classification limits
the opportunities to strategically improve the algorithm or
training data. The ability to explain and interpret how deep-
learning algorithms arrive at classification scores has
therefore become a topic of active research by AI developers
and AI users, respectively. The internal machine-learned
features can be extracted to better interpret the rationale of
decision making of a trained network. Attention maps allow
for visualization of these machine-learned features, high-
lighting the parts of a given image that were influential in
classifying or segmenting the image.37 Faust et al38 have
used feature map visualization methods to compare learned
features with human-interpretable features of images.
Machine-learned features were found to correlate to multiple
tissue and cell features, including the presence of epithelial
cells, fibrosis, and luminal space.

An understanding of the internal DCNN features and the
ways in which they relate to known markers of tissue
structure and pathology provides insight into the decision-
making capabilities of these AI algorithms. Human-
interpretable features can also be generated from DCNN
results to better characterize pathologic tissue. U-Nets and
their derivatives can be used to segment both cells and tis-
sues within a sample, producing a multiscale map of the cell
populations that reside in given regions of tissue. If a
network that segments cancerous tissue is combined with a
network that segments cells, the resulting segmentations can
be mined for human-interpretable features of the spatial
distribution of cells, such as lymphocyte density near the
cancer boundary and relative density of immune cells and
cancer cells within the tumor.39 The method of combining
deep automated cell and lesion detection with human-
engineered computer-visualization features provides high-
throughput computation of interpretable features that pre-
viously would have required costly and time-intensive
manual annotation of images.

Quantifying Spatial Organization of Cells in Microscopy
Images

Automation of annotation facilitates spatial analyses that are
more complex than was previously possible. Specifically,
determining the interspatial organization of various cell
The American Journal of Pathology - ajp.amjpathol.org
classes unlocks the capacity to determine the ways in which
the cell constituents of tissue interact. This spatial data al-
lows for the generation of novel features that can be used to
stratify patients and increase the understanding of cell pro-
cesses in tissue.

This idea has been applied extensively in the study of
tumor immunology. Nearchou et al40 examined sequential
sections of surgically resected colorectal cancer specimens
and developed the spatial immuno-oncology index,
composed of patient-level spatial features, including mean
CD3þ density, mean number of lymphocytes in proximity
to tumor buds, and ratio of CD68þ/CD163þ macrophages,
and used as a predictor of prognosis. Similarly, Lazarus
et al41 examined the abundance and spatial distribution of
various subsets of T cells, antigen-presenting cells, and
tumor cells in liver metastases of colorectal cancer. The
automated detection and segmentation of immune cells
facilitated the finding that cytotoxic T lymphocytes were
typically positioned further from epithelial cells and
antigen-presenting cells that were expressing a programmed
cell death checkpoint molecule. Furthermore, they found
that high levels of engagement, defined as an intercell dis-
tance of <15 mm, between cytotoxic T lymphocytes and
epithelial cells, helper T cells, and regulatory T cells was
predictive of increased survival. Thus, automated image
analysis allows for the extraction of features related to the
interactions between tumors and the immune system that
can be used to predict patient outcomes. Wang et al42 used a
Mask R-CNN architecture to segment lymphocytes and tu-
mors cells in whole-slide H&E images of hepatocellular
carcinoma samples. These segmentations were then used to
generate 246 image features that included tumor nuclei
morphology, density of lymphocytes and tumors, and the
spatial relationships between the two cell types. These fea-
tures were used to perform unsupervised consensus clus-
tering that identified three distinct subgroups within the
patient population.

Predicting prognosis is not the final goal of these ana-
lyses. Rather, associating specific intercell interactions with
positive or negative patient outcomes is the first step in
identifying immunologic phenomena that have potential as
therapeutic targets. Understanding the cell interactions tak-
ing place in tissue, and the ways in which these interactions
correlate with outcome, allows for the identification of in-
teractions that should be promoted and those that should be
disrupted.
Challenges in Applying AI to Cell Image
Analysis

Use of deep learning for image analysis as a standard in the
experiment toolkit necessitates considering the ways in
which image data acquisition can be optimized for down-
stream machine-learning applications (Figure 2). In partic-
ular, it is important to understand which features of data
1697
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acquisition can influence the performance of segmentation
algorithms, including: i) selection bias, ii) sample process-
ing, and iii) imaging system.43,44

Selection Bias

Selection bias in AI for cell imaging has multiple compo-
nents. This section discusses selection bias as it relates to
both tissue sampling and building training, validation, and
testing sets of data.

Bias in Tissue Collection and Sampling

Selection bias is always a concern with ex vivo imaging, as
the full organ or tissue cannot always be excised for ex vivo
analysis.45 In sampling a small region of the tissue, ex vivo
two-dimensional imaging may or may not contain the most
severe region, meaning that at the cellular level, sampling
error must be considered for in-depth evaluation of the tis-
sue. While selection bias does affect the capacity of AI to
accurately predict patient diagnosis or prognosis, tissue
analysis by a pathologist is also subject to selection bias.
Further improvements in the specificity of biopsy
sampleeacquisition methods will be useful in reducing the
effects of selection bias on both human and machine
decision-making in pathology.

Bias in Training Data

AI methods consist of trainable algorithms that must learn
from a predetermined set of samples. If an algorithm is
trained using data that is biased toward one population or
Figure 2 The application of AI to the microscopy of cells requires careful
acquisition, data set curation, selection and deployment of computer-vision m
challenges associated with each step may limit the scope of the conclusions. DC
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class, this bias will be inherent in the trained model when it
is applied to new samples.46 Certain biases in training data
are difficult to address in smaller-scale studies. For example,
if a training set is composed of samples from a single
institution, or if one institution is more represented than
another, the resulting model will likely perform better on
samples from this overrepresented institution. The same
concept can be applied to patient or sample groups (ie,
patient age or sex) present in the training data. This bias can
be partially mitigated through training-set normalization or
harmonization but should be noted as a limitation of any
trained model.
Sample Processing

The fixation method also affects the results of AI analysis of
ex vivo tissue samples. A significant difference was found
between quantitative features of cell morphology in cells
detected by deep CNNs in tissue samples that were fresh-
frozen compared to formalin-fixed, paraffin-embedded tis-
sue samples.16 As these cell morphology features can be
used as descriptors of disease states, it becomes important to
interpret studies on patient diagnosis or disease pathogenesis
relative to the way in which the biopsy sample was stored
after acquisition. Variability in tissue staining is another
concern. Even with the use of the same protocols, findings
from H&E, immunohistochemistry, and immunofluores-
cence staining can vary between technicians, or within
samples stained by the same technician on different days.
With different institutions and different protocols, stain
quality and appearance can vary even further.44 These dif-
ferences in staining can affect the performance of deep-
consideration and planning at all stages of the process, including data
ethods, and postedeep-learning analysis. If not properly addressed, the
NN, deep convolutional neural network.
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learning algorithms in diagnosis or lesion/cell segmentation,
but they also limit the generalizability of these algorithms.
While deep-learning algorithms excel in the recognition of
patterns in data sets, changes in the hue, relative intensity, or
staining specificity can change these patterns, causing AI to
learn institution-specific features and thus reducing algo-
rithm generalizability.

Imaging System

Performance of AI in the analysis of microscopy images is
also sensitive to the imaging system on which the training
data were acquired, and trained algorithms may not gener-
alize well to new microscopes or slide scanners.47 Many
variables associated with the imaging system can affect
performance, including light source power and spectrum,
magnification, pixel size, and objective numeric aperture. A
large training set representative of the diversity of images
used in the algorithm should be built, including images from
multiple microscopes or slide scanners, if necessary. Addi-
tionally, a small fine-tuning data set can be used to adapt a
trained network to a new imaging system or imaging pro-
tocol. Generalization between imaging systems is often
further complicated by proprietary image file formats
offered by various vendors, which can be difficult to convert
into a standardized format. There is a need for an industry-
wide file standard, analogous to the digital imaging and
communications in medicine (DICOM) format used in
radiologic imaging modalities.

Image Annotation

Many of the methods discussed in this review are consid-
ered supervised learning methods, in which a specialist must
annotate a large training set of data to establish ground truth.
Generating these training sets is a costly and time-intensive
task, but algorithm performance hinges on the acquisition of
a well-annotated training set. Fully unsupervised algorithms,
such as clustering or dimensionality reduction, are machine-
learning tools useful in digital pathology.48 Rather than
learning the features associated with specific classes, unsu-
pervised methods learn the inherent distribution of the
training data. Groups of points that emerge from an unsu-
pervised algorithm will all have similar features, but the
groups may or may not have direct relevance to human-
interpretable groups. Unsupervised machine-learning algo-
rithms do not require the manual annotation overhead of
supervised algorithms. However. they address separate hy-
potheses, and probe questions such as, How do these data
points group together?, compared to supervised questions,
such as, What are the similarities between data points in
each class?

New developments in AI are pushing toward semi- or
self-supervised machine-learning methods. Contrastive
learning, a form of self-supervision, has recently been
The American Journal of Pathology - ajp.amjpathol.org
applied to medical imaging tasks to minimize the need for
manual annotations. In contrastive learning, a network is
trained to learn feature representations of images, ultimately
identifying the features that are similar across similar im-
ages, without human-defined truth on the class of those
images.49 AI in digital and computational pathology is
currently dominated by data-hungry algorithms, so the
application of contrastive learning methods may be useful in
mitigating the need for large sets of training data. Addi-
tionally, transfer learning can be implemented to leverage
trained networks to apply to new image domains, reducing
the minimal amount of manual data needed for achieving
high accuracy.
Summary

AI in microscopy image analysis is a rapidly evolving
discipline that affects both clinical and basic science
research. The automation of image classification and cell
detection using computer-visualization techniques facilitates
high-throughput analysis of information-dense microscopy
images, particularly in the case of multiplexed microscopy.
These tools are becoming increasingly mainstream, with the
availability of open-source software making them accessible
to a broader range of users. Machine learningeenabled
feature extraction can allow for novel insights into cell en-
vironments associated with disease. However, the use of
machine-learning methods introduces a set of experiment-
related considerations that must be addressed to generate
data sets that produce robust and meaningful insights.
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