Table 9.
F1-score values of the Deep Learning algorithms obtained with different parameters.
| LR=0.001 | LR=0.0001 | ||||||
|---|---|---|---|---|---|---|---|
| M-1 | M-2 | M-3 | M-1 | M-2 | M-3 | ||
| All | RNN | 0.59 | 0.58 | 0.56 | 0.58 | 0.57 | 0.57 |
| GRU | 0.79 | 0.79 | 0.79 | 0.68 | 0.7 | 0.72 | |
| LSTM | 0.8 | 0.8 | 0.8 | 0.76 | 0.77 | 0.76 | |
| Topic-1 | RNN | 0.57 | 0.57 | 0.57 | 0.57 | 0.56 | 0.56 |
| GRU | 0.83 | 0.83 | 0.81 | 0.42 | 0.44 | 0.39 | |
| LSTM | 0.82 | 0.83 | 0.81 | 0.7 | 0.78 | 0.79 | |
| Topic-2 | RNN | 0.57 | 0.57 | 0.56 | 0.56 | 0.56 | 0.57 |
| GRU | 0.81 | 0.83 | 0.81 | 0.42 | 0.42 | 0.38 | |
| LSTM | 0.8 | 0.8 | 0.82 | 0.73 | 0.76 | 0.80 | |
| Topic-3 | RNN | 0.57 | 0.57 | 0.56 | 0.57 | 0.55 | 0.55 |
| GRU | 0.79 | 0.82 | 0.81 | 0.4 | 0.41 | 0.41 | |
| LSTM | 0.81 | 0.81 | 0.81 | 0.73 | 0.76 | 0.8 | |