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Abstract

The brain exhibits highly organized patterns of spontaneous activity as measured by resting-state functional magnetic
resonance imaging (fMRI) fluctuations that are being widely used to assess the brain’s functional connectivity. Some
evidence suggests that spatiotemporally coherent waves are a core feature of spontaneous activity that shapes functional
connectivity, although this has been difficult to establish using fMRI given the temporal constraints of the hemodynamic
signal. Here, we investigated the structure of spontaneous waves in human fMRI and monkey electrocorticography. In both
species, we found clear, repeatable, and directionally constrained activity waves coursed along a spatial axis approximately
representing cortical hierarchical organization. These cortical propagations were closely associated with activity changes in
distinct subcortical structures, particularly those related to arousal regulation, and modulated across different states of
vigilance. The findings demonstrate a neural origin of spatiotemporal fMRI wave propagation at rest and link it to the
principal gradient of resting-state fMRI connectivity.
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Introduction
The human brain represents about only 2% of the total body
weight but accounts for approximately 20% of the total energy
budget, and a majority (∼95%) of brain energy is consumed by
intrinsic brain activity at rest (Raichle 2006; Raichle and Mintun
2006). This budget allocation is consistent with a highly orga-
nized nature of functional magnetic resonance imaging (fMRI)
signals collected in the resting state, which are being widely

used for inferring functional brain connectivity in health and
disease (Biswal et al. 1995; Fox and Raichle 2007). The study
of resting-state fMRI (rsfMRI) dynamics has suggested that the
highly structured rsfMRI connectivity, that is, correlations, may
arise from transient fMRI coactivations caused by event-like
brain activity (Tagliazucchi et al. 2012; Liu and Duyn 2013; Liu
et al. 2018; Matsui et al. 2018), which were also to show sys-
tematic transitioning patterns (Ma and Zhang 2018; Liu and
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Zhang 2019). Consistent with these findings, the propagating
structures have been found in rsfMRI by using a template-
refining approach to extract repeated quasi-periodic patterns
(QPP) (Majeed et al. 2011; Thompson et al. 2014; Yousefi et al.
2018) or by decomposing rsfMRI lag structures to recover lag
threads (Mitra et al. 2014; Mitra, Snyder, Blazey, et al. 2015a).
These propagating structures contribute significantly to rsfMRI
connectivity (Mitra, Snyder, Blazey, et al. 2015a; Abbas et al. 2019)
and appear sensitive to brain state changes and diseases (Mitra,
Snyder, Constantino, et al. 2015b; Mitra, Snyder, Tagliazucchi,
et al. 2015c; Mitra et al. 2018), and thus could be the key to under-
standing the functional role of intrinsic brain activity (Raut et al.
2019).

Nevertheless, to date the neural origin of the rsfMRI prop-
agations remains elusive despite the ample evidence for the
neural origin of rsfMRI connectivity (Nir et al. 2008; Hermes
et al. 2012; Foster et al. 2015; Hacker et al. 2017). The study
of propagating activity using fMRI faces a serious issue due to
the spatial heterogeneity of hemodynamic delays (Handwerker
et al. 2004). A series of recent studies have shown that a sys-
temic low-frequency oscillation of blood signals, which can be
recorded at peripheral sites such as fingertips and toes, induces
systematic rsfMRI delays across brain regions that are consistent
with the blood transit time through the cerebrovascular tree
(Tong and Frederick 2010, 2012; Tong et al. 2012, 2017, 2018),
suggesting a potential contribution of hemodynamic delays to
apparent rsfMRI propagations. On the other hand, simultaneous
fMRI–electrophysiology recordings in rats have provided clear
evidence for the co-modulation of neural activity with the rsfMRI
propagations (Thompson et al. 2014), which is, however, insuf-
ficient to prove the neural origin of the “propagation” per se.
In other experimental setups, spatially propagating waves have
been observed among neural populations, for example, wide-
field optical imaging of voltage-sensitive dye or calcium in mice.
However, such waves are difficult to compare with those mea-
sured with fMRI, as they are usually local (millimeters) and on a
rapid time scale (<1 s) (Mohajerani et al. 2013; Greenberg et al.
2018). Most recently, globally propagating waves on the seconds
timescale (∼5 s) and the lag structure were observed in mice
using calcium imaging and suggested to account for resting-
state hemodynamic connectivity (Matsui et al. 2016; Mitra et al.
2018). However, it remains unclear whether similar resting-state
infra-slow propagations over the entire cortex are present in
neural signals of awake primates, and if so, whether and how
are they similar to the propagating activity in human rsfMRI.
There is also a lack of a detailed characterization of the infra-
slow propagating activity, including its trajectories and subcor-
tical involvements. Furthermore, although the contribution of
these slow propagations to rsfMRI connectivity has been demon-
strated (Mitra et al. 2014; Mitra, Snyder, Blazey, et al. 2015a;
Matsui et al. 2016; Mitra and Raichle 2016; Abbas et al. 2019),
it remains unclear whether they can be linked to any specific
component of rsfMRI connectivity. Both the major QPP (Majeed
et al. 2011) and the latency projection of the lag structure (Mitra
et al. 2014; Mitra, Snyder, Blazey, et al. 2015a) showed a distinct
contrast between the default-mode network and sensory/motor
(SM) regions. This contrast superficially resembles the so-called
“principal gradient” (PG) of the brain’s spontaneous activity,
which has been derived by embedding the rsfMRI connectivity
matrix into a low-dimensional space (Margulies et al. 2016;
Huntenburg et al. 2018). This coincidence raises 2 important
questions. First, is the direction of spatiotemporal fMRI propa-
gation fundamentally linked to the reported rsfMRI connectivity

gradient? And second, do the large-scale propagating waves
reflect an underlying pattern of electrophysiological activity
following the same trajectory?

To address these questions, this study combines human
rsfMRI and monkey electrophysiology to study the infra-slow
propagating brain activity. We developed a data-driven method
to detect single propagating instances and map their prop-
agating trajectories. The application of this method to high-
resolution rsfMRI data of Human Connectome Project (HCP)
revealed global propagations mostly in 2 opposite directions
along an axis strikingly similar to the PG of rsfMRI connectivity
(Margulies et al. 2016). The application of the same method to a
large-scale electrocorticography (ECoG) recording from monkeys
revealed very similar cross-hierarchy propagations between the
lower- and higher-order brain regions, which are present most
strongly at the gamma-band (42–95 Hz) power signals. Close
inspection of the global rsfMRI propagations suggests local,
embedded propagations within sensory modalities proceed in
the opposite direction of the global propagation. More impor-
tantly, these cortical propagations are accompanied by sequen-
tial coactivation/deactivation in specific subcortical structures,
particularly those related to arousal regulation. Consistent with
this finding, the temporal dynamics of the infra-slow propa-
gating activity are significantly modulated across brain states
of distinct vigilance. Taken together, the study demonstrates a
characteristic pattern of spontaneous, slowly propagating activ-
ity across the cortical hierarchy in humans and nonhuman
primates, maps its detailed trajectories and associated subcorti-
cal changes, demonstrates its brain-state dependency, and also
links it to the PG of the rsfMRI connectivity.

Materials and Methods
HCP Data and Preprocessing

We used the HCP 500-subject data release, including 526 healthy
subjects scanned on a 3 T customized Siemens Skyra scanner.
We limited our analyses to 460 subjects (age: 22–35 years, 271
females) who completed all four 15-min rsfMRI sessions on 2
separate days (2 sessions per day). The data were collected using
multiband echo-planar imaging with an acceleration factor of
8 (Uǧurbil et al. 2013). The temporal and spatial resolutions of
the data are 0.72 s and 2-mm isotropic, respectively. Four 15-min
scanning sessions of 460 subjects were used in our analysis.

The rsfMRI data were preprocessed based on (Smith et al.
2013) using FSL (Jenkinson et al. 2012), FreeSurfer (Fischl 2012),
and HCP workbench (Marcus et al. 2013) and the HCP FIX-
ICA denoising pipeline was applied to remove artifacts. The
multimodal surface matching registration was used in the HCP
dataset to improve intersubject registration (Robinson et al.
2014, 2018). We used both rsfMRI surface and volume data.
The rsfMRI cortical surface data were represented in standard
HCP fs_LR 32k surface mesh and each hemisphere included
32 492 nodes (59 412 total excluding the noncortical medial wall).
We smoothed rsfMRI data both spatially on the fs_LR 32k sur-
face using a Gaussian smoothing kernel (sigma = 2 mm) and
temporally using bandpass filtering at 0.001–0.1 Hz and then
standardized each vertex’s signal by subtracting the mean and
dividing by the standard deviation (SD). For the rsfMRI volume
data including both cortical and subcortical areas, we smoothed
rsfMRI volume data temporally (0.001–0.1 Hz) and standardized
each voxel’s signal by subtracting the mean and dividing by
the SD.
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ECoG Data and Preprocessing

The monkey electrophysiology dataset was downloaded from
the website (http://neurotycho.org) and had been described in
a previous publication (Liu et al. 2014). To sum up, all procedures
were approved by the RIKEN Ethics Committee. An implanted
customized 128-channel ECoG electrode array (Unique Medical)
was used to record neural signals (Nagasaka et al. 2011). Each
ECoG electrode had a 3-mm diameter platinum disc with a 5-
mm interelectrode distance. We used the ECoG data from 4
adult macaque monkeys (monkey K, G, and C Macaca fuscata
and monkey S Macaca mulatta). The 128-channel ECoG elec-
trode array was implanted in the left hemisphere covering the
majority of cortical regions. The reference and ground elec-
trodes were implanted in the subdural space and the epidu-
ral space, respectively. ECoG recordings were conducted with
a sampling rate of 1 kHz using the Cerebus data acquisition
system. More specific information can be found in (Yanagawa
et al. 2013).

The ECoG signals were recorded under 3 brain states: the
eyes-open, eyes-closed, and sleep states. Under the eyes-closed
waking state and the natural sleep state, the monkeys sat calmly
in a dark and quiet environment with eyes covered. During
the sleep condition, the slow-wave oscillations were observed
intermittently on the ECoG data. Under the eye-open condition,
the eye mask was removed. Experiments were conducted on
separate days. The ECoG data under the eyes-open and eyes-
closed conditions were available in all of the 4 monkeys. The
ECoG data under the natural sleep condition were only available
in monkey C and monkey G.

The total length of ECoG data under the eyes-closed condi-
tion was about 85, 89, 60, and 62 min for monkey C, monkey
G, monkey K, and monkey S, respectively. The total length of
ECoG data under the eyes-open condition was about 103, 85, 60,
and 61 min for monkey C, monkey G, monkey K, and monkey
S, respectively. The total length of ECoG data under the sleep
condition was about 243 and 157 min for monkey C and monkey
G, respectively.

We removed the line noise at the primary frequency (50 Hz)
and its harmonics using Chronux (Mitra and Bokil 2009). We
excluded 3 channels for monkey G, 1 channel for monkey K,
and 1 channel for monkey S from subsequent analyses due to
serious artifacts that cannot be removed. We re-referenced the
ECoG signals to the mean of all channels. To extract the band-
limited power signals, we first calculated spectrograms between
1 and 100 Hz using a multitaper time–frequency transformation
with a window length of 1 s, a step of 0.2 s and the number of
tapers equal to 5 provided by Chronux (Mitra and Bokil 2009). We
then converted the power spectrogram into decibel units using
the logarithmic function. Next, we normalized the power spec-
trogram at each frequency bin by subtracting the temporal mean
and dividing by its temporal SD. The normalized spectrogram
was averaged within different frequency bands: delta 1–4 Hz;
theta 5–8 Hz; alpha 9–15 Hz; beta 17–32 Hz; and gamma 42–95 Hz.
The gamma frequency band was defined conservatively as 42–
95 Hz, within which the power signals of different frequency
bins show similar temporal dynamics. We also extracted the
power of the low- (30–80 Hz) and high-gamma (80–150 Hz) bands
as defined by a previous study (Ray and Maunsell 2011). Then,
the band-limited power signals were smoothed both temporally
using a low-pass filter (<0.1 Hz) and spatially using a Gaussian
smoothing kernel (sigma = 5 mm), then standardized by remov-
ing the mean and dividing by its SD. The effect of temporal filter

used here was examined to make sure that it will not produce
any phase shifts (Supplementary Fig. S1).

Projecting the rsfMRI Signals Onto the PG Direction

The rsfMRI signals were projected onto the PG (Margulies et al.
2016) direction to generate time–position correlations as follows.
The PG was obtained by a previous study with applying the diffu-
sion mapping, a low-dimensional embedding method, to a group
averaged connectome matrix (Margulies et al. 2016). First, we
reduced the spatial dimension by sorting 59 412 cortical surface
vertices according to the PG and then dividing these cortical
surface vertices into 70 position bins of equal size. The position
bin of 70 was chosen arbitrarily and we examined different
number of position bins (Supplementary Fig. S2), for example,
50, 500, 5000. Next, the fMRI signals within each position bin
were averaged to generate the time–position graph. Secondly,
the time–position graph was cut into time segments based on
the troughs of the global mean signal, and a local peak was found
for each position bin within each time segment. Thirdly, for each
time segment, the Pearson’s correlation was computed between
the timing (relative to the global mean peak) and position of local
peaks of all the position bins. A strong positive time–position
correlation would indicate a propagation of the fMRI signal
along the PG direction within this time segment and a strong
negative time–position correlation would indicate a propagation
opposite the PG direction. The local peak was detected for each
position bin as the local maxima with a value larger than zero.
If more than 1 local maximum were detected, the one with
the largest peak amplitude was regarded as the local peak. The
time–position correlation was only computed for time segments
whose local peaks were identified in at least 56 (70 × 80%)
position bins.

To focus our analysis on the time segments with global
involvement, we identified time segments with a relatively large
global positive peak amplitude by using a threshold derived from
a null distribution and then computed time–position correla-
tions of those identified time segments. The null distribution
of global positive peak amplitudes was generated by randomly
shifting the fMRI signal of different position bins in time and
then calculating the global positive peak amplitudes of those
randomly shifted signals. The random shifts were uniformly
distributed integers between 1 and the total number of time
points (1200) in a single scanning session. The time segments
with global involvement were defined as those with a global
peak amplitude exceeding the 99th percentile of the null dis-
tribution, which account for 58.80% of the total segments. We
also calculated the delays between the global peak and the local
peaks of 70 position bins for time segments of the real fMRI
signals and randomly shifted signals.

For the time segments with global involvement, the time–
position correlations along 4 other control directions were
also computed in the same way as described for the PG. The
4 control directions included the second gradient of rsfMRI
connectivity derived by the PG study (Margulies et al. 2016), and
3 artificial directions, that is, anterior-to-posterior direction,
dorsal-to-ventral direction, and randomly rotated PG. The
anterior-to-posterior direction map was generated by assigning
increasing amplitude to vertices from posterior to anterior
direction according to the y coordinate. The dorsal-to-ventral
direction map was generated by assigning increasing amplitude
to vertices from ventral to dorsal direction according to the z

neurotycho.org
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coordinate. The randomly rotated PG was generated by rotating
the PG map on the spherical fs_LR 32k surface space with
random degrees with respect to the x, y, z axes, which preserved
the relative topology of the PG.

Principal Propagating Direction in the Human
rsfMRI Signals

A principal delay (PD) profile was derived by applying a singular
value decomposition (SVD) (Golub and Reinsch 1970) to delay
profiles of time segments with global involvement. For any
given time segment with global involvement, a delay profile
was computed as the relative time delay of the local peak at
each cortical surface vertex with respect to the global peak. The
local peak was computed for each vertex as the local maxima
with a value larger than zero. If more than one local maximum
were detected, which were rare, the one with the largest peak
amplitude was then regarded as the local peak. We focused on
the delay profiles with at least 47 530 (59 412 ×80%) local peaks.
For those selected delay profiles, if the local peak amplitude
was less than zero or no local maxima was detected, then its
relative time delay was defined as the mean time delay of its 3
nearest vertices with local peaks larger than zero. Specifically,
for each vertex without time delay, the distance on the brain
surface between this vertex and other vertices with time delay
was calculated and sorted. Then, the averaged time delay of 3
vertices with smallest distance were used to replace the time
delay of that vertex. The distance on the brain surface was
calculated based on the coordinates of vertices. Next, a delay
matrix was formed by concatenating all of the delay profiles,
to which we then applied SVD to extract the PD profiles. This
delay profile decomposition method shares a similar idea with
several previous approaches (Mitra and Pesaran 1999; Aquino
et al. 2012; Muller et al. 2014) in utilizing the time delays between
brain regions to infer propagating brain activity.

SVD is to reduce high-dimensional data to lower dimensions
of uncorrelated components. The delay matrix is an n×m matrix,
where n is the number of cortical vertices and m is the number of
delay profile. The delay matrix was denoted as X. Applying SVD
to X generates

X = USVT (1)

where U is an n × n orthonormal matrix, whose column repre-
sents left singular vector. S is an n × m diagonal matrix, whose
diagonal entries represent singular values of X. V is an m × m
orthonormal matrix, whose column represents right singular
vector. The columns of U were ordered based on the variance
explained of X. The square of each diagonal singular value
in S denoted the variance of the corresponding vectors. The
PD profile is the first column of U, which explains the largest
variance of X. It is expected to reflect the major propagating
direction.

The rsfMRI time segments with a propagation along the PD
profile were defined as described below. The rsfMRI segments
with global involvement were projected onto the PD profile
direction and the corresponding time–position correlations were
then computed. This was done in the same way as the projection
of rsfMRI signal onto the PG direction. We repeated the same
procedure for the 4 control directions describe above and built a
null distribution of time–position correlations by pooling time–
position correlations for all the 4 control directions. A posi-
tive correlation exceeding the 1.64 SD of the null distribution
was regarded as a bottom-up (from SM regions to the default

mode network [DMN]) propagation and a negative correlation
exceeding 1.64 SD of the null distribution was regarded as a
top-down (from the DMN to SM) propagation. The 1.64 SD was
used because the critical value for a 90% confidence level with
5% on each side is 1.64. The total time of the top-down or
bottom-up propagations was calculated as the total length of all
the time segments identified to have a top-down or bottom-up
propagation.

The SVD components captured the major propagating direc-
tions but in an arbitrary unit rather than in seconds. Therefore,
we rescaled the derived PD profile based on the time–position
relationship of the time segments with top-down or bottom-up
propagations. Specifically, we calculated the regression coeffi-
cient of the time–position relationship for each segment with a
propagation to estimate the propagating speed with assuming
the geodesic distance on the cortical surface between the pri-
mary SM regions and the default-mode network is 80 mm (Mar-
gulies et al. 2016). We computed the averaged propagating speed
across all the time segments with propagations and then utilized
it to rescale the PD profiles into the unit of seconds. Applying
such rescaling procedure on the synthesized data successfully
generated 2 PD profiles that are consistent with the duration of
simulated propagating structures (Supplementary Fig. S3).

The z-score maps for averaged bottom-up and top-down
propagations were calculated in the surface and volume space
as follows. First, the global peaks within the time segments
with propagations were located. A time window of 14.4 s (20TR
×0.72 s/TR) was defined to contain 10 time points before and
10 time points after each of these global peaks (set as time
zero), which the delays of the delay profiles were defined with
respect to. The global signal peak was used for aligning the prop-
agation segments also because it showed a sensory-dominant
coactivation pattern (Liu et al. 2018) that could be a specific
phase of propagations. Second, rsfMRI signals of these time
windows were averaged, in both surface and volume spaces, to
obtain maps showing averaged propagation, which were then
converted to z-score maps according to the formula below:

Z = x/(1
√

n) (2)

where x is the averaged propagating map value and n is the
number of time segments being averaged. Since the rsfMRI
signals were standardized in the preprocessing steps and fol-
lowed the standard Gaussian distribution, their mean across n
randomly chosen segments would thus follow a Gaussian dis-
tribution of zero mean and 1/n variance. Therefore, the z-score
quantifies the significant level at which the computed mean
is deviated from zero. The false discovery rate (FDR) is used to
correct multiple comparisons. The function ‘fizt_t2p’ from AFNI
(Cox 1996) was used to covert the z-score to the P value. The FDR
q values were generated by using the 3dFDR program from AFNI
(Cox 1996). The associated time–position graphs of the defined
time windows with propagations were also averaged.

The cerebrospinal fluid regions were masked out from the
averaged top-down and bottom-up propagations in the vol-
ume space. The cerebrospinal fluid regions were defined based
on the Harvard–Oxford subcortical structural probabilistic atlas
(Desikan et al. 2006) using a threshold of 30% probability.

We tested the reproducibility of the PD profile in humans
using a split-half analysis. There are 4 sessions of rsfMRI data
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acquired in 2 different days. For each session of data, we ran-
domly split subjects into 2 equal groups and calculated the PD
profile for each group as described above.

The PD profile was also computed on fMRI signals with skip-
ping the temporal filtering and/or spatial filtering, or switch-
ing their order (Supplementary Fig. S4). For all these cases, the
fMRI signals were also cut into time segments based on the
global mean signal calculated using the filtered fMRI signals.
Otherwise, we would have time segments with the duration of
a few seconds and cannot conduct any meaningful subsequent
analyses. The PD profile was also computed on rsfMRI signals
after the global signal regression (Supplementary Fig. S5A) or
regressing out the physiological signals, that is, the heart rate
and respiratory volume (Supplementary Fig. S5B). The heart rate
for each session was computed by averaging the time differ-
ences of consecutive peaks of the raw cardiac trace in a sliding
window of 6.48 s centered at each time point and converting
to units of beats-per-minute (Chang et al. 2009). The respira-
tory volume for each session was computed as the SD of the
raw respiratory trace in a sliding window of 6.48 s centered
at each time point (Chang et al. 2009). The heart rate and
respiratory volume were convolved with the cardiac response
function (Chang et al. 2009) and the respiratory response func-
tion (Birn et al. 2008), respectively, before regression. The PD
profile was computed on fMRI signals from 50 subjects with the
lowest head motion (Supplementary Fig. S5C). The head motion
was quantified for each subject by the mean framewise dis-
placement (Yoo et al. 2005) over the scanning session. The PD
profile of negative local peaks was also computed with cutting
rsfMRI signal into time segments based on the positive peaks
of the global mean signal and then decomposing the delay
profiles defined by local negative peaks within time segments
(Supplementary Fig. S6).

Simulation of rsfMRI Signals
With Artificial Propagations

To test whether the delay profile decomposition method and the
PG method can successfully identify the direction of propagating
activity, we simulated fMRI signals on the brain cortical sur-
face containing propagating structures along artificial directions
and then applied these 2 methods to the simulated data. The
propagating structures were generated by creating a spatial
band of high-amplitude signals and then shifting it along the
anterior-to-posterior, posterior-to-anterior, or dorsal-to-ventral
directions over time on the brain surface. The signal modulation
within the activation band along its propagating direction was
described as a Gaussian function (sigma = 9 mm). We simulated
6 types of propagating structures that propagated across the
whole brain with 2 different speeds in 3 different directions,
including those propagating through the whole brain in the
anterior–posterior and the opposite directions in 19 and 29 s,
respectively, as well as those propagating across the whole brain
in the dorsal-to-ventral directions in 11 and 20 s. The simulated
propagating structures were convolved with a canonical hemo-
dynamic response function from SPM (https://www.fil.ion.ucl.a
c.uk/spm/) and then randomly inserted into background fMRI
signals that were modeled as white noise. We randomly inserted
2 of each type of propagating structure along the anterior-to-
posterior direction, 1 of each type of propagating structure along
the posterior-to-anterior direction, 3 of each type of propagat-
ing structure along the dorsal-to-ventral direction into each
session of simulated fMRI signals of 1200 time points. The

temporal resolution of simulated fMRI signals was assigned as
1 s arbitrarily. The simulated fMRI signals were further spatially
smoothed using a Gaussian smoothing kernel (sigma = 2 mm)
and temporally filtered using bandpass filtering at 0.001–0.1 Hz.
We simulated a total of 50 sessions of fMRI data and then derived
their PD profile using the method described above and the PG
using the diffusion embedding method (Margulies et al. 2016).
For the PG, we computed the functional connectivity matrix of
each session and then averaged them across all the 50 sessions.
The diffusion embedding method was applied to the averaged
connectivity matrix to find its low-dimensional embeddings as
the PGs. The code of the diffusion embedding method was pro-
vided by the previous study (Margulies et al. 2016). The procedure
was repeated for 2 sets of simulated data with different signal-
to-noise ratio, which were obtained by setting the peak signal of
the activation bands as 2 and 5 times of the SD of background
white noise.

Principal Propagating Direction in the Monkey
ECoG Data

The delay profile decomposition method described above was
also applied to the ECoG data to derive the PD profile for different
bandlimited powers. Here we take the gamma-power as an
example. The global mean signal was calculated as the aver-
aged ECoG gamma-power across all electrodes. The signals were
cut into time segments based on troughs of the global mean
signal. Next, the time segments with global involvement were
identified if the global peak amplitude exceeded the threshold
(the 99th percentile of a null distribution of the global peak
amplitudes). The null distribution was created by calculating the
global peak amplitudes after randomly shifting the time series
of each electrode. The random shifts were uniformly distributed
integers between 1 and the number of the time points in the
experimental session. The analyses below focused on the time
segments with global involvement.

A delay profile was generated for each time segment by
computing the relative time delays between the local peak of
individual electrodes and the global peak. The local peak of
each electrode within each time segment was defined as the
local maxima with a value larger than zero. If more than one
local peak were detected for a signal segment, the local peak
was defined as the one with the largest peak amplitude. We
focused on the delay profiles with at least 102 (128 × 80%)
local peaks within a time segment. For those selected delay
profiles, if the local peak was less than zero or no local maxima
was detected, its relative time delay with respect to the global
peak was defined as the mean of its 3 neighboring electrodes.
Next, a delay matrix was formed by concatenating all of the
delay profiles, to which we then applied SVD to extract the
PD profile.

The ECoG gamma-power signals were projected onto the PD
profile direction to identify time segments with propagations.
The time segments were generated as described above and only
those with global involvement, which account for 44.05± 3.59%
(mean± SD across 4 monkeys) of the total segments, were ana-
lyzed. For each time segment, the Pearson’s correlation between
the relative timing and position of local peaks across all the
electrodes was calculated. To create a threshold for detecting
time segments with propagations, we generated a null distri-
bution of time–position correlations along the randomly rotated
PD profiles with retaining the relative positions of electrodes,
which were obtained by randomly rotating the PD profiles on
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a coordinate plane with random degrees with respect to the x, y
axes. The time segments with a bottom-up (from the SM regions
to the high-order regions) propagation along the PD profile were
identified if the time–position correlation had a positive value
exceeding the threshold (1.64 SD of the null distribution of time–
position correlations). The time segments with a top-down (from
the high-order regions to the SM regions) propagation along the
PD profile were identified if the time–position correlation had a
negative value exceeding the threshold (1.64 SD of the null dis-
tribution of time–position correlations). The averaged top-down
and bottom-up propagation maps were calculated as follows.
First, we identified the global peaks for the time segments with
propagations. Then, a 12-s time window (60× 0.2 s; the temporal
resolution of bandlimited power signals is 0.2 s) centering on
each of these global peaks was defined to cover 30 time points
before and 30 time points after the global peak. Second, we aver-
aged the ECoG bandlimited power signals and associated time–
position graphs of these time windows to obtain the averaged
propagating maps.

Considering that SVD components captured the major prop-
agating directions in an arbitrary unit, we rescaled the derived
PD profile to second unit using the same strategy as we used
for human rsfMRI data. Briefly, we calculated the regression
coefficient of the position–time relationship for each segment
with a propagation to estimate the propagating speed. Then,
the averaged propagating speed across all the time segments
with propagations was computed and utilized to rescale the PD
profiles into the unit of seconds.

We quantified the cross-hierarchy pattern of the PD profile
from monkeys by comparing it with the cortical myelination
map, which has been suggested to be a good estimation of
cortical anatomical hierarchy (Burt et al. 2018). Given that the
cortical myelination map was available on the average Yerkes19
macaque surface (Donahue et al. 2016), we manually mapped
the location of 128 electrodes of each monkey onto the average
Yerkes19 macaque surface (Donahue et al. 2016) based on the
gyrus and sulci of the brain (see Supplementary Fig. S7). Next,
we extracted a vector of the myelination values at the loca-
tions of the 128 electrodes for each monkey. Then, a Pearson’s
correlation between the PD profile and this myelination vec-
tor was calculated to estimate their spatial similarity, which
was used for quantifying the cross-hierarchy pattern of the PD
profile.

The PD profile was also calculated from ECoG gamma powers
with skipping the temporal filtering and/or spatial filtering or
switching their order (Supplementary Fig. S8).

Fine-Scale Propagations Within Sensory Modalities
in the rsfMRI Signals

A simple linear regression was applied to examine the rela-
tionship between the delay in the PD profile and the hierarchy
level across brain regions within each sensory modality. Each
vertex was numbered according to the hierarchy level of the
brain region to which the vertex belongs. In the simple linear
regression model, the hierarchy level of vertices was the pre-
dictor variable and the delay value was the response variable.
A significant P value of the regression coefficient would indi-
cate whether the propagation is along the hierarchy order in a
sensory modality.

The hierarchical level of different visual regions was
determined according to (Felleman 2009). The hierarchy of the

auditory system was determined according to (Okada et al.
2010; Moerel et al. 2014). The hierarchy of the somatosensory
cortex was determined according to (Felleman and Van Essen
1991). The retinotopy map (Benson et al. 2018) was used to
identify the peripheral and foveal areas of the V1–V4. Peripheral
and foveal areas in the V1–V4 were divided based on a cutoff
value of 2.5 in the eccentricity map. The atlas of topographic
subareas in the somatosensory–motor strip (Van Essen and
Glasser 2018) was used to identify brain regions responsible
for face, upper limb, trunk, lower limb, and eye. The HCP’s
multimodal cortical parcellation atlas (Glasser et al. 2016) was
used to locate different brain regions on the cortical surface. All
these atlases can be downloaded from the website (https://ba
lsa.wustl.edu).

Subcortical Coactivations/Deactivations Associated
With rsfMRI Propagations

The temporal dynamics of subcortical regions at the top-down
and bottom-up propagations were studied mainly based on
the z-score maps of the propagations in the volume space,
which were obtained as described above. We simply averaged
these z-score maps of various time points across voxels within
any subcortical region of interests. The location of thalamic
nuclei/regions was determined according to Morel Atlas (Krauth
et al. 2010). The Harvard ascending arousal network (AAN)
atlas was used to locate the brainstem nuclei of the AAN
(Edlow et al. 2012). The masks of the substantia nigra (SN),
the nucleus accumbens (NAc), and the nucleus basalis (NB)
were acquired by taking the overlap between the brain regions
showing significant (Z ≤ 7) deactivations at time zero z-score
map for the bottom-up propagation and those defined by brain
atlases of SN (Keuken and Forstmann 2015), NAc (Desikan et al.
2006), and NB (Liu et al. 2018). The deactivations in SN and NAc
appeared to be only in a subsection of atlas-defined structures
(Supplementary Fig. S9).

Modulation of Cross-Hierarchy Propagations Across
Different Brain States

We quantified and compared the occurrence rate of the top-
down and bottom-up propagations across different brain states
or sessions that are likely associated with distinct arousal levels.
For the human rsfMRI data, we classified fMRI sessions into
subgroups with different arousal levels, which were estimated in
2 different ways. First, we adapted a template-matching method
(Chang et al. 2016) to estimate the drowsiness level based on
a previous study (Gu et al. 2020). Briefly, we calculated the
spatial correlation between individual rsfMRI time points and
a global coactivation pattern that has been linked to transient
arousal events previously (Liu et al. 2018). Then, the drowsi-
ness index was quantified by extracting the envelope amplitude
of this spatial correlation time course. The mean drowsiness
index over each session is used to estimate the general arousal
state of subjects in a specific session. The envelope amplitude
was computed as the absolute value of the Hilbert transform.
Since the presence of this global coactivation pattern suggests
the occurrence of transient arousal events and thus relatively
drowsy state, a higher value of this fMRI-based metric was
corresponding to a drowsier state. Based on this fMRI-based
drowsiness measure, we divided all of the rsfMRI scanning
sessions into 3 groups of equal size (N = 613 sessions for each,

https://balsa.wustl.edu
https://balsa.wustl.edu
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each session is 15 min in length) with low, medium, and high
drowsiness levels and then compared the occurrence rate of
the rsfMRI propagations. Secondly, we identified, based on the
note of HCP experimenters, a subset of 117 rsfMRI sessions in
which the subjects were noted to be sleeping (Glasser et al. 2018).
We then compared the occurrence rate of propagations in this
subset and all other sessions (N = 1723 sessions). For the ECoG
gamma-band powers concatenated from the 4 monkeys, we
compared the occurrence rate of the top-down and bottom-up
propagations across sessions collected in 3 different conditions:
11 sessions (each session is 25 min in length) for eyes-open
state, 10 sessions for eyes-closed state, 15 sessions for sleep
state.

Since these propagations are detected only in rsfMRI/ECoG
segments with global involvement, and their occurrence rate
changes across arousal states might simply reflect a change of
the global signal, which has been shown to be closely related to
brain arousal level (Kiviniemi et al. 2005; Fukunaga et al. 2006;
Licata et al. 2013; Wong et al. 2013, 2016). For this reason, we also
calculated and compared the ratio of the top-down propagations
to the bottom-up propagations that should be exempted from
any potential bias caused by the change of globally averaged
signal.

The statistical significance of the difference in the occur-
rence rate of propagations, as well as its ratio, across different
arousal states were determined using permutation test. For each
comparison described above, we randomly divided the data
into subgroups of the same size, calculated the differences,
and repeated the procedure 1 000 000 times to build a null dis-
tribution for the differences. Then, we obtained the P values
of the observed differences by comparing them with the null
distributions.

Results
Infra-Slow Propagations Along the PG
of rsfMRI Connectivity

We first examined and characterized infra-slow propagating
activity in rsfMRI signals using data from 460 HCP subjects.
Simple visual inspection of preprocessed signals suggested clear
propagating activity that often coursed from higher-order cog-
nitive areas, mostly the default-mode network, to lower-order
SM regions, a direction similar to the PG of rsfMRI connectivity,
or in an opposite direction. Following previous work (Margulies
et al. 2016), the PG was obtained by decomposing rsfMRI con-
nectivity data using a data-driven method, and it reveals a
gradient of functional connections that aligns well with the
cortical hierarchy defined both anatomically and functionally
(Margulies et al. 2016). To visualize the propagating activity in
a 2D representation, we projected the rsfMRI signals onto the
PG direction (Fig. 1A) to generate time–position graphs (Fig. 1B).
It was immediately noticed that local rsfMRI peaks at various
PG positions tended to cluster together in time and form contin-
uous bands, some of which were tilted and propagated either
from the SM to the default-mode network or in an opposite
direction (Fig. 1B, upper), which we will refer to as the bottom-up
and top-down propagations henceforth. In contrast, projecting
the same signal onto a few other directions, including one
obtained by randomly rotating the PG map on brain surface
(Fig. 1B, bottom), revealed straightly vertical bands, suggesting
an absence of propagating behavior along these directions. To
locate and quantify single propagating instances, we cut the

rsfMRI signals into time segments based on troughs of the global
mean signal, which successfully separated the bands in the
time–position graphs (Fig. 1B). For each segment, we correlated
the relative timing of local rsfMRI peaks with their relative
position along different directions. A high time–position cor-
relation would suggest a propagation along the corresponding
direction (Fig. 1C and Animations 1–2). We then computed and
summarized the time–position correlations for all rsfMRI seg-
ments showing global involvement (defined as the global signal
peak exceeding a threshold established using a null model,
see Methods and Supplementary Fig. S10 for the details), which
account for 58.80% of the total segments. The time–position
correlations of local peaks for the PG direction showed a non-
Gaussian, bimodal (P = 0.012, Hartigan’s dip test) distribution
with a relatively larger peak for positive correlations, indicat-
ing significant propagations along this axis, particularly in the
bottom-up direction (Fig. 1D, the left column). In contrast, they
showed Gaussian-like, single-mode distributions for the other
4 control directions (Fig. 1D, the right 4 columns), which are
significantly different from the PG distribution (P = 0 for all 4
control directions, 2-sample Kolmogorov–Smirnov test). This is
even true for the second gradient of rsfMRI connectivity (Mar-
gulies et al. 2016) that showed a strong motor-to-visual contrast
(Fig. 1D, the second column), suggesting a lack of propagations
along this direction in these rsfMRI time segments. All these
results suggest the existence of significant rsfMRI propagating
activity along the PG direction.

The Cortical Hierarchical Axis Is the Dominant
Direction of rsfMRI Propagations

We then developed a data-driven method to obtain main
trajectories of rsfMRI propagations without setting a priori
direction. The existing QPP method was designed to find
repeated spatiotemporal patterns that are not necessarily
propagations (Thompson et al. 2014), whereas the lag struc-
ture/thread method relied on session-based quantification of
temporal lags in which the delays caused by antidirection
propagations may cancel each other (Mitra et al. 2014; Mitra,
Snyder, Blazey, et al. 2015a). We show that the propagations can
cause systematic delays of local peaks and thus a significant
time–position relationship along the propagating direction
(Fig. 1C). To identify the major propagating direction in a data-
driven way, we derived a delay profile for each rsfMRI segment
by computing the relative delay of local peaks with respect
to the global mean peak and then applied an SVD to extract
the principal components of all the delay profiles, which
are expected to represent main trajectories of propagating
activity (Fig. 2A). The application of this method to synthesized
data containing simulated propagating structures successfully
recovered 2 propagating directions (Fig. 2B). In comparison,
the diffusive embedding method, which was employed to
derive the PG of rsfMRI connectivity (Margulies et al. 2016),
recovered the more frequent propagation but not the other
one (Fig. 2B and Supplementary Fig. S3). Decomposing the
delay profiles of the rsfMRI segments of global involvement
generated a principal delay (PD) profile (Fig. 2C), that is, the
first principal component (4.22% of the total variance, see
Supplementary Fig. S11 for additional components), that is
extremely similar (r = 0.93 across 59 412 vertices, P = 0) to the PG
of rsfMRI connectivity (Fig. 2D). In particular, the primary visual
cortex (V1) appears to be an outlier for the overall hierarchical
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Figure 1. RsfMRI propagations along the PG of rsfMRI connectivity. (A) Illustration of the steps for projecting rsfMRI signals onto a specific direction, for example, the
PG, to produce a time–position graph. The PG was computed in a previous study (Margulies et al. 2016) by applying the diffusion mapping to the averaged connectome

matrix and indicted a transition across brain hierarchies from the SM regions to the DMN. (B) The time–position graphs for the PG and a control direction from a
representative subject show clear bands, which are tilted only in the PG time–position graph. The bands can be well separated by cutting rsfMRI segments according
to troughs (black vertical lines) of the global mean signal. The vertical axis of the time–position graph represents the cortical distance from core regions of the DMN
to the SM on the PG (Margulies et al. 2016). (C) Two exemplary rsfMRI segments with propagations in 2 opposite directions along the PG, that is, the DMN-to-SM (i.e.,

top-down) and SM-to-DMN (i.e., bottom-up) propagations. The relative timing of the local rsfMR peaks show a significant correlation with their positions along the
PG but not in the control direction (left), and the propagating activity can be viewed on brain surface (right). Gray dots in the time–position graphs indicate the local
rsfMRI peaks and the red lines are the regression lines for their time–position relationship. The time is with respect to the global mean peak of the segment. These
surface maps at each time point were demeaned and only the values larger than 0 were shown with colors. Note that the propagation patterns are largely mirrored in

the 2 hemispheres, so only the left hemisphere results were shown here. The exemplary propagating patterns on both the lateral and medial surface in 2 hemispheres
can be found in Supplementary Fig. S29A. Green and blue asterisks mark approximately spatial peaks with a larger size representing a later time point and the timing
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arrangements suggested by both maps. This deviation is,
however, consistent with our observation that the V1 coactivates
with the DMM in the cross-hierarchy propagations (Fig. 1C for a
single instance example). This PD profile is highly reproducible
across sessions and subject groups (Supplementary Fig. S12)
and distinct from the lag map measured through dynamic
susceptibility contrast magnetic resonance imaging (MRI) scans
(r = 0.0035, P = 0.39; Supplementary Fig. S13) (Tong et al. 2017).
We then projected the rsfMRI signals onto this principal
propagating direction and identified segments showing a
significant (P < 0.05, compared with a pooled null distribution
from the 4 control directions) time–position correlation. The
top-down propagations (N = 8519) and bottom-up propagations
(N = 18 114) were found to account for 9.08% and 19.7% of the
total scanning time, respectively, with an average speed of
13.45 ± 7.78 and 13.74 ± 7.51 mm/s (mean ± SD), respectively. We
obtained the averaged patterns of these 2 types of propagations
in both the time–position graph and brain surface (Fig. 2E), which
are consistent with those of single instances (Fig. 1C) and very
similar to the average patterns of propagations detected with
respect to the PG (Supplementary Fig. S14). While these 2 types
of propagations are largely the time-reversed version of each
other, certain differences are evident, including the coactivation
of the V1 and the DMN in the late phase of the bottom-
up propagations was not seen in the top-down propagations
(Fig. 2E).

The above analyses were repeated on the rsfMRI signals going
through different spatial and temporal filtering procedures.
Despite some fine-scale differences at the SM regions, the
overall cross-hierarchy contrast remained highly similar with
different filtering procedures (Supplementary Fig. S4). Similar
PD profiles were also derived after regressing out the global sig-
nal or physiological signals or using the sessions with very low
head motions (Supplementary Fig. S5). Temporal relationships
between the detected propagations (Supplementary Fig. S15)
suggested that they occurred mostly as isolated events but did
show weak periodicity of approximately 12 s when appearing as
clusters. These propagations are also similar to both lag thread
(Mitra, Snyder, Blazey, et al. 2015a) and the QPP (Thompson et al.
2014) derived from the same dataset (Supplementary Fig. S16).
Altogether, the infra-slow rsfMRI propagations are primarily
along a hierarchical axis linking the higher-order and the lower-
order brain regions, as represented either by the PG or our PD
profile.

Infra-Slow Propagations in Monkey ECoG Signals
Follow a Similar Cross-Hierarchy Trajectory

To determine whether similar propagations are present in
electrophysiological data free of hemodynamic contributions,
we applied the same method to large-scale ECoG recordings
from 4 monkeys in an eyes-closed rest condition. Using the
same dataset, we have previously identified brain networks
highly similar to resting-state connectivity networks based on
power signal correlations (Liu et al. 2014). We first focused on the
gamma-band (42–95 Hz) power that is known to be tightly linked
to fMRI signals (Logothetis et al. 2001). The principal propagating

direction (detected as the second component in one of 4 mon-
key) obtained by decomposing delay profiles of ECoG gamma-
power showed a clear cross-hierarchy contrast between the
SM areas and the higher-order frontal, anterior temporal, and
parietal regions (Fig. 3A). This pattern, which is reproducible in
all 4 monkeys (Fig. 3A and Supplementary Fig. S17), is inversely
similar (r = −0.71 ± 0.067, P < 10−16, see Supplementary Fig. S7
for electrode mapping on a macaque brain surface; Donahue
et al. 2016) to the cortical myelination map that has been
suggested to be a good approximation of cortical hierarchy
(Burt et al. 2018). To further validate the existence of infra-slow
propagations, we projected the ECoG gamma power signals onto
this propagating direction in a similar way as the human rsfMRI
analysis. The resulting time–position graphs clearly contained
tilted bands with significant time–position correlations among
local peaks of individual electrodes, which are corresponding
to the cross-hierarchy propagating activity on the brain surface
(Fig. 3B and Animations 3–4). The time–position correlations
for this cross-hierarchy axis showed a heavy tailed distribu-
tion that is significantly different (P = 1.65 × 10−34, 2-sample
Kolmogorov–Smirnov test) from that of control directions
(Fig. 3C), which were obtained by rotating the PD profiles at a
random angle to preserve the spatial continuity of electrodes
(Supplementary Fig. S17). Similar to the human results, the dis-
tribution is also asymmetric and characterized by a much larger
peak for positive time–position correlations, suggesting more
bottom-up propagations. We identified ECoG segments with
propagating activity based on the time–position correlations
and averaged them to obtain the mean propagating patterns of
ECoG gamma power (Fig. 3D), which are similar to those of single
instances.

To know whether similar cross-hierarchy propagations are
also present in resting-state brain activity of other frequency
ranges, we repeated the same analysis for ECoG power
signals of 4 other bands, that is, delta (1–4 Hz), theta (5–
8 Hz), alpha (9–15 Hz), and beta (17–32 Hz) bands. It appeared
that the PD profiles for the powers of the lower-frequency
bands are more characterized by a big contrast between the
somatosensory/motor areas and the visual regions (Fig. 4A), and
their spatial correlation with the cortical myelination map of
monkeys is significantly (P < 0.01 for all 4 bands compared with
the gamma band) lower than the gamma-band power (Fig. 4B
and Supplementary Figs S18–S22). Since it has been suggested
that the low (30–80 Hz) and high (80–150 Hz) gamma activity may
originate from different sources (Ray and Maunsell 2011), we
derived the PD profiles separately for the powers of the low and
high gamma bands. Similar infra-slow propagations are present
in the powers of these 2 gamma bands (Supplementary Fig. S23).
We repeated the same analyses on the ECoG gamma-band
power going through different spatial and temporal filter-
ing procedures, and the overall cross-hierarchy contrast of
the PD profile remained similar (Supplementary Fig. S8). In
summary, the gamma-band power of monkey ECoG signals
exhibited infra-slow propagations similar to human rsfMRI
in terms of the time scale (∼5–10 s) and, more impor-
tantly, the dominant propagating direction across the cortical
hierarchy.

being denoted by the direction of the black arrows. (D) The distributions of the time–position correlations of rsfMRI segments in 5 different directions. The PG direction

is associated with a clear bimodal distribution that is significantly different from those of the motor-to-visual, the anterior-to-posterior, the dorsal-to-ventral, and the
rotated PG directions (P = 0 for all 4 control directions, 2-sample Kolmogorov–Smirnov test). Abbreviations: VIS, visual cortex; M1, primary motor cortex; S1, primary
somatosensory cortex; iFG, inferior frontal gyrus; mFG, middle frontal gyrus; AG, angular gyrus; mTemp, middle temporal cortex.
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Figure 2. The major propagating direction of rsfMRI signals is highly similar to the PG of rsfMRI connectivity. (A) Illustration of the procedures for deriving the PD

profiles that represent the major propagating directions of rsfMRI signals. Specifically, the fMRI signals were cut into time segments based on the troughs of the global
mean signal denoted by the gray vertical lines. Next, a delay profile was computed for each segment as the relative time delays of the local peak (black diamonds)
at each cortical vertex with respect to the global peak (black dashed line). Finally, an SVD was applied to the delay matrix composed by delay profiles to extract the

PD profile. (B) Decomposing delay profiles of synthesized fMRI data (left) using the proposed method recovered the directions of simulated propagating structures
(middle). The decomposition of the connectivity matrix of the synthesized signals using the PG method recovered the dominant direction but not the second one
(right). (C) The application of the proposed method to real rsfMRI data produced the PD profile representing the principal direction of infra-slow rsfMRI propagations,
which is extremely similar (r = 0.93, P = 0) to (D) the PG of rsfMRI connectivity, including detailed features at the V1 and Brodmann area 46 (BA 46). (E) The averaged

bottom-up (top, N = 18 114) and top-down (bottom, N = 8519) propagations as presented on the time–position graphs (left) and the brain surface (right). The averaged
propagating patterns on both the lateral and medial surface in 2 hemispheres were shown in Supplementary Fig. S29B. Abbreviations: A1, primary auditory cortex;
sFG, superior frontal gyrus; PMC, posteromedial cortex; ACC, anterior cingulate cortex; vmPFC, ventromedial prefrontal cotex.
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Figure 3. Cross-hierarchy propagations in the monkey ECoG signals. (A) The PD profile of the ECoG gamma-band (42–95 Hz) power shows a clear contrast between the
SM areas and the higher-order brain regions, including the frontal, anterior temporal, and parietal cortices. This pattern is consistent across monkeys and inversely
similar to the cortical myelination map of the monkey, which has been suggested as a good surrogate for estimating the cortical hierarchy (Burt et al. 2018). (B) Single

exemplary instances of the top-down (i.e., from the higher-order to the SM regions) and bottom-up (i.e., from the SM to the higher-order regions) propagations as shown
in the time–position graphs and on the brain surface. (C) The time–position correlations of the ECoG gamma-power segments for the principal propagating direction
show a heavy tailed distribution that is significantly different (P = 1.65 × 10−34, 2-sample Kolmogorov–Smirnov test) from the one obtained for control directions. The
distributions were obtained by pooling the results from all 4 monkeys. (D) The averaged patterns of the top-down (N = 16) propagations for monkey S and bottom-up

(N = 90) propagations for monkey C as shown in the time–position graphs (left) and the brain surface (right). Abbreviations: sTemp, superior temporal cortex; Front,
frontal cortex; Visual, visual cortex.
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Figure 4. A reproducible cross-hierarchy propagating direction was present most strongly in the gamma-band power of ECoG signals. (A) The PD profiles derived for
the ECoG powers of 4 other frequency bands: delta, 1–4 Hz; theta, 5–8 Hz; alpha, 9–15 Hz; beta, 17–32 Hz. (B) The spatial similarity between different PD profiles and the
monkey cortical myelination map that has been suggested to be a good approximation of cortical hierarchy (Burt et al. 2018). The PD profiles and associated statistics
were derived with respect to ten 25-min eyes-closed sessions from all the monkeys. The error bar represents the standard error of mean. Asterisks represent the level

of significance: ∗∗: 0.001 < P ≤ 0.01.

Fine-Scale Propagations Within Sensory Modalities
Are Against the Direction of Global Propagations

The anomalous position of the V1 in the PG and the PD
profile (Fig. 2C,D), that is, having similar scores/delays with
the DMN, motivated us to examine fine-scale propagations
within sensory modalities that are embedded in the global
cross-hierarchy propagations. Within the visual system, the PD
profile showed the most negative delay values at 3 isolated
brain areas, including the MT+ complex, the dorsal stream
visual cortex, and the ventral stream visual cortex (Glasser
et al. 2016), and increased its value toward the early visual
cortex, as well as retinotopically from the periphery toward
foveal areas (Fig. 5A). A simple linear regression confirmed
a significant relationship between the delay value and the
hierarchy level of brain regions (P = 3.3 × 10−298 for fV1–fV2–
fV3–fV4–V4t–MT–MST–V6–V6A; and P = 0 for pV1–pV2–pV3–pV4–
V4t–MT–MST–V6–V6A), which was defined based on a previous
study (Felleman 2009) (Fig. 5B). This pattern is consistent with
the trajectory of the bottom-up (i.e., SM to DMN) propagations
within the visual cortex (Fig. 5C), which is actually from high-
hierarchical visual areas to lower low-hierarchical ones. We
then had closer inspection of the PD profile within the auditory
and somatosensory systems to see whether the similar trend
is present. Within the auditory system, the PD profile displayed
a clear gradient across hierarchies from the A4, to belt regions,
and then to A1 (P = 0) (Fig. 5D,E), which is again consistent with
the bottom-up propagation of local rsfMRI peaks (Fig. 5F). Local
propagations within somatosensory system (Fig. 5G,H) appeared
to follow more closely the somatotopic arrangement and show
a strong contrast between limbs areas and eyes, face, and trunk
areas (Fig. 5I). Nevertheless, the PD profile indeed showed a
gradual and significant (P = 6.1 × 10−313) increase of value from
the Brodmann area 2 (BA 2), to BA 1, and then to BA 3b and
BA 3a (Fig. 5J). Similar analyses were also performed for the PG
map, and the weaker but still significant relationships were
found between the PG value and the hierarchical level (Fig. 5
and Supplementary Fig. S24). Outside the sensory systems, the
very negative delays were also found in the frontal eye field,
intraparietal sulcus, and BA 46 (Fig. 5K). Altogether, these regions
compose a task-positive network known to have strong negative

rsfMRI correlations with the default-mode network (Fox et al.
2005). To summarize, the local propagations within the sensory
systems, which are embedded in the global cross-hierarchy
propagations, appear to start/end at the sensory association
areas and are opposite to the overall direction of the global
propagation.

Subcortical Coactivations/Deactivations Associated
With the Cross-Hierarchy Propagations

We then examined subcortical changes associated with these
cortical propagations for additional evidence for its neural origin
and also for important clues for underlying mechanisms. We
averaged, in the volume space, the rsfMRI segments showing
the propagations and converted them to Z-scores that repre-
sent the significance level of the deviation from the temporal
mean. We found that the bottom-up cortical propagation is
associated with strong, sequential coactivations/deactivations
in specific subcortical regions. At the very early phase (t = −5.0 s,
with respect to the global signal peak) of this propagation,
the weak coactivations at the SM regions are accompanied by
strong deactivations in the default-mode network and extended
areas. These cortical changes are associated with strong tha-
lamic deactivations at the anterior nuclei (AN; peak Z: −24.41,
mean Z: −12.98) and the dorsal part of the parvocellular divi-
sion of the mediodorsal nucleus (MDpc; peak Z: −24.43, mean
Z: −7.19), and to a less extent at the lateral dorsal (peak Z:
−19.56, mean Z: −10.73), the ventral lateral (VL; peak Z: −17.42,
mean Z: −8.11), and the central lateral (peak Z: −26.45, mean Z:
−8.73) nuclei of the thalamus (Fig. 6A). In contrast, the signifi-
cant thalamic coactivations are mostly confined at the anterior
pulvinar (PuA; peak Z: 8.98, mean Z: 5.05). Starting from this
time point, the thalamic coactivations started to spread from
the PuA first to the posterior and ventral parts of the thalamus,
which include many sensory relay nuclei, such as the ventral
posterior medial, the ventral posterior lateral nuclei and other
parts of the pulvinar, and later to the AN and MDpc (Fig. 6B–D).
Along this process, the cortical and thalamic co(de)activations
show striking correspondence consistent with known anatom-
ical connections. For example, the V1 deactivation (t = −5.0 s) is
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Figure 5. Local embedded propagations within the sensory modalities in human fMRI signals. (A) The local contrast of the PD profile within the 3 visual-related
regions defined by a multimodal parcellation atlas (Glasser et al. 2016). (B) The averaged delay values of 13 visual parcels that were arranged according to their

hierarchical (Felleman 2009) and retinotopic relationships (Benson et al. 2018). It should be noted that we do not assume any hierarchical relationship between the
foveal and peripheral visual parcels. (C) The local trajectory of the bottom-up propagation within the visual system closely follows the PD profile, that is, from the
visual association areas to the early peripheral visual areas and then to the early foveal visual regions. (D–F) Results for the auditory system indicated a similar
contrast and local propagation between the primary and association auditory areas. (G–I) Results for the somatosensory system show a weaker but still significant

relationship between the delay and hierarchical level of 4 somatosensory parcels. The contrast of the PD profile also shows certain correspondence with (J) the
somatotopic arrangement (Van Essen and Glasser 2018). (K) The PD profile on a flat brain surface suggests a few other brain regions outside the sensory systems
showing large negative delays. Together with the sensory association areas, they compose the task-positive regions that have been shown previously to have strong

negative-correlation with the DMN (Fox et al. 2005). Abbreviations: V6A, area V6A; V6, sixth visual area; MT+, MT+ complex; MST, medial superior temporal area;
MT/V5, middle temporal area/fifth visual area; V4t, V4 transition zone; V4, fourth visual area (pV4 and fV4 are peripheral and foveal V4, respectively, same thereafter);
V3, third visual area; V2, second visual area; V1, primary visual cortex; A4, auditory 4 complex; PBelt, parabelt complex; LBelt, lateral belt complex; MBelt, medial belt
complex; BA, Brodmann area; FEF, frontal eye fields; IPS, intraparietal sulcus area.

associated with very specific deactivation at the lateral genicu-
late nucleus (Fig. 6A, the first row), and the maximal A1 coacti-
vation (t = 1.4 s) is also accompanied by the peak coactivation
at the medial geniculate nucleus (MGN) (Fig. 6C, left). Outside
the thalamus, a number of brainstem regions, including mul-
tiple nuclei related to arousal regulation, that is, the dorsal

raphé (peak Z: −13.17, mean Z: −6.73), the median raphé (MR;
peak Z: −9.07, mean Z: −6.14), the pendunculopontine nucleus
(peak Z: −8.46, mean Z: −5.65), the ventral tegmental area (VTA;
peak Z: −11.02, mean Z: −6.79), and the locus coeruleus (LC; peak
Z: −9.46, mean Z: −6.23) showed significant deactivations at very
early phase (t = −6.5 s) of the bottom-up propagation (Fig. 6E),
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along with the strong cortical deactivations at the precuneus
and the cingulate (Fig. 6E, top right). The early deactivation of
these brainstem nuclei was followed by a slow and gradual deac-
tivation of 3 subcortical regions of arousal relevance, including
the NB, the ventral part of the NAcc at the basal forebrain,
and the SN, which reached their peak deactivations around
the middle of this propagation (t = 0) with widespread cortical
coactivations (Fig. 6F,G). Interestingly, the subcortical dynamics
at the top-down propagation does not simply mirror that of
the bottom-up propagation (Fig. 6 and Supplementary Fig. S25).
Most notably, the strong deactivations are largely absent for
the AN/MD and the brainstem nuclei throughout the top-down
propagation (Fig. 6 and Supplementary Fig. S25). In summary,
the cortical propagations are associated with coactivations and
deactivations in corresponding thalamic nuclei as well as the
deactivation of subcortical regions of arousal relevance.

The Modulation of the Cross-Hierarchy Propagations
Across Brain States of Vigilance

The deactivations of arousal-related subcortical regions sug-
gested a potential link between the bottom-up propagation
and the brain arousal. Consistent with this notion, the rsfMRI
lags between different brain regions were found to be com-
pletely reversed from wake to sleep in humans (Mitra et al. 2016)
and also from wake to anesthesia in mice (Mitra et al. 2018).
We thus suspected that the cross-hierarchy propagations in 2
opposite directions are sensitive to changes of brain arousal
state. To test this hypothesis, we divided all rsfMRI sessions
into 3 groups with the low, medium, and high level of drowsi-
ness according to an adapted fMRI-based drowsiness estimation
(Chang et al. 2016; Gu et al. 2020) and then compared their
cross-hierarchy propagations. The ratio of the cross-hierarchy
propagations in the 2 opposite directions is significantly dif-
ferent (P = 0 low vs. medium; P = 0 high vs. low; permutation
test) in the 3 groups with the low drowsiness group having
less bottom-up but more top-down propagations (Fig. 7A and
Supplementary Fig. S26). The fMRI-based drowsiness estimation
involved only a template-matching process that is not expected
to introduce any bias toward any propagating directions. To
have a more independent estimation of brain arousal level, we
also computed this ratio in a subset of the sessions in which
subjects were noted by experimenters to be sleeping during
rsfMRI scanning. This subset of rsfMRI sessions showed signif-
icantly lower (P = 0.021, permutation test) ratio compared with
other sessions (Fig. 7B and Supplementary Fig. S26). Consistent
with these results, the bottom-up propagations are associated
with the larger global signal peaks and higher drowsiness index
than the top-down propagations (Supplementary Fig. S27) and
also tended to increase over the course of the scanning session
(Supplementary Fig. S28), suggesting their close link to drowsy
state.

A similar comparison was made for the cross-hierarchy
propagations in monkey ECoG gamma powers across 3
experimental conditions: a more alert eyes-open condition,
a more sleep-conducive eyes-closed condition, and the sleep
condition. Consistent with the human rsfMRI results, the ratio
of the top-down propagations to the bottom-up propagations
are significantly different (P = 0.0233 eye-open vs. eye-closed;
P = 0.0045 eye-open vs. sleep; P = 0.029 eye-closed vs. sleep;
permutation test) across the 3 conditions with the sleep state
showing much more bottom-up propagations and less top-down
ones (Supplementary Fig. S26). To summarize, both monkey

electrophysiology and human rsfMRI data suggest that the state
of lower arousal is associated with less top-down but more
bottom-up propagating activity.

Discussion
Here, we showed that the resting-state brain activity, measured
by fMRI in humans or electrophysiology in monkeys, is
characterized by distinctive propagations sweeping the cortex in
2 opposite directions along an axis. This trajectory is extremely
similar to, and thus, these spatiotemporal propagations may
underlie, the PG of rsfMRI connectivity (Margulies et al. 2016).
The cross-hierarchy ECoG propagations are present most
strongly in the gamma-band power. The local propagations
within the sensory modalities are in a direction opposite to the
overall direction of the global propagation, suggesting that these
neuronal processes start/end at the sensory association regions.
The bottom-up propagation is associated with sequential co-
(de)activations at specific subcortical nuclei, including many
related to arousal regulation. Consistent with this finding, the
cross-hierarchy propagations are significantly modulated by
the brain arousal level. Overall, the findings from this study
supported the neural origin of the infra-slow rsfMRI propaga-
tions, revealed detailed features and behavioral relevance of
infra-slow propagating activity, and also linked it to the PG of
rsfMRI connectivity.

The study added direct evidence for the neural origin of
rsfMRI propagations by showing corresponding electrophysio-
logical propagations on a similar time scale, along a similar
direction, and with a similar state dependency. Inferring the
propagating activity with fMRI signals could be problematic
given the known region-specific hemodynamic delays (Handw-
erker et al. 2004). This concern became heightened given a series
of studies showing that the systematic low-frequency oscilla-
tions of blood signals cause rsfMRI signal delays consistent with
the blood transition time (Tong and Frederick 2010, 2012; Tong
et al. 2012, 2017, 2018). Some indirect evidence has been used to
argue against the vascular origin of the infra-slow rsfMRI prop-
agations. For example, the rsfMRI lag structures/threads persist
after regressing out the vascular time lags (Amemiya et al. 2016)
and are sensitive to brain state, which are not expected from a
vascular based propagation (Mitra et al. 2016, 2018). Consistent
with the previous findings, we found no similarity (r = 0.0035
and P = 0.39, Supplementary Fig. S13) between the PD profile and
the vascular lags as measured by the dynamic susceptibility
contrast MRI (Tong et al. 2017), as well as a strong dependency
of the cross-hierarchy propagations on brain state (Fig. 7). More-
over, the detailed features of the cross-hierarchy propagations,
including the existence of propagating instances in opposite
directions (Fig. 1C), their fine-scale trajectories within the sen-
sory systems (Fig. 5), the sequential involvement of specific sub-
cortical nuclei (Fig. 6), good correspondences between cortical
and thalamic coactivations/deactivations (Fig. 6) added further
evidence against their vascular origin.

The study provided additional details about the infra-slow
propagating activity. First, the cross-hierarchy propagations are
present much more strongly in the gamma-band power than
other bandlimited powers. This explains the previous finding
that the long-range ECoG power correlations between the high-
order regions can only be found in the gamma band (Liu et al.
2014). Given that the gamma activity is correlated with neuronal
firing rates (Ray et al. 2008), the cross-hierarchy propagations
of gamma-band power may represent an excursion of cortical
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Figure 6. Subcortical co-(de)activations associated with the bottom-up propagation. (A–D) The thalamic coactivations/deactivations at different phases of the bottom-
up propagations show a good correspondence with the cortical changes. The thalamic nuclei were located using the Morel Atlas (Krauth et al. 2010). The time is with

respect to the global mean peak. (A) The early deactivation of the default-mode network and V1 are associated with the thalamic deactivations in a few higher-order
nuclei, particularly the AN and a part of MDpc, as well as the LGN, but the thalamic coactivation is only limited to the PuA. The thalamic coactivations then spread
first to the posterior and ventral part of the thalamus (B) and eventually to the AN and MDpc at very late phase (D). (C) The MGN shows specific coactivations with the
maximal A1 coactivation. (E) The earliest phase of the bottom-up propagation (t = −6.5 s) involves the deactivations of a few brainstem nuclei of the AAS, which were

located using the Harvard AAN Atlas (Edlow et al. 2012). The plots also showed the early coactivation of the AMG in the brainstem. (F) Following the early brainstem
deactivations, the NAc at the ventral striatum, the NB at the basal forebrain, and the SN at the brain stem started to slowly deactivate and reach the plateau with the
widespread cortical coactivation. (G) The temporal dynamics of the subcortical regions shown in (A–F). The Z-score time courses were averaged within 37 thalamic

regions of interest (ROIs) defined by the Morel’s atlas and 9 brainstem ROIs defined by the Harvard AAS atlas, as well as the 3 ROIs (NAc, NB, and SN) we defined by
combining our results with corresponding brain atlases (Desikan et al. 2006) (see the bottom for the masks we used). Each group of ROIs were sorted according to their
value at t = −5.8 s. The q-value after FDR corresponding to z-score 4.4 and 7 is 10−5 and 7.4 × 10−13, respectively. Error bars represent the standard error of the mean
(SEM). Asterisks represent the level of significance: ∗: 0.01< P≤ 0.05; ∗∗ : 0.001 < P ≤ 0.01; ∗∗∗: P ≤ 0.001. Abbreviations: AMG, amygdala; MDmc, mediodorsal nucleus

magnocellular part; MV, medioventral nucleus; CL, central lateral nucleus; CeM, central median nucleus; CM, centre median nucleus; Pv, paraventricular nucleus; Hb,
habenular nucleus; Pf, parafascicular nucleus; sPf, subparafascicular nucleus; PuM, medial pulvinar; PuI, inferior pulvinar; PuL, lateral pulvinar; LP, lateral posterior
nucleus; SG, suprageniculate nucleus; Li, limitans nucleus; Po, posterior nucleus; LGN, lateral geniculate nucleus; VPLa, ventral posterior lateral nucleus anterior
part; VPLp, ventral posterior lateral nucleus posterior part; VPM, ventral posterior medial nucleus; VPI, ventral posterior inferior nucleus; VLa, ventral lateral anterior

nucleus; VLpd, ventral lateral posterior nucleus dorsal part; VLpv, ventral lateral posterior nucleus ventral part; VAmc, ventral anterior nucleus magnocellular part;
VApc, ventral anterior nucleus parvocellular part; VM, ventral medial nucleus; AD, anterior dorsal nucleus; AM, anterior medial nucleus; AV, anterior ventral nucleus;
LD, lateral dorsal nucleus; AN, anterior nucleus; STh, subthalamic nucleus; DR, dorsal raphe; PPN, pedunculopontine nucleus; PO, pontis oralis; PBC, parabrachial
complex; MRF, midbrain reticular formation; PAG, periaqueductal gray.

excitation sweeping along the hierarchical axis. Although it has
been suggested that the evoked low (30–80 Hz) and high (80–
150 Hz) gamma powers originate from different sources (Ray
and Maunsell 2011), we observed similar cross-hierarchy prop-
agations in these 2 sub-gamma-bands. Either the spontaneous
gamma-band activity may not contain 2 separate components,
or they both contain similar cross-hierarchy propagations. Sec-
ondly, the fine-scale spatiotemporal dynamics were also elu-
cidated within the sensory modalities. Specifically, the cross-

hierarchy propagations appear to start/end at the unimodal
association areas, rather than the primary areas. Thirdly, the
cross-hierarchy propagating activity is conserved across human
and monkeys. The fast (<1 s) propagating brain activity has
also been studied in mice mostly using the optical imaging and
often described as along the anterior–posterior axis (Matsui et al.
2016; Greenberg et al. 2018). Close inspection has suggested that
they may indeed follow more specific trajectories between the
SM regions and higher-order cortices (Mohajerani et al. 2013;
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Figure 7. The cross-hierarchy propagating activity is sensitive to brain arousal level. (A) The ratio of the top-down propagation to the bottom-up propagation is
significantly different in 3 groups of sessions showing distinct drowsiness levels as measured by an fMRI-based drowsiness index (Gu et al. 2020). (B) The same ratio

is also significantly lower in a subset of sessions in which subjects were noted to be sleeping during rsfMRI scanning. (C) The ratio of the top-down propagation to the
bottom-up propagation in the monkey EcoG gamma powers shows a similar and significant modulation across the eyes-open, eyes-closed, and sleep sessions. Error
bars represent the SEM. Asterisks represent the level of significance: ∗ : 0.01 < P ≤ 0.05; ∗∗: 0.001 < P ≤ 0.01; ∗∗∗: P ≤ 0.001.

Mitra et al. 2018), and it remains to be determined whether the
infra-slow propagating activity in rodents is also aligned with
the cortical hierarchical gradient.

The specific subcortical coactivations/deactivations point to
the involvement of the ascending arousal system (AAS) in the
bottom-up propagation, which might represent a brain pro-
cess associated with transient arousal modulations. The earliest
coactivations at the sensory association areas are accompa-
nied by significant deactivations in multiple brainstem nuclei
of the AAS, including the LC, MR, pedunculopontine nucleus,
and VTA. The early brainstem deactivation is then followed by
a slow and gradual deactivation of 3 other subcortical regions
of arousal relevance, that is, the SN, NB, and NAc (Valentino
and Volkow 2020). Importantly, the brainstem deactivation is
also accompanied, if not triggered, by strong deactivations in
a set of cortical and thalamic regions, including the default-
mode network, the frontoparietal network, the precuneus, and
the anterior and mediodorsal thalamus (Fig. 6E). This exact set of
brain regions showed significant reduction in glucose metabolic
rate and cerebral blood flow during anesthetic-induced uncon-
sciousness (Akeju et al. 2014), suggesting that the bottom-up
propagating activity is associated with transient arousal mod-
ulations. Consistent with this hypothesis, the bottom-up propa-
gation was significantly modulated across brain states of dis-
tinct arousal levels (Fig. 7) and also associated with a larger
amplitude in global signal (Supplementary Fig. S27A). The large
global rsfMRI peaks have been linked to a neurophysiological
event indicative of arousal modulations (Liu et al. 2018) and
may represent an instantaneous phase (at t = 0) of this bottom-
up propagation, based on their similar sensory-dominant corti-
cal coactivations and subcortical deactivations (Liu et al. 2018).
This potential relationship should not contradict with the min-
imal effect of the global signal regression on the PD profile
(Supplementary Fig. S5A), since the procedure is not expected
to effectively remove systematic time delays caused by the
quasi-synchronized propagations.

While the subcortical AAS may be involved in the initiation
of the cross-hierarchy propagations, the network mechanism

underlying its cortical propagation remains elusive. The trav-
eling waves have been extensively investigated using electro-
physiology and optical imaging but were mostly observed at
subseconds timescale and/or often across small brain regions
(Bringuier et al. 1999; Girard et al. 2001; Massimini 2004; Muller
et al. 2016, 2018). The fast traveling waves propagate at a speed of
2 ∼ 5 m/s (Muller et al. 2016), which is similar to the conduction
speed of white matter fibers. However, the cross-hierarchy prop-
agations observed in the present study are unlikely mediated
through axonal conduction given its slow speed (∼5–25 mm/s).
This speed, however, fells into the velocity range (∼10–100 mm/s)
of spontaneous waves of depolarization observed in the bar-
rel cortex of rodents through optical imaging and whole-cell
recordings (Petersen et al. 2003). It has been hypothesized that
the recurrent excitation through local synaptic connections in
layer 2/3 contributes to those spontaneous propagating waves.
The similar mechanisms may also underlie the infra-slow prop-
agations observed in this study. Moreover, the top-down and
bottom-up propagations may take distinct routes cross corti-
cal layers that are consistent with the known feedback and
feedforward connections (van Kerkoerle et al. 2014; Scheeringa
et al. 2016; Scheeringa and Fries 2019). The propagating speed is
close to what has been observed for the propagation of epileptic
activity (20–100 mm/s) (Chervin et al. 1988; Pinto et al. 2005;
Trevelyan et al. 2006, 2007), but it remains unclear whether they
share common mechanisms. Multimodal techniques capable
of imaging brain activity across distinct spatial and temporal
scales are required for a deep understanding of the mechanism
underlying the cross-hierarchy propagations in the future.

Cross-hierarchy propagating activity may, in fact, underlie
the PG of rsfMRI connectivity (Margulies et al. 2016). We showed
an extremely high similarity (r = 0.93) between the principal
propagating direction and the principal connectivity gradient,
which is unlikely a coincidence. In fact, the propagation is
expected to synchronize rsfMRI signals and affect, in a grad-
ual way along its trajectory, rsfMRI correlations, from which
the principal connectivity gradient was computed. The prop-
agations, which account for 29% of the total scanning time,
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are expected to synchronize rsfMRI signals of different regions
repeatedly in a rather complicated way. This could profoundly
affect the rsfMRI connectivity considering a potential nonlinear
relationship between the frequency of synchronization events
and linear cross-correlations. Therefore, the PG method could
be a different way of recovering the trajectory of the propagating
activity. Consistent with this notion, the principal connectivity
gradient indeed mapped the direction of major propagation in
simulated data (Supplementary Fig. S3). It is also worth noting
that we failed to find a trajectory similar to the second motor-
to-visual gradient of rsfMRI connectivity using the delay profile
method (Supplementary Fig. S11) or observe single instances of
such propagation (Fig. 1D, the second column). Such a motor-to-
visual contrast, which is also present in the vascular lag map
(Supplementary Fig. S13), may be caused by small but significant
time delays observed between the motor and visual areas in the
cross-hierarchy propagations. The cross-hierarchy propagating
activity might also be related to other rsfMRI findings showing
features related to the hierarchical axis. For example, converging
evidence from rats, monkeys, and humans has suggested that
rsfMRI connectivity/dynamics of the higher-order cognitive net-
works and lower-order SM networks are divergently modulated
by anesthesia (Martuzzi et al. 2010; Barttfeld et al. 2014; Liang
et al. 2015; Ma et al. 2016).

The overlap between the principal propagating direction and
the hierarchical axis of the brain implies the functional sig-
nificance of the infra-slow propagating activity. A speculation
of its functional roles comes from its analogy to “propaga-
tions” in artificial neuronal networks (Lecun et al. 2015). The
learning of such large-scale, nonlinear models requires effi-
cient algorithms, which often involves iterative propagations
of information across hierarchical layers, including a forward
propagation of information and, more importantly, a backprop-
agation of model errors to optimize weights/connections in
a successive manner (Rumelhart et al. 1986). Such repetitive,
sequential activations across hierarchical stages might be even
more important for the modification of real neuronal synapses.
The cross-hierarchy propagations would serve this purpose by
creating successive excitations across the hierarchical axis of
the brain. Consistent with this conjecture, the hippocampal rip-
ples, a neuronal process tightly linked to learning and memory
consolidation, have been found to be associated with brain-
wide fMRI activations with region-specific delays suggestive of
propagating behavior (Logothetis et al. 2012). The hippocampal
ripple activity is highly brain state dependent and occurs mostly
during rest and sleep (O’Neill et al. 2006; Cheng and Frank 2008).
More importantly, it has been found to be comodulated with
cortical delta-band power in a slow (∼0.1 Hz) rhythm (Sirota et al.
2003), which is consistent with the timescale of the infra-slow
propagations and their potential relevance to transient arousal
modulations.

The new methods used in this study can be complementary
to existing ones for studying propagating activity. The essential
rationale of decomposing the delay profiles of signal segments
(the current study) is similar to that of decomposing the
connectivity matrix (the PG method) (Margulies et al. 2016)
and temporal delay matrix (the lag threads method) (Mitra,
Snyder, Blazey, et al. 2015a). However, the segment-based
quantification is expected to maximally extract and utilize
the propagation-induced signal delays, which could be partly
canceled out for session-based metrics, such as connectivity
metrics and temporal lags, given the existence of propagations
in opposite directions (Figs 1C and 2E). Consistent with this

notion, our method appeared to outperform the PG method
in charactering local propagations within sensory modalities
(Fig. 5 and Supplementary Fig. S24) and recovering simulated
propagating directions (Fig. 2B and Supplementary Fig. S3).
The delay cancellation for the session-based quantifications
may also explain the different time scales seen for the lag
structure/threads (∼1–2 s) and the infra-slow propagating
activity (∼5–10 s). In addition, the new method could be
computationally more efficient for neural signals with a large
number of spatial dimensions, such as fMRI, with no need to
construct huge connectivity or lag matrices. Compared with
the QPP method, which identifies repeated spatiotemporal
structures that are not necessarily propagations, the new
method is designed to detect the propagations based on a
continuous time–position relationship with allowing individual
instances to have different speeds. Detailed differences between
the various methods remain to be investigated by future studies
with a technical focus.
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