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Abstract

Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental 

perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on 

systemic adaptation and endometrial preparation through decidualization, embryonic implantation, 

trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations 

occur through responsiveness to endocrine signaling and local uteroplacental mediators. The 

purpose of this Comprehensive Physiology review is to highlight the current knowledge associated 

with vascular remodeling and responsivity during uterine preparation for and during pregnancy. 

We will focus on maternal cardiovascular systemic and uterine modifications, endometrial 

decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine 

regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction 

during pregnancy.
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INTRODUCTION

The vascular system plays critical roles in oxygen transport, nutrition, excretion, fluid 

balance, homeostasis, and immune functions. It is a complex system regulated by hormones 

and growth factors alongside inflammatory, adhesion, cytoskeletal and extracellular proteins. 

These molecules have direct and indirect effects on vascular remodeling and reactivity (97, 

157, 188). During pregnancy, the functions of the cardiovascular system and its regulatory 

factors are heightened to promote fetal growth and development (66, 110). Successful 

reproduction hinges upon vascular growth and accommodations throughout the menstrual 

cycle and pregnancy.

The purpose of this review is to give an overview of the uterine vasculature and unique 

vascular physiology accompanying the transition of the uterus from non-pregnant to 
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pregnant. These modifications take place through uterine decidualization in preparation 

for embryonic implantation, trophoblast invasion, and spiral artery transformation to 

successfully sustain pregnancy. The process of placentation and maternal adaptations to 

pregnancy will be examined. Uterine vascular remodeling and reactivity and their influence 

on uteroplacental blood flow will be discussed. The mechanisms regulating postpartum 

uterine vascular repair after deliver will be addressed. Finally, we will review pathological 

consequences of aberrant maternal vascular adaptation and placentation during pregnancy.

UTERINE VASCULATURE AND REPRODUCTIVE CYCLE

Uterine Vascular Tree

The shape of the human uterus has been described as an inverted pear (Figure 1a). A 

hollow muscular organ, it is comprised of three tissue layers (40). Epithelial cells make 

up a thin outer sheath of tissue called the perimetrium. Smooth muscle cells are the 

primary component of the muscular middle layer, the myometrium. The innermost layer, 

the endometrium, is vital to reproduction and menstruation, and is a complex mixture of 

parenchymal and stromal tissues (155).

The uterus receives blood from the right and left uterine and ovarian arteries. Each uterine 

artery branches from the ipsilateral internal iliac artery and descends toward the uterus (34). 

Undulations in the mid and distal regions of the descending uterine arteries are thought 

to provide reserve arterial length to accommodate rapid expansion during pregnancy (1). 

Evidence from ultrasound and angiographic studies indicate that, in non-pregnant women, 

the diameter of the uterine artery ranges between 1.5 and 5.0 mm (167, 211). The ovarian 

arteries originate from the abdominal aorta and display undulations like those observed 

in the uterine arteries (162). Branches of the uterine artery anastomose with the ovarian 

arteries to provide blood flow to the female reproductive organs, an evolutionary adaptation 

to provide adequate and continued uterine blood flow (172).

Within the human myometrium, the uterine artery branches into smaller vessels that span 

and penetrate the muscle tissue (Figure 1a). The arcuate arteries assume a circumferential 

pattern of growth, within the myometrium close to the uterine serosa, and give rise to the 

radial arteries. The radial arteries course deeper into the myometrium and bifurcate at the 

myometrial/endometrial border (Figure 1a). Radial arteries give rise to short, straight, basal 

arterioles that supply the basal layer of the endometrium, and pre-placental spiral arterioles 

that supply blood to the upper functional layer of the endometrium (94). The spiral arterioles 

possess a distinctive coiled architecture that is more pronounced during the secretory phase 

of the menstrual cycle (54). Each spiral arteriole supplies blood to support an estimated 4 

to 9 mm2 of uterine luminal surface area (131). The terminal regions of the spiral arterioles 

assemble to form a capillary plexus that extends beneath and runs in parallel with the uterine 

epithelium (26). The capillary plexus is coupled to a venous drainage network that passes 

through the endometrium and the myometrium to return blood to the heart (94).

Animal models are commonly used in laboratory reproductive studies; therefore it is 

imperative to identify anatomical differences between human and laboratory animal uterine 

anatomy. The rodent and rabbit have a bicornuate or duplex uterus that is comprised of a 
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left and right tubular uterine horn to permit multiple fetus litters. The rat or mouse uterus 

is shaped like a “V” unifying at the cervix (Figure 1b) (162), while the rabbit uterus is 

shaped like a “T”, unifying at the cervix and a longer vaginal canal (Figure 1c) (177). Sheep 

have a bicorneal uterus that is heart shaped (Figure 1d) (55). Some differences are noted 

between the with the uterine vasculatures. As in humans, the uteri of the rodent, rabbit, 

and sheep receive blood from the left and right ovarian and uterine arteries (55, 106, 162, 

177). In all models these primary arteries branch into arcuate arteries to increase uterine 

perfusion. In the mouse and rat, arcuate networks allow for blood flow to implanted pups 

along the uterine tube to be in parallel, not in series (162). The arcuate arteries give rise 

to the radial arteries, which branch to form the basal and spiral arterioles (87, 162). The 

basal arterioles provide blood to the myometrium, whereas the spiral arteries are considered 

pre-placental vessels. Placentation is also similar between the human and laboratory models. 

The human, rodent, and rabbit employ hemochorial placentation, wherein the maternal 

blood comes in direct contact with the fetal trophoblast cells; alternatively, sheep develop a 

more superficial epitheliochorial placentation wherein the separation between the maternal 

and fetal tissues is maintained (64). Overall, while there are many similarities between 

human uterine anatomy and physiology and laboratory models, the differences between the 

species must be considered.

Angiogenesis and Vascular Remodeling Preconception

The menstrual cycle may be divided into two phases under distinct hormonal control: (1) 

the follicular/proliferative and (2) the luteal/secretory phase. The former ranges from 10 to 

20 days, with an average duration of 14 days, culminating in ovulation (50). Ovulation is 

triggered by a surge in luteinizing hormone (LH) via a positive feedback signal of estrogen 

stimulating hypothalamus and pituitary action (45, 142). The onset of the luteal phase 

begins after ovulation and concludes on the first day of menstruation. This period lasts 

approximately 14 days in most women.

Angiogenesis, the growth of new blood vessels, occurs throughout all stages of the 

menstrual cycle, with the exception of menstruation (71). The menstrual cycle is 

predominantly influenced by increasing levels of estrogen and is characterized by substantial 

uterine angiogenesis and vascular elongation (65, 189). New vessel growth within the 

endometrium is initiated during the follicular phase; while angiogenesis in the forms 

of branching, elongation, and vascular maturation occur during the luteal phase of the 

menstrual cycle (72, 181, 182).

Progesterone and estrogen directly control endometrial angiogenesis and vascular 

remodeling, moreover these hormones act indirectly with other regulators. Progesterone 

regulates vascular elongation and maturation of the subepithelial capillary plexus and the 

growth and coiling of spiral arterioles (56, 72). Members of the vascular endothelial growth 

factor (VEGF) family and their receptors are critical for estrogen-induced endometrial 

vascular remodeling (231). Estrogen treatment in vivo is known to impact both temporal and 

spatial VEGFA expression in the endometrium (122). Decidual angiogenesis is stimulated 

by VEGF-A secreted from the PR-expressing decidual stromal cells that are up-regulated 

via estrogen during the proliferative phase. VEGF and it’s tyrosine kinase receptors induce 
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the proliferation of endothelial cells and increase vascular permeability (152). During the 

mid-secretory phase, when progesterone peaks, the production of VEGF by endometrial 

epithelial cells increases significantly, suggesting a requisite for the coordinated actions of 

estrogen and progesterone for maximal production (231). VEGF-A, VEGFR2 and uterine 

natural killer (uNK) cells regulate the enlargement and elongation of endometrial blood 

vessels. Further information on the roles of VEGF and their receptors in endometrial 

vascular remodeling can be found here (33, 72).

Presumably, additional vasoactive substances influence preconceptive uterine remodeling. 

Relaxin is a peptide hormone produced by the corpus luteum, a transient endocrine organ 

which forms from the remaining ovarian follicle after ovulation. This hormone has been 

shown to promote vascular remodeling and angiogenesis through the upregulation of 

matrix metallopeptidases (MMP) (102), and upregulation of VEGF (139). Furthermore, 

prostaglandins likely modulate reproductive function as studies have shown that genetic 

cyclooxygenase knockout mice suffer severe reproductive failure (98, 111). Together, these 

physiologic changes increase uterine vascular surface area in preparation for implantation 

(31).

Vascular Reactivity Preconception and Influence of Sex Hormones

Vascular reactivity and tone are related to the local responsiveness of arteries and arterioles. 

Under normal, homeostatic conditions, arterial and arteriolar vascular smooth muscle 

(VSM) cells remain at a partially constricted state, referred to as tone. Endothelial cells, 

which form the lining of blood vessels, react to luminal changes in chemical signaling 

agents and mechanical influences (138). The endothelium acts as a paracrine organ to 

promote relaxation or contraction of the VSM cells culminating in blood vessel dilation 

or constriction, respectively. Alternatively, molecular signaling may influence VSM activity 

directly, in an endothelium-independent manner. Therefore, vascular reactivity and tone 

are determined by the balance between vasodilator and vasoconstrictor factors within 

the endothelium and VSM of the vascular wall. Sex hormones are also known to 

influence endothelial cells directly, or indirectly by endothelium-dependent or -independent 

mechanisms (195). Therefore, the fluctuation in levels of estrogen and progesterone during 

the reproductive cycle is thought to play a role in uterine vascular reactivity and tone (207).

Studies using intravital microscopy in the rat demonstrate alterations to basal arteriolar 

reactivity in response to locally-infused endothelium-dependent (i.e., acetylcholine) and 

endothelium-independent (i.e., sodium-nitroprusside) chemical agonists during the rat 

estrous cycle (Figure 2) (46, 208). These studies also demonstrated that if maternal 

homeostasis is perturbed (e.g., environmental exposure) during oestrous, arteriolar 

responsiveness and myogenic reactivity shift toward vasoconstriction, thereby limiting blood 

flow to the uterine myometrium and potentially impairing decidualization (Figure 2) (44, 

208, 218).

Estrogen—Estrogen concentrations are highest during the follicular phase of the 

reproductive cycle. The most pronounced effects of estrogen on vascular reactivity are 

mediated through endothelial function (144). Elevated estrogen concentrations are known to 
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increase mean blood flow to many vascular beds (79, 80, 124, 125); occurring likely through 

reduced uterine vascular resistance and arteriolar vasodilation (207). Estrogen receptors 

(ER), ERα and ERβ have been identified in endothelial cells and VSM cells within uterine 

vascular beds (120). Accumulating evidence suggests that an increase in uterine artery blood 

flow is an ER-mediated phenomenon, leading to increased nitric oxide production and VSM 

cell relaxation (146, 187). Local infusion of estradiol in non-pregnant ovariectomized ewes 

also showed an increase in uterine artery blood flow, without systemic changes, suggesting 

estrogenic changes within the uterus are mediated locally

Numerous studies in humans demonstrate that estrogen-mediated vasodilation occurs 

through endothelial nitric oxide synthase (eNOS)-dependent mechanisms (30, 109, 144). 

Protein expression of eNOS in uterine artery endothelial cells (127) and endogenous 

uteroplacental nitric oxide (NO) (215) is known to increase during the estrogen-dominant 

follicular phase of the menstrual cycle and decrease during the progesterone-dominant 

luteal phase in both sheep and humans. This phenomenon is unique to the uterine 

vasculature, particularly the uterine arteries, due to the presence and concentrations of 

ERα and ERβ receptors that are differentially regulated by estrogen (120). Previous 

studies have demonstrated that estrogen augments endothelium-dependent and - independent 

vasodilation within the microcirculation during mid-cycle in pre-menopausal women and 

in post-menopausal women taking estrogen replacement therapy (8). Unfortunately, the 

exact mechanism responsible for estrogen-enhanced endothelial function remains unclear 

and requires further study. Further reading pertaining to the systemic vascular actions of 

estrogens can be found here (143).

Progesterone—The corpus luteum produces progesterone, with the primary function of 

preparing the estrogen-primed endometrium for implantation. Previous studies report that 

concentrations of progesterone, in combination with estrogen (as detailed above) may be 

responsible for the regulation of uterine blood flow (126). This understanding is based on 

findings that elevated estrogen-to-progesterone ratios, characteristic of the follicular phase 

of the estrous cycle, correspond with elevated uterine blood flow (126). Alternatively in 

ruminants, the luteal phase is characterized by high plasma progesterone and low estrogen 

concentrations, restoring uterine blood flow to basal levels (59). Similar to estrogen, 

progesterone may also promote endothelium-dependent relaxation (157); nonetheless this 

may be species dependent. In sheep models, exogenous progesterone fails to produce 

vasodilation in the uterine vascular bed when administered alone (4). In contrast, when 

progesterone is infused in combination with estrogen it produces an inhibitory effect (29, 

79, 175). Results from studies using rodent models describe progesterone as a vasoactive 

hormone that acts to inhibit vasoconstriction through modulation of Ca++ concentrations 

(15). At peak levels of progesterone, VEGF and cognate receptors are upregulated within 

the uterine microvasculature, leading to subsequent increases in vascularity and blood flow, 

thereby optimizing conditions for implantation (231). Unfortunately, the mechanisms of 

action supporting progesterone-induced vascular reactivity remain unknown and require 

future study.
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Luteinizing Hormone—As its name implies, LH is responsible for the transformation 

of the follicular remnant cells to form the corpus luteum. Few studies have evaluated the 

modulation of uterine vascular responsivity to increased concentrations of LH. One study 

evaluated porcine vascular responsiveness to norepinephrine, a potent vasoconstrictor, in a 

high LH environment (200). Using wire myography to assess uterine artery vascular smooth 

muscle tension generation, these studies concluded that LH mitigated norepinephrine 

contractility (200). Therefore, more work is needed to understand the impact of LH on 

uterine vascular reactivity.

While significant work has been conducted on the influence of estrogen and uterine 

vascular responsiveness, further studies pertaining to the cyclic effects of estrogen, effects of 

progesterone, LH, relaxin, and testosterone require further study.

Decidualization and Menstruation

Decidualization is the process by which the endometrium thickens in preparation for 

pregnancy, providing a nutritive matrix for implantation. In humans, decidualization occurs 

with each menstrual cycle and involves vascular sprouting and elongation, increased surface 

area of the spiral arterioles, influx of specialized uNK cells, and secretory transformation of 

the uterine glands (Figure 3) (68, 151). These physiological processes occur in response to 

coordinated estrogen and progesterone secretion. There is a positive correlation between the 

degree of endometrial decidualization and trophoblast invasion of maternal uterine vessels 

during implantation and pregnancy (58). Consequently, pathological manifestations such as 

infertility, preeclampsia, and fetal growth restriction may result secondary to physiological 

complications during this phase.

Menstruation occurs naturally in humans and very few other species; rodent models do 

not menstruate. In the absence of an implanted blastocyst the sprouted and elongated 

vessels degenerate and are lost during menstrual shedding (234). Humans are thought to 

undergo vaginal bleeding as a physiological adaptation of invasive placentation; building 

of the uterine wall increases the success of pregnancy but is not energetically favorable 

to maintain (136). Protective mechanisms to limit blood loss during menstruation are 

initiated. These include the local production of potent vasoconstrictors, prostaglandin F2α 
and endothelin-1 (ET-1) (12, 132). Vasoconstriction is accompanied by the activation of the 

coagulation cascade within the endometrium to achieve hemostasis (136). Spiral arteries 

constrict to limit blood flow to the endometrium to prevent excessive blood loss and permit 

scar-free tissue repair. In species that do not undergo menstruation, the endometrium is 

extensively reabsorbed and remodeled (136). More information regarding the mechanisms of 

menstruation can be found here (121).

INITIATING PREGNANCY: IMPLANTATION AND TROPHOBLAST INVASION

In humans, adhesion of the blastocyst to the endometrial surface marks the completion of 

the process of decidualization. This includes extracellular matrix remodeling, balancing the 

local immune response, maintenance of an antioxidant environment, and vascular maturation 

(113). Progesterone and estrogen, via activation of their cognate receptors, coordinate these 

processes (76, 179). The marked increase in neovascularization during early pregnancy is a 
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result of hormonal actions on estrogen and progesterone receptor expressing stromal cells 

along with an increase in the expression of VEGF-A and VEGF-R2 by local immune cell 

populations (19, 107). Trophoblast invasion into the spiral arteriole lumen ramifies the spiral 

pre-placental arterioles (231). In late pregnancy, this process is critical for establishing blood 

supply to the developing fetus.

Implantation

There is a short period of time when the endometrium is receptive to a conceptus for 

implantation (Figure 3) (151). The implantation window begins approximately 6 days after 

ovulation, when endometrial thickness and vascularization peak, lasting for about 4 days. In 

humans, implantation of a fertilized ovum occurs about 9 days after ovulation. At this stage 

of development, the conceptus is referred to as a blastocyst (Figure 3) (151). Implantation 

describes the process of attachment to the uterine epithelium and invasion into the uterine 

endometrium by the blastocyst. Trophoblast cells form the outer layer of a blastocyst. 

These cells physically connect the embryo to the uterine wall (39). This connection deepens 

with trophoblast invasion into the uterine endometrium, establishing vascular connections 

with the uterine pre-placental spiral arteries (39). Invasion of the uterine spiral arteries is 

discussed in detail below. This connection deepens with trophoblast invasion into the uterine 

endometrium, establishing vascular connections with the uterine pre-placental spiral arteries 

(39). Invasion of the uterine spiral arteries is discussed in depth below. There is a positive 

correlation between the degree of uterine thickening and extent of trophoblast invasion 

during implantation/placentation (58). Impaired implantation is associated with multiple 

gestational complications, including pregnancy failure and uteroplacental disorders (156). 

Further review of the mechanisms and molecular interactions associated with embryologic 

implantation can be found here (108).

Invasion, Spiral Artery Remodeling, and Placentation

Maternal-embryo crosstalk including molecular signaling between immune cell receptors, 

extravillous trophoblasts, and uterine spiral arteriolar endothelial cells is initiated at 

implantation (113). By the time a blastocyst meets the endometrium, it consists of two major 

parts; the inner cell mass (which will become the embryo), and the outer layer of trophoblast 

cells called the trophectoderm (which is destined to become the placenta) (198). The 

trophoblast layer proliferates and differentiates into the cytotrophoblast, which gives rise 

to the villous syncytiotrophoblast and invasive syncytiotrophoblast lineages. Differentiation 

of trophoblast layer is tightly controlled by molecular crosstalk between maternal and 

fetal tissues, including oxygen tension, transcription factors, hormones, growth factors, and 

alternative signaling molecules (103).

Invasion—Trophoblast cell invasion into the inner third of the myometrium requires the 

exchange of biological signals between maternal and fetal tissues. Cell colocalization studies 

from uterine bed biopsies reveal the presence of immune cells at the wall of the spiral 

arterioles (90). Invading trophoblast cells interact with maternal immune cells (70% being 

decidual NK cells, 20% macrophages, and 10% T-cell lymphocytes). Immune cells disrupt 

endothelial and VSM cells, increasing vascular permeability, before trophoblast invasion 

(202). Infiltrated immune cells, namely the macrophages, express a wide range of, proteases, 
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and angiogenic factors (e.g., angiogenin, keratinocyte growth factor, fibroblast growth factor 

B, VEGF A, and angiopoietin-1 and -2) against the vessel cell walls (114). Fetal trophoblast 

cells also generate immune signals, through the expression of HLA-C, HLA-E and HLA-G 

for decidual NK cell receptor interaction. HLA-G binds to inhibitory decidual NK receptors 

to suppress the maternal immune response and permit fetal invasion (7, 89). There is 

considerable interplay between immune cells, decidual cells and invading trophoblasts.

Invasion of the endometrium requires fetal trophoblasts to penetrate the uterine epithelium 

and invade endometrial stroma to gain access to the spiral arterioles. Trophoblast cells 

penetrate the matrix layer under the epithelium, known as the basement membrane, invading 

through the intercellular gaps between endometrial epithelial cells without destroying 

them (28). Expression of MMPs from perivascular uNK cells and macrophages initiate 

trophoblast invasion of the spiral arterioles (241). The decidua contains high amounts of 

pro-invasive factors including interleukin (IL) -1β, IL-5, IL-6, IL-7, IL-8, IL-9, IL-13, 

IL-15, Eotaxin, CCL11, IP-10 and RANTES, as well as anti-invasive factors IL-10, IL-12 

and VEGF (198). The coordinated influence of these decidual factors promote invasion 

by regulating protease pathways and integrin expression via STAT signaling pathways 

in trophoblasts (198). Simultaneously, tissue inhibitors of MMPs reduce fetal trophoblast 

proliferation and restrain over-invasion (114).

This process stimulates the expression of VEGF and other proangiogenic factors such as 

placental growth factor (PGF) by extravillous cytotrophoblasts. Preimplantation factor (PIF) 

is a peptide secreted from blastocyst and placental tissue and detected in the maternal 

circulation. The function of PIF is to modulate local uterine immunity, enhance the 

expression of adhesion molecules within the decidua, and facilitate trophoblast invasion 

(16). Invasive trophoblasts utilize molecular mediators (e.g., epidermal growth factor, 

VEGF, MMP-9, phosphatidylinositol 3’-kinase (PI3K), AKT) that comply with precise 

spaciotemporal boundaries in normal pregnancy (57). Failure of fetal invasive trophoblasts 

to express necessary molecules, such as cadherin, integrin and immunoglobulin superfamily 

members, is associated with poor invasion and inability to mimic a vascular endothelial 

phenotype necessary for successful invasion (242). The inability to moderate trophoblast 

invasion becomes evident in placental disease conditions; therefore, proper regulation of 

trophoblast invasion is paramount for both maternal health and proper fetal development. 

The replacement of spiral artery endothelium with fetal trophoblast cells exerts several 

effects on vascular control which will be further discussed in the following subsections.

Spiral Artery Remodeling—Species with hemochorial placentation, which includes 

humans and laboratory rodents, undergo trophoblast invasion and spiral artery 

transformation (204). This facilitates both maternal and fetal control of local hemostasis. 

During early pregnancy, extravillous cytotrophoblasts invade through the decidualized 

endometrium and migrate retrograde through the distal ends of the spiral arterioles, 

acquiring an endothelial cell-like thromboregulatory gene expression profile (Figure 4) 

(203, 206). A rise in maternal procoagulant activity occurs to defend against maternal 

endometrial hemorrhage imposed by the trophoblast invasion; in turn, trophoblast cells elicit 

an anti-coagulation response by protease-activated surface receptors (217). The regulation 
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of hemostasis at the maternal-fetal interface by trophoblast cells is protective against local 

coagulation that may compromise nutrient-rich blood flow to the fetus.

As trophoblasts invade and migrate into the spiral arteriole lumen, they diminish the 

endothelium and supplant the smooth muscle of the vessel wall to ablate sensitivity and 

limit vascular smooth muscle action (Figure 4) (162, 203). In humans, NK cell targeting of 

the vascular smooth muscle limits vascular reactivity (24, 180), followed by displacement 

of the endothelial layer of the spiral arterioles by trophoblasts. This action eliminates 

endothelium-dependent vascular signaling and modifies the extracellular matrix, restricting 

vascular smooth muscle reactivity and responsiveness (162). Further, NK cells are integral 

in the regulation of trophoblast invasion, as identified using an immunocompromised in 
vivo rat model (174). While the mechanisms of NK cell functions in remodeling of spiral 

arteries are not fully understood (Figure 4), more information on the temporal dependence of 

molecular signaling may be found here (203).

During invasion, extravillous trophoblasts penetrate the maternal spiral arteries and form 

temporary “plugs” in the lumen of the vessels, decrease the flow of maternal blood, and 

establish an oxygen gradient between the mother and fetus (Figure 5) (178, 203, 230). 

Trophoblast plugs are present in the spiral arteries until gestational weeks 10–12. The 

maternal-fetal oxygen gradient is essential for differentiation, growth, and development of 

the placenta, whereas premature “unplugging” is associated with miscarriage (96). It is 

unclear if maternal blood cells can penetrate the trophoblast plugs, or if a few cells are 

able to pass into the intervillous space. It is increasingly accepted that at the 6th week of 

pregnancy, the trophoblast plugs begin to slowly loosen to permit the gradual infiltration 

of maternal blood cells into the placenta, with the vessels being clear of any obstruction 

near the end of the first trimester (148, 230). Intervillous blood flow increases at gestational 

weeks 10–12, and thus early placentation occurs in an environment characterized by low 

oxygen tension (17–18 mm Hg compared to endometrial 39–40 mm Hg) (243). It is 

estimated that between 30 and 60 spiral arterioles open to serve as carrying maternal blood 

to the intervillous space of the placenta (25, 26).

Furthermore, the invaded trophoblast cells reconfigure the distal ends of the pre-placental 

arterioles into a widened, trumpet-like opening; the vessels are splayed open to further 

decrease vascular resistance and increase blood flow to the early intervillous space of the 

placenta (203). Widening of the spiral arterial lumen also dampens the pulsatile nature 

of blood flow entering the intervillous space. This function ensures slow percolation of 

maternal blood into the intervillous space around the fetal villi. Turbulent blood flow 

may damage the delicate villous tree tissue and promote fibrin deposition, precluding 

efficient nutrient exchange; however, the blood must enter at a rate sufficient to ensure deep 

perfusion of the maternal blood into the intervillous space (Figure 6) (173). As pregnancy 

progresses, placental vascular resistance decreases progressively from approximately 0.65 

mmHg/mL/min at mid-gestation; to 0.15 mmHg/mL/min at term (2). Blood flowing through 

the uterine, arcuate, and radial arteries increases progressively throughout pregnancy, 

approaching values of 750 – 900 ml/min by term. By week 20, the arcuate arteries become 

larger than the vessels that feed them and may enlarge up to 220% over the course of 

pregnancy. Progressive remodeling of the spiral arteries occurs during the first 22 weeks of 
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gestation (234). The trumpet-like mouth of the arterioles at the time of opening is about 200 

to 350 μm in diameter and expands to 2 to 3 mm by the third trimester. Remodeling of the 

spiral arteries continues into the second and third trimesters (Figure 5) (178).

Placentation—Placentation is the process that includes attachment of fetal trophoblasts 

to the uterine wall and growth, development, and organization into the mature organ. 

Ultimately, placentation allows the critical function of nutrient transfer to fetus and fetal 

waste to the mother. The capacity of the placenta for nutrient/waste exchange is due to 

the receipt of blood from two separate circulations, the maternal uterine vasculature and 

fetal systems (224). In hemochorial placentation, blood enters the intervillous space as a 

high volume, high throughput, and low velocity flow (Figure 6) (173). Thus, the fetal villi 

are continuously bathed in maternal blood, and nutrient and waste exchange with fetal 

blood occurs through a combination of mechanisms that include simple diffusion, facilitated 

diffusion, and active transport.

During pregnancy, maternal hemodynamic accommodations and regional control establish 

and maintain placental perfusion such that there is a tremendous increase in systemic blood 

volume directed toward the uterus. During pregnancy plasma volume may increase from 4L 

to 5 or 6L in women, and by term, nearly 1L is directed to the uteroplacental circulation 

with 90% going to the placenta and only about 10% to the uterine tissues (23, 162). In ewes, 

the progression of pregnancy is accompanied by a preferential increase in the proportion of 

uterine blood flow directed to the placenta (Figure 7) (81).

The placenta features a pressure gradient with high pressure in the maternal spiral arterioles 

(70 mmHg) and low pressure within the placenta intervillous space (10 mmHg) (224). A 

decreasing pressure gradient, in combination with remodeling of the spiral arterioles, which 

lowers distal resistance, permits efficient perfusion of the intervillous space. The blood 

pressure gradient between the uterine arteries and the placental intervillous space is quite 

steep, highlighting the activity of the resistance vasculature and assuring the continual but 

slow movement of maternal blood through the intervillous space, providing an optimal 

environment for nutrient and waste exchange across the fetal villi.

Oxygenated blood is provided to the fetus from the placental intervillous space via the 

umbilical vein within the umbilical cord (Figure 8) (42, 43). In return the fetoplacental 

circulation supplies the placenta with deoxygenated blood via umbilical arteries contained in 

the umbilical cord (Figure 8) (42, 43). It extends from the fetal umbilicus and inserts onto 

the chorionic plate of the placenta. At the interface of placental insertion, each umbilical 

artery branches into at least 8 stem arteries, which then branch into 4 to 8 horizontal vessels 

spanning varying lengths and curving towards the intervillous space (224). Here, branching 

occurs into terminal capillary beds within villous trophoblastic cell encapsulations. This 

brings fetal blood into proximity with the maternal blood, which are separated by two cell 

layers: the villous trophoblast and the fetal capillary endothelium. Fetal blood pressure is 

approximately 50 mmHg in the umbilical arteries and 20 mmHg in the umbilical vein (224).

Placentation mechanisms, trophoblast invasion, and spiral artery remodeling are modeled 

using in vitro, ex vivo, and in vivo approaches (203). Mechanistic and genetic screening 
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of trophoblast stem cells or immortalized human trophoblast cell lines provide molecular 

targets of differentiation, transporter function, and barrier functions. Despite species 

differences, mouse, rat, hamster, and guinea pig models provide laboratory evidence of 

anatomical invasion and physiological remodeling in attempts to gain a better understanding 

of human hemochorial placentation (203).

PREGANCY

Maternal systemic and uterine adaptations are vital to support uteroplacental blood flow and 

crucial for successful pregnancy outcome. A combination of expansive vascular structural 

remodeling, and changes in blood vessel reactivity regulate uterine vascular resistance to 

accommodate increased uteroplacental blood flow during pregnancy and satisfy the needs of 

the developing fetus. Blood flow increases as pregnancy progresses, especially toward the 

end of pregnancy where fetal demand is greatest. In a cyclical fashion, the placenta matures, 

and in turn, the uterine circulation adapts through altered vessel structure, reduced vascular 

tone, and enhanced vasodilation/blunted vasoconstriction (162).

Maternal Systemic Modifications

In order to support gestational tissue growth and fetal development, maternal physiology 

must expand rapidly and precisely. The profound hemodynamic adaptations of pregnancy 

extend beyond the uterine vasculature to the systemic circulation (61). As mentioned above, 

in normal pregnancy, maternal blood volume increases by an average of 30–50% over non­

pregnant values (205). Heart rate and stroke volume increase in the first trimester (weeks 1 

to 12). Heart rate continues to gradually rise until term, whereas stroke volume reaches a 

plateau near gestational week 20 (212). As a product of stroke volume and heart rate, cardiac 

output increases by 50%, reaching a peak between gestational weeks 20 to 28 (49). This 

leads to increased metabolic coronary demand and the development of reversible maternal 

cardiac hypertrophy to support increased coronary demand. Unlike pathological cardiac 

hypertrophy there is no coronary fibrotic tissue deposition (118). Further reading pertaining 

to the clinical development, physiological development, or metabolic coordination of 

coronary hypertrophy can be found here (69, 85, 161, 192, 205).

Primary systemic vasodilation in early pregnancy occurs in parallel with renal vasodilation. 

Renal vasodilation leads to a 30–50% increase in renal blood flow and glomerular filtration 

rate (GFR) (214). A fall in effective arterial blood volume activates the renin-angiotensin­

aldosterone-system (RAAS), and stimulates the production of renin, angiotensin II, and 

aldosterone. A rise in circulating levels of water and sodium-retaining hormones leads to 

renal sodium and water retention in order to compensate for early arterial under filling (214).

Maternal Circulating Clotting and Fibrinolytic Factors

Pregnancy produces a hypercoagulable and hypofibrinolytic state to protect the mother from 

postpartum hemorrhage. A progressive rise in plasma volume associated with pregnancy 

stimulates protein synthesis to maintain normal concentrations of clotting factors. Despite 

changes in protein synthesis, maternal platelet count during gestation is reduced by 10% 

from pre-pregnancy values (48). Spontaneous platelet aggregation, activation, and adhesion 
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have been reported during the third trimester in normotensive women, suggesting enhanced 

platelet reactivity (48).

Uterine Vascular Modifications: Remodeling and Reactivity

Adjustments to uterine vascular structure and reactivity is critical for maintaining a 

successful pregnancy. Research has suggested that there are local and systemic factors 

that induce and maintain these processes. Vascular hyperplasia, hypertrophy, anatomical 

reconfiguration, and changes in extracellular matrices occur cooperatively to remodel 

the uterine circulation and establish a new transient vascular organ: the placenta. 

Furthermore, vascular reactivity is altered by systemic and local molecular signaling and 

mechanotransduction elements. Together these factors augment vascular compliance (162). 

The temporal relationship between macrovascular and microvascular changes associated 

with pregnancy is not well understood in humans. However, studies in rats and mice 

show that small artery remodeling precedes that of larger upstream vessels, suggesting 

that proximity to the placenta may be an important factor in spatial regulation of vascular 

function (130).

Remodeling—Remodeling is accomplished by both physical and chemical mechanisms; 

pressure/stretch and shear stress, humoral/endocrine factors such as VEGF and sex steroid 

hormones, and local endothelium-derived factors such as NO, angiotensin and endothelin 

(62, 130). During the first trimester (i.e., gestational week 1 – 12) the uterus rises out of 

the pelvic cavity to accommodate the developing fetoplacental unit. Substantial growth of 

the uterus is concurrent with axial growth (i.e., lengthening) of uterine arteries, but whether 

this is a result of uncoiling of tortuous vessels or of true longitudinal growth is uncertain, 

and may be species dependent (Figure 9) (130). Axial remodeling of the uterine arteries is 

well established in rodent models of pregnancy. In rats, the length of the main uterine artery 

and vein increases 2-fold (Figure 9) (130, 158) while downstream arcuate and radial arteries 

increase 3 to 5-fold in rodents by term; the situation in humans is less clear (160).

While major transformations are occurring at the level of the spiral arterioles at the 

maternal-fetal interface, the modifications to the upstream uterine vasculature cannot be 

overlooked. The vascular system directs more blood towards the uterus during pregnancy by 

increasing the circumference of the main uterine artery 2- to 3-fold, with little to no increase 

in vascular wall mass (95). This increase in cross sectional diameter appears to be achieved 

by wall mass hypertrophy (162). Pregnancy-related structural remodeling of the uterine 

circulation, characterized by vascular smooth muscle axial elongation, increased vessel 

caliber and wall cross-sectional area, is consistent with a pattern of outward hypertrophic 

arterial remodeling and has been identified in rats, guinea pigs, and sheep (Figure 10) (6, 35, 

70, 91, 162). Outward hypertrophic arterial remodeling is characterized by an increase both 

in lumen cross-sectional area and wall thickness. This increase in luminal cross-sectional 

area allows for an increase in blood flow during pregnancy, in contrast to other pathological 

hypertrophic remodeling as described in hypertension or atherosclerosis where the luminal 

area remains the same (i.e., eutrophic) or narrow (i.e., inward hypertrophy) (Figure 10) 

(150, 162). Outward expansion of the uterine circulation in early pregnancy occurs, in 

part, through the concerted influence of VSM cellular hypertrophy and hyperplasia. VSM 
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cells isolated from radial uterine arteries Sprague-Dawley rats in late pregnancy (e.g., 

gestational day 20 to 21) exhibited substantial axial hypertrophy (21%) compared with 

values in non-pregnant animals (35). In guinea pigs, smooth muscle cell length measured in 

myometrial vessels increased from 21 μm in virgin animals to 39 μm in pregnant animals 

at gestational week 9 (91). Evidence from rodent studies suggests a role for hyperplastic 

processes in uterine arterial growth and elongation during pregnancy. Cellular proliferation 

rates of VSM cells and endothelial cells isolated from uterine and radial arteries were low 

in non-pregnant Sprague-Dawley rats but increased significantly during pregnancy (35). 

Moreover, the mitotic index values for endothelial and VSM cells were greatest in the 

smaller radial arteries at mid-pregnancy (e.g., gestational days 9 to 11) and in the larger 

upstream uterine arteries in late pregnancy (35). Regional variation in the pattern of cell 

division rates over time implies spatial and temporal regulation of gestational growth of the 

uterine vasculature. Unfortunately, this has not yet been well-documented in humans.

In combination with the several-fold increases in unstressed uterine artery length, total 

wall mass increases approximately 400% to 1000% (130). The smaller arcuate and radial 

arteries also undergo significant outward circumferential and axial remodeling characterized 

by both, hypertrophy and hyperplasia of endothelial and VSM cells (162). Although the 

mechanisms are not well defined, multiple influences on the vascular wall such as increased 

shear stress, sex hormones, and uterine deformation are likely at play.

Furthermore, uterine wall mechanics are altered during pregnancy, resulting in reduced 

compliance and increased distensibility in sheep, guinea pigs, rats, and rabbits (36, 84, 

105, 135, 160). This may appear contradictory as reduced compliance often results in 

increased stiffness and increased distensibility is associated with reduced stiffness. Measures 

of compliance traditionally reported as direct measurements (e.g., diameter, area) when 

challenged by increased intralumenal pressure; whereas measures of distensibility are 

normalized to a percent change, often from baseline, allowing blood vessels of different 

sizes to be compared (73). Therefore, is it possible after outward hypertrophic arterial 

remodeling during pregnancy (Figure 10) for vessels of the uterine circulation to present 

greater stress-strain ratios (i.e., increased compliance), while also reporting increased 

percentage change from baseline (i.e., increased distensibility). It is likely that the alterations 

in compliance are associated with decreased vascular extracellular matrix collagen and 

elastin (162). Some studies have indicated a role for MMPs, particularly elevation in MMP-2 

and -9, in extracellular matrix differentiation during pregnancy (32, 104, 141, 221). Further 

reading pertaining to uterine vascular remodeling during pregnancy can be found here (130, 

161–163).

Although there is little research within this area, uterine veins also adapt to enhance their 

capacity for blood flow. In rats, there is a 65% increase in uterine vein diameter during 

pregnancy, along with a doubling in length (165). Additional venous adaptations include 

increased distensibility and decreased elastin to further augment capacitance for overall 

increase in blood volume during pregnancy and venous return to the heart (86).

Reactivity—Normal pregnancy is associated with significant physiological adaptations 

to meet the increased metabolic demands of the mother and fetus and to ensure optimal 
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uteroplacental circulation for fetal development. Local tissue blood flow is regulated 

primarily by dynamic changes in myogenic tone and arteriolar diameter to meet these 

metabolic requirements. Interestingly, the majority of altered vascular reactivity during 

pregnancy is unique and localized to the uterine circulation, differential to non-reproductive 

vascular beds (i.e., mesenteric circulation and carotid) of rats and guinea pigs (38, 41, 93, 

226–228). In the first weeks of gestation global vascular compliance increases in parallel 

with a decline in peripheral vascular tone. Peripheral vasodilation leads to a 25–30% fall in 

systemic vascular resistance (SVR) by gestational week 6 (205). The collective effects of 

neural, endocrine, and local regulatory mechanisms mediate changes in arteriolar diameter.

Neural Input: Sympathetic and parasympathetic branches of the autonomic nervous system 

are critical constituents of neural control of vascular tone. The coordinated functions of 

the sympathetic nervous system and the parasympathetic nervous system allow for rapid 

adaption to physiological conditions. Actions of the autonomic nerves are mediated at 

target sites by the release of neurotransmitters that bind to adrenoreceptors and initiate 

signal transduction pathways that regulate cellular function (225). Uterine arterioles are 

highly innervated by sympathetic adrenergic nerve fibers (176). Norepinephrine (NE), the 

neurotransmitter released from adrenergic nerves, binds to α-adrenergic receptors located 

on the surface of VSM cells. NE binding and activation of receptors causes sympathetic­

induced constriction of VSM cells. At rest, arterioles exhibit vascular tone due to the partial 

contraction of smooth muscle, this consistent level of vascular smooth muscle tone allows 

for vascular regulatory flexibility. Although the uterine circulation is highly sensitive to 

sympathetic influence, during pregnancy, there is reduced tone in the uterine vasculature, 

which may be attributable to reduced neural sympathetic signaling or increased mediators 

of vasodilation (165, 185). Interestingly, there is increased neurogenic tone in the peripheral 

circulation during pregnancy in sheep, attributed to increased nerve firing as opposed to 

increased neural density (9).

Endocrine

SEX HORMONES: As mentioned above in the pre-conceptive section, sex hormones are 

vasoactive factors. During pregnancy, circulating and local concentrations of sex steroid 

hormones are increased, which act to facilitate uterine blood flow. Greiss and Marston 

demonstrated in 1965 that direct infusion of estrogen in sheep led to uterine dilation 

in late pregnancy (83). Estrogen concentrations in pregnant ewes dramatically reduce 

uterine vascular resistance in both conduit and resistance arteries, permitting increased 

uteroplacental blood flow (207).

While many groups have demonstrated uterine hyperemia in ewes in response to different 

estrogenic compounds (31), estradiol −17β increases dramatically during pregnancy; 

therefore it is likely a major contributor to increased uteroplacental blood flow during 

gestation. In non-pregnant ovariectomized ewes, local infusion of estradiol −17β produced 

local uterine hyperemia without a systemic hypotensive reaction (125); thus indicating the 

response is mediated locally within the uterine vasculature.
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It has been suggested that increased uteroplacental blood flow in response to estrogen is 

receptor-mediated (31). Further, estrogen receptors have been identified on the endothelial 

and VSM cells of the uterine artery (27). However, while stimulation of the estrogen 

receptors results in increased uterine blood flow, the functional mechanisms linking the 

stimulation to the response have yet to be elucidated (31).

It is also likely that estrogen modulates NO bioavailability by increasing endothelial and 

inducible NOS activity (229). Pharmacological inhibition of NOS activity has been shown 

to decrease estradiol −17β induced uterine hyperemia in non-pregnant ewes (216), this result 

was not reflected in the pregnant animal (184). Increased eNOS activation may be attributed 

to Ca2+ handling, estrogen receptor activation, or caveolin-1 colocalization; however, these 

theories have yet to be confirmed. Further reading pertaining to steroid hormones and 

uterine vascular adaptations during pregnancy can be found here (31, 233).

RELAXIN: Relaxin is also an important regulator of vascular adaptations during pregnancy 

(101). Circulating concentrations of relaxin are highest at the end of the first trimester 

and subsequently fall to intermediate levels throughout pregnancy (194). In a study of 

pregnant women, elevated serum concentrations of relaxin in early gestation were related 

to lower mean systolic blood pressures in the second and third trimesters of gestation, 

suggesting this hormone plays a potential role in endothelium-dependent vasodilation 

in pregnancy (9). Relaxin deficiency in mice led to a maintenance of uterine artery 

myogenic tone, whereas wild type animals produced an attenuated responsivity during 

pregnancy (133). Others, using pregnant and non-pregnant rats, theorize relaxin acts 

to mediate arterial VSM wall relaxation or compliance remodeling, possibly through 

continued modulation of MMPs (102, 220). Mechanisms responsible for relaxin-mediated 

vasodilation outcomes during pregnancy include increased NO (47), activation of the 

endothelin B receptor (52), upregulation of MMPs (102), and upregulation of VEGF (139, 

168). Overall, relaxin has been shown to augment uterine blood flow during pregnancy 

through mechanisms that regulate maternal uterine vasodilation, vascular remodeling, and 

responsiveness during pregnancy. These mechanisms are not widely accepted, nevertheless, 

more detailed information can be found in recent literature (37, 116, 134).

RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM: Endocrine regulation of vascular 

homeostasis also includes the influence of circulating catecholamines, NE and epinephrine, 

RAAS, and antidiuretic hormone. The collective actions of important humoral mechanisms 

contribute to the regulation of arterial blood pressure through changes in systemic vascular 

resistance.

A decline in systemic peripheral vascular resistance results in a net decrease in mean 

arterial blood pressure (MAP). To promote volume expansion and maintain MAP, the 

activity of the RAAS increases and remains elevated throughout pregnancy to retain salt 

and water. The decline in peripheral vascular resistance throughout pregnancy is associated 

with an increased production of vasodilators, and with the development of a refractoriness 

to α-adrenergic stimulation (115). In rodents, a pressor hyporesponsiveness was observed at 

gestational days 15 and 20, marked by substantial blunting of the pressor response to graded 

doses of angiotensin (ANG) II, NE, and arginine vasopressin (166). Similar results have 
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been reported during uncomplicated pregnancy in humans exhibiting a reduced vascular 

responsiveness to α-adrenergic stimulation (115, 153) and ANG II infusion (18, 123). Liu et 

al. examined responses to NE and ANG II in isolated uterine artery rings from non-pregnant 

and pregnant women (34 – 40 weeks gestation) and observed increased sensitivity to NE 

compared with ANG II in non-pregnant and pregnant uterine arteries. Increased sensitivity 

to ANG II has been reported in the uterine, but not femoral, arteries of rabbits (147). Further, 

ANG II receptor subtype expression in uterine artery VSM was unchanged throughout 

reproduction suggesting the predominance of the type 2 ANG II receptor contributes to 

attenuated sensitivity to ANG II in uterine arteries from non-pregnant and pregnant women 

(186).

Local Vascular Regulatory Mechanisms: Local regulation of blood flow to satisfy tissue 

metabolic demand is achieved through the balance between mediators of vasodilation and 

vasoconstriction released from the vessel or from surrounding tissues. Intrinsic mechanisms 

crucial for regulation of local vascular tone include locally produced vasoactive factors (e.g. 

metabolites of arachidonic acid, histamine, bradykinin, NO, and endothelin-1) and myogenic 

autoregulation, an intrinsic capacity of vascular smooth muscle to regulate vascular tone 

in response to changes in intraluminal pressure (99, 159). Under normal physiological 

conditions, the vascular endothelium produces mediators of vascular hemodynamics in 

response to physical and chemical stimuli. Endothelial cells contribute to the regulation of 

blood pressure and blood flow through the production and release of vasodilators including 

NO and prostacyclin (PGI2), as well as vasoconstrictors including ET-1 and thromboxane 

A2 (TXA2) (21, 193). In this section we review the main endothelial-derived factors for 

local uterine vascular control. Information regarding local ligand-receptor control of uterine 

blood flow through estrogen and relaxin may be found here (119, 154, 169).

The uterine artery responsiveness to local factors shifts toward increased dilation during 

pregnancy (Figure 11) (63). In isolated rat arteries, pressure myography studies demonstrate 

vascular dilation to the NO-donor sodium-nitroprusside is enhanced (Figure 11a), while 

vasocontraction to phenylephrine (PE) is delayed (Figure 11b), occurring independently 

from endothelial signaling (Figure 11c) (63, 235). Furthermore, pregnancy has been shown 

to enhance uterine artery myogenic tone, likely to protect the fetus from changes in blood 

pressure (238). An augmented myogenic tone is likely attributed to upregulation of local 

endothelium-independent calcium-handling mechanisms (75).

During pregnancy, NO plays a central role in maternal vascular adaptation and control 

of uterine and placental blood flow (201). eNOS protein expression increases by nearly 

200% in uterine arteries of pregnant sheep, compared with non-pregnant controls (240). 

NO blockade throughout pregnancy in rats increased vascular tone and reduced maximal 

arterial dilation (236). A deficiency of NO and other important mediators of vasodilation 

in pregnancy may contribute to impaired uteroplacental blood flow by reducing both 

vasodilation and remodeling, and the genesis of pathological events including hypertension, 

preeclampsia, and intrauterine growth restriction (190, 215).

The balance between endothelial-derived relaxing factors and contracting factors represents 

a major determinant of basal vascular smooth muscle tone and subsequent downstream 
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blood flow. Uterine arteries have been shown to be less sensitive to the effects of serotonin, 

norepinephrine, ANG II, and thromboxane during pregnancy in a wide variety of animal 

models (129). These effects may be mediated by increased circulation, affinity, or action 

of NO. Experimental NO blockade or endothelial denudation in isolated rat uterine arteries 

increased sensitivity to serotonin, but did not return reactivity to control levels, indicating the 

likelihood of a nonendothelial source of NO (129).

As mentioned in the placentation section above, with profound increases in uterine blood 

flow during pregnancy (i.e., 10 to 50-fold) to support fetal growth and development, the 

uterine vasculature undergoes anatomic adaptation to maintain adequate uterine blood flow 

to the placenta (23). Beginning at mid gestation, maintaining uteroplacental blood flow 

becomes highly dependent on the capacity of the uterine vasculature to sustain vasodilation. 

Responsivity to humoral mediators of vasodilation and mediators of vasoconstriction is 

differential to the uterine vasculature, compared with systemic tissue beds. Endotheium­

independent vasodilation is enhanced in uterine arteries, but not in mesenteric arteries during 

pregnancy (38).

Moreover, vasoconstrictor mechanisms are attenuated during pregnancy, compared with 

non-pregnant controls and other vascular beds. In pregnant uterine arteries isolated from 

rats, responsiveness to PE and ANG II declined early and remained diminished throughout 

pregnancy, while response to ET-1 moderated in late pregnancy (93). Similarly, significant 

reductions in responsiveness to thromboxane, norepinephrine, epinephrine, and PE have 

been reported in uterine arteries isolated from guinea pigs (227, 228). Pregnancy has 

also been demonstrated to reduce cortisol-mediated vascular smooth muscle contractility 

in the uterine artery of gravid sheep (239). Some theorize that pregnancy alters adrenergic 

signaling through enhanced α-adenoreceptor and impaired β- adenoreceptor activity, further 

modulating myogenic tone and responsivity in rats (159, 222). It is also likely that 

the reduction in vasoconstrictor actions are due to enhanced endothelium-dependent and 

-independent signaling (38, 226–228, 239). These differential responses may allow for 

increased blood flow to the uterus while preventing systemic hypotension during pregnancy 

(93).

During pregnancy, there is an increased production of vasodilator signals by the vascular 

endothelium (20). The concerted effects of circulating hormones, growth factors, and shear 

stress associated with pregnancy augment the expression and activity of endothelial NOS, 

prostacyclin, and endothelium-derived hyperpolarizing factor; the production of these factors 

may override vasoconstrictive signaling in the uterine vasculature during pregnancy (146).

Existing studies indicate a differential uterine vasoresponsiveness during pregnancy as 

compared to non-pregnant females. Importantly, most studies are conducted in late-stage 

pregnancy as the “experimental” group compared with controls (78, 129, 159). While 

the mechanisms controlling vascular reactivity during late pregnancy remain unclear, the 

time course associated with these modifications between trimesters during pregnancy 

also remains unexplored. Furthermore, while it is widely accepted that pregnancy elicits 

divergent responses between reproductive and systemic vascular beds, (38, 41, 93), the 
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anatomical differential within the myometrial, endometrial, placental, and umbilical arteries 

and arterioles remains unclear despite historical interest (5, 60, 78, 82, 93).

Delivery

Multiple factors contribute to the detachment of the placenta from the uterine wall. 

Toward the end of gestation, sources of immune suppression at the maternal-fetal 

interface are reduced. The effects of immune stimulation is twofold; by the 9th month 

of gestation maternal immune cells induce apoptosis of trophoblast and endometrial 

epithelial cells, beginning placenta release, and creating a pro-inflammatory environment 

that promotes contraction of the uterus, delivery of the fetus and overall rejection of 

the semi-allogenic placenta (183). While the fetal signals that initiate maternal labor 

remain under investigation, it is reported that fetal-derived hormones (adrenocorticotropic 

hormone, oxytocin) and other biological signals trigger myometrial pathways and stimulate 

myometrial contraction (140).

Contractions during labor and delivery impart mechanical separation and slow, progressive 

detachment of the placenta. During contractions, the muscular uterine wall begins to atrophy. 

It rapidly transitions from being very taut at term pregnancy, to a reduced tension after 

the fetus is delivered, and thereby alters the diameter and circumference of the placental 

attachment. The placenta cannot reduce in size or contract along with the myometrium, and 

as a result, vascular attachments begins to separate. The placenta ultimately separates at the 

natural cleavage site of the basal plate and the decidual basalis. Oftentimes, the placenta is 

delivered quickly after the fetus. Manual removal of retained placental tissue involves risks 

of hemorrhage and infection (232).

Placental detachment leaves behind an “open wound” of deserted blood vessels, leading 

to hemorrhage after delivery. A peak in clotting activity occurs at the onset of 

labor and delivery. Thromboplastin is released during placental expulsion and initiates 

disseminated intravascular coagulation in the uterus to protect the mother from hemorrhage. 

Approximately 1-hour postpartum, depressed activity of tissue plasminogen activator 

(t-PA), a serine protease responsible for catalyzing the conversion of plasminogen to 

plasmin, returns to pre-pregnancy levels to maintain uterine blood flow (213). Firm uterine 

contraction and intertwining muscle bundles squeeze around branches of uterine arteries 

to slow blood flow and to compress the vessels shut (81). If the uterus fails to contract, 

bleeding continues, and may result in a possible emergency hysterectomy (11). The uterine 

mucosa heals without scarring. Fibrotic tissue inhibits decidualization and invasion, making 

future implantations at or around the initial site impossible (237). The uterus undergoes 

a healing process called “involution” that transforms the tissue matrix to a non-pregnant 

state. The endometrial lining becomes covered by fibrin and blood clots. Within 24-hours 

post-partum, the spiral arterioles of the implantation site disintegrates, becomes hyalinized, 

and necrotic (11). Endometrial veins undergo thrombosis and arteries develop arteritis, 

leading to overall necrosis of the decidua. The endometrial glands that paused with the 

menstrual cycle hiatus, regrow, and extend through the stroma. Within three to four weeks 

post-partum, the endometrial tissue of the implantation site has regenerated and uterine 

vessels have recanalized (11).

Fournier et al. Page 18

Compr Physiol. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PATHOLOGICAL CONSEQUENCES OF VASCULAR DYSFUNCTION IN 

PREGNANCY

Pregnancy outcome is affected by maternal vascular capability to support gestation and 

the region of uterine wall where the blastocyst implants. For example, anterior placental 

attachments are associated with a greater risk of pregnancy-induced hypertension (i.e., 

preeclampsia), gestational diabetes, placental abruption, intrauterine growth retardation, and 

intrauterine fetal death (244), while implantation on the posterior uterine wall is associated 

with preterm labor. Therefore, the site of implantation and placentation may be an important 

determinant of placental perfusion throughout pregnancy. Furthermore, uneven uterine 

blood distribution may result in the overperfusion of some regions and under-perfusion of 

others; thus contributing to positional effects, variable success in placentation, and negative 

pregnancy outcomes. A brief overview of placental disruptions may be found below. Further 

readings for each condition are presented within respective section(s).

Placental Abruption

Placental abruption is the premature separation of the placenta from the uterine wall, 

an event that compromises its vascular integrity and reduces fetoplacental perfusion. The 

pathophysiology of placental abruption involves maternal blood vessels tearing away from 

the placenta prior to labor (197). Bleeding occurs, and blood accumulates between the 

space of the wall of the uterus and placenta, further separating the uterine wall and 

placenta. Abruption of the placenta may occur secondary to substance abuse by the 

mother, hypertension, physical trauma to the abdomen, or conditions that cause the uterus 

to overstretch (10, 145, 197). The uterus is a muscle that can withstand lengthening; 

however, the placenta is less flexible and therefore myometrial elongation may tear away 

at the vascular connections between endometrium and the maternal side of the placenta. 

Placental abruption can vary in severity from mild to severe depending on extent and 

location of separation and can be assessed by maternal clinical presentation. Separation 

can be complete, partial, central or marginal (197). If sufficiently severe, the fetus will not 

receive enough oxygen and nutrients, and intrauterine death may occur. A systemic review 

pertaining to placental abruption can be found here (51).

Placenta Previa

Placenta previa occurs when implantation is low in the uterus and, as the placenta develops, 

it grows to cover the cervical opening. Cervical tissue is not primed for an implantation 

and is incapable of providing the vascular support necessary to support fetal needs. 

Consequently, placental perfusion is impaired, and the pregnancy may be compromised. 

Further, placentation in this area will overlap the cervical opening to the vaginal canal for 

birth. Upon initiation of labor, contractions can cause extensive hemorrhaging as cervical 

dilation will disrupt the placenta’s vascular connections and lead to fetal distress (164).

Placenta Accreta, Increta, and Percreta

Placenta accreta is defined as a spectrum of abnormal adherence to the uterine wall, 

becoming inseparable at the risk of massive maternal blood loss. In normal pregnancy, 
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the placenta does not invade past the inner third of the myometrium. In these disorders, the 

placenta invades through the myometrium, or through all layers of the uterus and into the 

peritoneum, leading to compromised perfusion and increased risk of hemorrhage (17). This 

pathology is a result of imbalanced decidualization and trophoblast invasion (100). A review 

pertaining to the clinical implications of these conditions can be found here (199).

Preeclampsia

Preeclampsia is a specific and multifactorial maternal hypertensive disorder that occurs 

during pregnancy. Clinically, the diagnosis of preeclampsia occurs with acute onset 

hypertension and proteinuria (171). This syndrome threatens the life of the both the mother 

and the developing fetus.

While there are many theories regarding the cause of preeclampsia, including maternal 

health conditions or fetal genetics, no single mechanism has been established (171). 

Therefore, the development of preeclampsia is associated with both maternal hypertensive 

conditions and abnormal placental formation/invasion (196). Pregnancy-exacerbated 

maternal hypertension may lead to the development of end-organ damage with long-term, 

postpartum consequences to maternal health (170).

Proposed mechanism of preeclampsia include increased expression of antiangiogenic 

influences, as well as reduced expression of proangiogenic VEGF and PGF (92). Failure 

of fetal invasive trophoblasts to express necessary molecules and appropriately engage with 

uterine spiral arteries likely contributes to the development of preeclampsia in humans 

(242). These may occur in conjunction with factors secreted from the placenta and fetus 

including soluble endoglin (sEng) and soluble fms-like tyrosine kinase 1 (sFlt1) -1 (170). 

Upregulation of sEng and sFlt-1 is reported in preeclamptic women. Excess sFlt placental 

may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia 

(137, 219). Increases in reactive nitrosative or oxidative radicals may trigger or exacerbate 

the development of maternal preeclampsia (210). Preeclampsia may occur with reduced 

circulating maternal estrogen, improper uterine remodeling, reduced NO bioavailability, and 

reduced heme oxygenase (128, 170).An in depth review of preeclampsia is outside the 

scope of this presentation; however, further reading on preeclampsia and the associated the 

vascular perturbations can be found here (20, 22, 26, 170, 171).

Placental Insufficiency

A reduced blood supply and fetal undernourishment may occur when trophoblast invasion of 

the spiral arteries is not sufficiently robust, or if the upstream maternal vasculature is unable 

to respond appropriately through a combination of vasodilation and expansive remodeling, 

thereby compromising blood flow to the placenta and the developing fetus (Figure 5) 

(178). This results in reduced fetal growth and culminate in intrauterine growth restriction 

(IUGR). Placental function is insufficient because of compromised uteroplacental blood 

flow and this, in turn, effects the growth and development of the fetus. As a consequence of 

impaired blood flow, the placenta may be unable to fully develop and will have weight and 

dimensions less than those women without IUGR (191).
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Miscarriage

Miscarriage, defined by the loss of a pregnancy, is the most common pregnancy 

complication. Some 12%–24% of medically recognized pregnancies end in miscarriage, 

and it is estimated that one third of all pregnancies are lost due to miscarriage (223). 

Etiologies of miscarriage include genetic, endocrine, anatomic, immunological, infectious, 

environmental and metabolic factors (13). Decreased expression of angiogenic and 

vasoactive factors IL-10, VEGF and eNOS contribute to uterine vascular dysfunction at the 

time of blastocyst implantation, leading to early loss of pregnancy (13, 67). Insufficient 

blood supply to the endometrium may develop into fetal ischemia, and is thought to 

contribute to spontaneous miscarriage within 24 weeks of gestation (14). Lastly, recurrent 

pregnancy losses have been attributed to improper placental vascularization and spiral 

arterial remodeling during invasion and placental maturation (53).

FUTURE DIRECTIONS AND KNOWLEDGE GAPS

The development of novel and innovative methodologies in vascular physiology permit 

greater scientific understanding of the uterine vascular bed, including the gravid uterus. The 

development of catheterization and implantation of flow probes grant the identification of 

pressure and flow variation (78, 83). The utilization of pressure myography techniques 

allows for further understanding of the molecular signaling mechanisms attributed to 

vasodilation and constriction in the uterine vascular bed (88, 159, 160). Isolation techniques 

are used to investigate vascular reactivity within a single utero-placental unit (43, 74, 

77) or the utero-placental-fetal unit as a whole (112). Development and optimization 

of intravital microscopy techniques allow in vivo investigation of the uterine circulation 

without impairing neural or humoral input (3, 117, 209) alongside advances in ultrasound 

technologies to visualize rodent vascular modifications and Doppler blood velocity (149). 

These and future technological advances are critical to gain a comprehensive understanding 

of the mechanisms and molecular signaling pertaining to uteroplacental vascular control.

Uteroplacental vascular function remains a widely understudied field. The temporal 

relationships between systemic macrovascular and local microvascular modifications remain 

unclear. The physiological mechanisms supporting increased uterine perfusion without 

systemic hypotension remain clouded. Many studies are limited by evaluating uterine 

hyperemia in a non-pregnant ovariectomized animal and extrapolating those outcomes to 

pregnancy. The physiological modifications and hormonal milieu during pregnancy must 

be taken into consideration. Currently, we lack a basic understanding of the primary 

and compensatory mechanisms pertaining to uterine vascular control during pregnancy. 

Without this background, it is difficult to develop pharmacological interventions to 

treat pathological conditions during pregnancy, understand the sequelae of maternal-fetal 

environmental exposures, or identify the molecular mechanism associated with the fetal or 

developmental onset of disease in progeny (i.e., the biological mechanisms supporting the 

Barker Hypothesis/Developmental Onset of Health and Disease model) (44).

Lastly, the majority of pre-clinical studies are performed utilizing a rodent model of 

pregnancy. While these studies are important to identify likely mechanistic pathways, 

the laboratory models do not readily mimic human pregnancy-related diseases (e.g., 
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preeclampsia). These differences impair the testing of novel therapeutic strategies in pre­

clinical models.

CONCLUSION

The menstrual cycle and pregnancy both present unique challenges to the maternal 

cardiovascular system that require considerable adaptation. In addition to systemic changes 

in cardiac output and blood volume, pressure, coagulability and composition, the circulation 

of the uterus must respond in varied and specific ways to accommodate placentation and, 

as pregnancy progresses, to provide sufficient placental perfusion to assure normal fetal 

growth and development. Failure of early events such as implantation and spiral artery 

invasion is associated with early pregnancy loss and miscarriage, as well as with subsequent 

development of gestational diseases such as preeclampsia and IUGR. As discussed in this 

review, proper placentation is essential for normal pregnancy outcome, and involves a 

complex interplay of spatial and temporal changes that provide for normal fetal nutrient 

delivery and waste removal. Furthermore, uterine artery and arteriolar responsivity and 

remodeling are paramount to the vascular control of pregnancy and to ensure placental 

and fetal perfusion. Overall, the basic science and mechanistic literature in these areas are 

lacking, leaving the immediate demand for further laboratory, translational, and clinical 

understanding of vascular control of pregnancy.
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LIST OF ABBREVIATIONS

ANG angiotensin

eNOS endothelial nitric oxide synthase

ER estrogen receptors

ET-1 endothelin-1

GFR glomerular filtration rate

IL interleukin

IUGR intrauterine growth restriction

LH luteinizing hormone

MAP mean arterial blood pressure

MMP matrix metallopeptidases
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NE Norepinephrine

NO nitric oxide

PE phenylephrine

PGF placental growth factor

PGI2 prostacyclin

PIF preimplantation factor

RAAS renin-angiotensin-aldosterone-system

sEng soluble endoglin

sFlt1 soluble fms-like tyrosine kinase 1

SVR systemic vascular resistance

t-PA tissue plasminogen activator

TXA2 thromboxane A2

uNK uterine natural killer cells

VEGF vascular endothelial growth factor

VSM Vascular Smooth Muscle
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DIDACTIC SYNOPSIS

Major Teaching Points

• The uterus receives blood from bilateral uterine and ovarian arteries. 

The dual perfusion of the uterus is a unique evolutionary adaptation to 

provide adequate uterine blood flow and its redundant architecture assures 

continuation of blood flow in case of blockage.

• Decidualization is the process by which the endometrium thickens in 

preparation for pregnancy, providing a nutritive matrix for implantation. In 

humans, decidualization occurs with each menstrual cycle.

• Vascular reactivity and tone are related to the local responsiveness or 

functionality of the arteries and arterioles. Under normal, homeostatic 

conditions, arterial and arteriolar vascular smooth muscle (VSM) cells 

remains at a partially constricted state, referred to as tone. Uterine artery 

and arteriolar tone are significantly reduced during pregnancy, allowing for 

uteroplacental hyperemia.

• During early pregnancy, trophoblasts invade through the decidualized 

endometrium and migrate retrograde to blood flow to the distal ends of the 

spiral arterioles. Later in pregnancy, trophoblasts supplant the spiral arteriolar 

endothelial cells, thereby ramifying and widening the arteriolar lumen.

• A combination of expansive vascular structural remodeling and changes in 

blood vessel reactivity regulate uterine vascular resistance to accommodate 

increased uteroplacental blood flow during pregnancy and satisfy the needs of 

the developing fetus.

• Vascular dysfunction in the forms of remodeling or responsivity during 

pregnancy has pathological consequences for the mother and developing 

fetus.
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Figure 1. Uterine gross anatomy and blood supply.
(A) Human Uterus. View of the human female reproductive tract. Human uterine blood 

flow is derived from the ovarian and uterine arteries. These arteries branch to form the 

arcuate artery, allowing for greater tissue perfusion. The arcuate arteries subsequently branch 

to the radial artery, straight/basal arterioles, and spiral/preplacental arterioles. (B) Rodent 
Uterus. The rodent uterus is a dual-horn, bilateral organ allowing for multiple pup litters. 

The vascular architecture between the human and rodent uteri are very similar, making the 

rodent an ideal model to assess reproductive physiology. (C) Rabbit Uterus. The rabbit also 

has a duplex uterus, with two independent uterine horns combining at the cervix to allow for 

multiple fetus. The vasculature is very similar to that of the rodent, with their main artery 

supply via the ovarian artery, with bifurcates to the ovarian and uterine branches, the uterine 

artery supplying the distal uterine horn, and the vaginal artery. Secondary arteries may form 

analogous to human arcuate arteries arcuate and radial arteries provide blood supply to the 

myometrium and preplacental arterioles. (D) Sheep Uterus. The sheep uterus consists of 

two conjoined cavities with a short uterine body. The vasculature is similar to that of humans 

with the main source of blood flow supplied by the uterine artery. The ovary is supplied 

by the ovarian artery. The uterine artery branches, giving rise to anastomose, which act in a 

similar fashion to human arcuate arteries. These branches give rise to coiled secondary radial 

arteries that supply the myometrium and preplacental vessels.
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Figure 2. Vasodilation during the estrous cycle and pregnancy.
Vascular reactivity to endothelium-dependent (a) or -independent (b) modulators of vascular 

smooth muscle relaxation varies during the phases of the rodent estrous cycle (black lines). 

Perturbations to maternal homeostasis through natural (e.g., circadian rhythm disturbances 

or noise pollution) or chemical (e.g., air or water pollution) exposures may make these 

variations more pronounced (red lines). Reprinted with permission (208).
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Figure 3. Decidualization.
Representation of decidualization of the human endometrium. Morphological and functional 

differentiation of endometrial stromal cells (ESCs), especially during the implantation 

window, is required for successful pregnancy outcome. Reprinted with permission (151).
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Figure 4. Trophoblastic Invasion.
Trophoblast invasion and spiral artery remodeling in healthy pregnancy. Reprinted with 

permission (203).
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Figure 5. Spiral Artery Remodeling.
Spiral artery remodeling continues throughout pregnancy, into the second and third 

trimesters to provide increased blood flow to the growing fetus. Pregnancies that suffer 

from ischemic placental disease may demonstrate shallow trophoblast invasion and defective 

vascular remodeling; thus, leading to reduced maternal blood flow and compromised fetal 

growth. Reprinted with permission (178).
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Figure 6. Circulation of the Intervillous Space.
Maternal blood enters the intervillous space from uterine spiral arteries and flows around 

terminal villi. After the exchange of oxygen and nutrients, the umbilical vein carries 

oxygenated and nutrient-rich fetal blood to the fetal circulation. Reprinted with permission 

(173).
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Figure 7. Uteroplacental Blood Flow.
Schematic depicting the increase in uterine blood flow through gestation in response to fetal 

growth. Reprinted with permission (81).
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Figure 8. Uteroplacental and Fetoplacental Circulation.
The uterine, radial, and spiral arteries/arterioles perfuse the placental with nutrient-rich 

blood. The fetoplacental circulation includes the umbilical cord and the blood vessels within 

the placenta that carry fetal blood. Umbilical arteries carry deoxygenated and nutrient­

depleted fetal blood from the fetus to the villous core fetal vessels where the exchange of 

oxygen and nutrients takes place. The umbilical cord returns oxygenated and nutrient-rich 

fetal blood to the fetal circulation. Adapted with permission (42, 43).
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Figure 9. Uteroplacental Growth.
The uterine vasculature and muscle remodel significantly to sustain a successful pregnancy. 

This photograph showing age-matched uterine horn from pregnant (top) and non-pregnant 

(bottom) rats to depict vascular growth during pregnancy. Reprinted with permission (130).
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Figure 10. Uterine Vascular Hypertrophic Remodeling.
Vascular remodeling may be normal or pathologic. Hypertrophic vascular remodeling 

describes an increase in luminal wall thickness. This remodeling may be inward (i.e., 

narrowing the vascular lumen), eutrophic (i.e., maintaining luminal circumference), or 

outward (i.e., expanding the vascular lumen). The remodeling in the uterine circulation 

during gestation may be described as outward hypertrophic, thereby increasing both wall 

area and luminal cross-section.
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Figure 11. Uterine Vascular Reactivity.
Local vascular responses are altered during pregnancy, shifting toward vascular smooth 

muscle (VSM) relaxation and subsequent vasodilation. This shift is depicted by: (A) 

reduced responsiveness to phenylephrine, a vasoconstrictor, (B) heightened response to 

sodium-nitroprusside, an endothelium-independent vasodilator in arcuate arteries from 

pregnant rats compared to nonpregnant, and (C) no change in responsivity to acetylcholine, 

an endothelium-dependent vasodilator between arteries excised from pregnant and non­

pregnant rats. Reprinted with permission (63).
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