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MR-guided focused ultrasound liquid biopsy enriches 
circulating biomarkers in patients with brain tumors
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Abstract
Background.  Liquid biopsy is promising for early detection, monitoring of response, and recurrence of cancer. 
The blood-brain barrier (BBB) limits the shedding of biomarker, such as cell-free DNA (cfDNA), into the blood from 
brain tumors, and their detection by conventional assays. Transcranial MR-guided focused ultrasound (MRgFUS) 
can safely and transiently open the BBB, providing an opportunity for less-invasive access to brain pathology. We 
hypothesized that MRgFUS can enrich the signal of circulating brain-derived biomarkers to aid in liquid biopsy.
Methods.  Nine patients were treated in a prospective single-arm, open-label trial to investigate serial MRgFUS and 
adjuvant temozolomide combination in patients with glioblastoma (NCT03616860). Blood samples were collected 
as an exploratory measure within the hours before and after sonication, with control samples from non-brain 
tumor patients undergoing BBB opening (BBBO) alone (NCT03739905).
Results.  Brain regions averaging 7.8 ± 6.0 cm3 (range 0.8-23.1 cm3) were successfully treated within 111 ± 39 min-
utes without any serious adverse events. We found MRgFUS acutely enhanced plasma cfDNA (2.6 ± 1.2-fold, P < .01, 
Wilcoxon signed-rank test), neuron-derived extracellular vesicles (3.2 ± 1.9-fold, P < .01), and brain-specific protein 
S100b (1.4 ± 0.2-fold, P < .01). Further comparison of the cfDNA methylation profiles suggests a signature that is 
disease- and post-BBBO-specific, in keeping with our hypothesis. We also found cfDNA-mutant copies of isocitrate 
dehydrogenase 1 (IDH1) increased, although this was in only one patient known to harbor the tumor mutation.
Conclusions. This first-in-human proof-of-concept study shows MRgFUS enriches the signal of circulating brain-
derived biomarkers, demonstrating the potential of the technology to support liquid biopsy for the brain.

Key Points

• � MRgFUS can noninvasively open the BBB, which limits therapeutic access and the liquid 
biopsy of brain pathologies.

• � In patients with GBM, we showed that MRgFUS enhances circulating brain-derived 
biomarkers, supporting the feasibility of MRgFUS to aid liquid biopsy.
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Liquid biopsy involves the detection and analysis of 
pathology-derived material in blood without the need for 
invasive interventions such as open surgery. In cancer, it 
has the potential to provide a unifying platform for diag-
nosis, inform treatment selection by detecting resistant or 
sensitive tumor variants, and  support disease response 
monitoring.1–4 This approach has made tremendous strides 
in systemic cancers, with the development of several clin-
ically approved assays for circulating tumor DNA (ctDNA) 
and circulating tumor cells, among others. Its use for cen-
tral nervous system (CNS) tumors, however, is limited by 
the blood-brain barrier (BBB), which prevents biomarker 
shedding.5 Even with the altered blood-tumor barrier, there 
is substantial heterogeneity in permeability that would pre-
vent representation of the tumor in circulation.6 Therefore, 
the sensitive detection of brain-derived biomarkers re-
flecting the pathology, such as rare ctDNA amongst the cir-
culating cell-free DNA (cfDNA), is a major goal of the field to 
achieve applications in the clinic.

Low-intensity MR-guided focused ultrasound (MRgFUS) 
is an emerging technology that permits noninvasive ac-
cess to brain pathology by inducing transient BBB opening 
(BBBO).7 MRI guidance imparts spatially precise and flex-
ible selection of sonicated brain regions. Early phase 
clinical trials have demonstrated safety and feasibility 
in patients’ neuro-oncology and neurodegenerative dis-
orders.8–12 So far, the technology has been mainly utilized 
for drug delivery by increasing the BBB permeability to 
complex biological therapeutics such as antibodies and 
immune cells.13,14 However, animal experiments show 
that the same mechanical BBBO can allow the release of 
intraparenchymal substances.15,16 Here, we report a first-
in-human study demonstrating that noninvasive, transient 
opening of the BBB using MRgFUS technology can enrich 
circulating brain-derived biomarkers with potential appli-
cations in liquid biopsy.

Materials and Methods

Study Design

The prospective single-arm, open-label trial was designed 
to investigate the safety and feasibility of serial MRgFUS 
and adjuvant temozolomide combination in patients with 
WHO grade IV glioblastoma (GBM). Details of the inclusion 

and exclusion criteria can be found in Supplementary 
Table S1. Blood samples were collected from all patients 
for exploratory analysis. Non-brain tumor control sam-
ples were provided by the initial patients enrolled in the 
MRgFUS BBBO for Alzheimer’s disease (AD) study. Both 
trials were conducted with the approval of Sunnybrook 
Health Sciences Centre Research Ethics Board, Health 
Canada, and registered with clinicaltrials.gov (GBM—
NCT03616860, AD—NCT03739905). All participants gave 
written informed consent for study activities.

Cancer patients underwent the procedure on the 
first day of every cycle, approximately 30 minutes after 
ingesting oral temozolomide prescribed by the study 
neuro-oncologist (Figure 1A). Procedures were performed 
with the ExAblate Neuro hemispheric device (InSightec, 
Israel) coupled with GE 3-Tesla MRI. The device consists of 
a hemispherical dome with 1024 individual 220-kHz trans-
ducer elements that enable precise transcranial MRgFUS 
delivery. The procedure has been described previously.10,11 
Specifically, the treatment volumes were prescribed by 
the neurosurgeon by outlining any non-enhancing tumor 
and a 1-cm peritumoral non-enhancing margin on 4-mm 
interval axial MRIs (Figure 1B,C). Each contour was then 
filled in by the device software with sonication points 
separated by 2.5  mm, with approximately 7  mm out-of-
plane depth (Figure 1C). Contours were kept to less than 
20 spots. Ultrasound delivery was performed contour-by-
contour in a serial fashion and was automated using real-
time acoustic emission. In the case of control patients with 
AD, widespread regions including the hippocampus and 
parietal lobe were treated by targeting in a similar fashion. 
Upon completion of the procedure, patients were allowed 
to leave once meeting routine discharge criteria. Standard-
of-care procedures (eg, MRI) and RANO assessments con-
tinued as usual. The procedures ended for a patient (ie, 
study exit) when adjuvant temozolomide was no longer in-
dicated (eg, progressive disease or drug toxicity).

T1-Weighted MRI Analysis

BBBO was assessed by contrast-enhanced T1-weighted 
MRIs, which have been validated against histological 
markers of BBB integrity.17,18 Intensity difference maps 
were calculated from same and next day scans by brain ex-
traction, rigid-body co-registration, masking to the region 

Importance of the Study

The BBB limits therapeutic access to the brain as well 
as the detection of brain pathology peripherally through 
liquid biopsy. Some rodent studies have shown that FUS-
induced opening of the BBB releases intraparenchymal 
substances, such as brain-specific proteins and 
mRNA. We report first-in-human proof-of-concept data 
showing MRgFUS opening of the BBB in glioblastoma 

patients enhanced circulating brain-derived proteins, 
neuron-derived extracellular vesicles, and cell-free 
DNA. Further differential analysis suggests the cell-free 
DNA is brain-derived and disease-specific, providing 
data for the feasibility of a focused ultrasound frame-
work to liquid biopsy in neuro-oncology patients.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
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liquid biopsy. Some rodent studies have shown that FUS-
induced opening of the BBB releases intraparenchymal 
substances, such as brain-specific proteins and 
mRNA. We report first-in-human proof-of-concept data 
showing MRgFUS opening of the BBB in glioblastoma 
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Fig. 1  Opening of the blood-brain barrier in large brain regions is achieved with transcranial MR-guided focused ultrasound. (A) Schematic 
diagram of MRgFUS device and study design with BBBO procedures overlapping adjuvant chemotherapy regimen in patients with glioblastoma 
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of interest, rescaling to 0 and 1, and subtraction (FMRIB 
Software Library v6.0, Advanced Normalization Tools v2.1).

Blood Collection and S100b Measurement

For all patients, blood was collected immediately prior to, 
and following, each procedure in EDTA-coated tubes (BD, 
366643). Within 30  min of collection, plasma tubes were 
centrifuged at 800 g for 10 min at 4°C, then 12 000 g for 
10 min at room temperature. Clarified supernatant was ali-
quoted into DNA LoBind tubes (Eppendorf, 22431021) for 
storage at −80°C. Sample for any analysis will have under-
gone at the most one freeze-thaw cycle. S100b protein 
levels were measured via enzyme-linked immunosorbent 
assay kit (Sigma-Aldrich, EZHS100B-33K) as per the 
manufacturer’s instructions.

cfDNA Extraction

We used MagMAX Cell-Free DNA Isolation kit (Applied 
Biosystems, A29319) to extract cfDNA. DNA concentration 
was measured by the Qubit 3.0 Fluorometer with Qubit 
dsDNA HS Assay Kit (Invitrogen, Q32854) and fragmenta-
tion pattern assessed using the Agilent 2100 Bioanalyzer 
with Agilent High Sensitive DNA Kit, following the 
manufacturer’s instructions.

Methylation Profile Analysis

100-200  ng of extracted cfDNA, which was necessarily 
pooled for pre-BBBO samples, were bisulfite-converted 
using EZ DNA Methylation kit (Zymo Research, D5002) fol-
lowing the manufacturer’s protocol. Effective conversion 
was confirmed by qPCR amplification of converted and 
unconverted β-actin (Supplementary Table S2). Bisulfite-
converted DNA was evaluated for methylation profiling 
using Illumina MethylationEPIC 850k array (Illumina, USA). 
Preprocessing with background subtraction adjustment 
was performed using GenomeStudio (Illumina, USA). 
Raw data files were processed using the minfi package 
(Bioconductor) in R and normalized. Probes that overlap 
with known single nucleotide polymorphisms, and probes 
that map to X and Y chromosomes were filtered out. 
Methylation values were exported as β values. For unsu-
pervised clustering, we performed a principal component 
analysis on the top 100  000 most variably methylated 
probes based on mean absolute deviation. Furthermore, 
differentially methylated probes between pre- and post-
BBBO samples were identified by an absolute difference of 

mean β value >0.1 and false discovery rate (FDR) corrected 
P < .05. Functional enrichment analysis was conducted 
using g:Profiler tool.

Plasma Extracellular Vesicles (EVs)

Neural cell adhesion molecule (NCAM, CD56) and L1 cell 
adhesion molecule (L1CAM, CD171) double positive EVs 
were measured by mixing and incubating 20 µL of plasma 
with Alexa Fluor 647 mouse anti-human CD56 (2  µL, BD 
Biosciences #557711) and PE mouse anti-human CD171 
(2  µL, BD Biosciences #564193) at room temperature. 
Isotype controls were prepared similarly with Alexa Fluor 
647 mouse IgG1  κ isotype control (2  µL, BD Biosciences 
# 57714) and PE Mouse IgG2a κ isotype control (2 µL, BD 
Biosciences #553457). A plasma sample from one cycle in 
every patient (Supplementary Table S3) was diluted by 1:30 
in sterile medical-grade water and measured in duplicates 
using a nanoscale flow cytometer (Apogee Flow Systems 
Inc., A60Micro-Plus) calibrated with Apogee calibration 
bead mix. Data analysis was performed using Apogee 
Histogram Software v2020.

Droplet Digital PCR (ddPCR)

Frequency of isocitrate dehydrogenase 1 (IDH1) R132H 
mutations in plasma-derived cfDNA was assessed using 
a Bio-Rad QX200 ddPCR system. The ddPCR reaction was 
performed in a 20 µL volume containing 10 ng of isolated 
plasma cfDNA or IDH1 R132H immunopositive tumor DNA 
(positive control), 10 µL of ddPCR Supermix for Probes (No 
dUTP; Bio-Rad, cat. #186-3023) and 1  µL of Human FAM 
IDH1  p.R132H c.395G>A ddPCR Mutation Detection Assay 
(Bio-Rad, Assay ID dHsaMDV2010055). After mixing by 
vortexing and a spin down, droplets were generated using 
a QX200 Droplet Generator. Droplets were pipetted into a 
96-well PCR plate, which was sealed and cfDNA samples 
amplified in the C1000 Touch Thermal Cycler (Bio-Rad) using 
the manufacturer’s recommended protocol. The fluores-
cent signal in each droplet was read with a QX200 Droplet 
Reader. Mutant and wild-type droplets were quantified 
using QuantaSoft analysis software ver.1.7.4.0917 (Bio-Rad).

Statistical Analysis

Descriptive statistics were used to summarize results, but 
wherever possible all data points were presented. Pairwise 
data were compared using Wilcoxon signed-rank test, with 
an alpha of 0.05.

after surgical resection and concurrent chemoradiation. Blood samples are collected immediately before and after sonications on the same day 
of the procedure. (B) Representative images of the lesions (yellow circles) on baseline MRI for each patient. (C) Ultrasound can be targeted spe-
cifically to an operator-defined contour. The green polygon represents one of many target contours (others not shown). The color map indicates 
the cavitation dose detected by device upon ultrasound delivery. In (D), the top panel shows contrast extravasation in the areas of increased BBB 
permeability after MRgFUS for P5 (yellow arrow). The bottom panel shows partial restoration of the BBB integrity approximately 24 hours later, in 
comparison to the top panel and baseline image of the tumor in (B). (E) Intensity difference maps further show increased BBB permeability in P5 
within large regions spatially distributed in the tumor and tumor margins. Heterogeneous changes in contrast extravasation are partially due to 
the underlying tumor. Abbreviations: BBB, blood-brain barrier; BBBO, BBB opening; MRgFUS, MR-guided focused ultrasound.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data


1793Meng et al. MRgFUS liquid biopsy for brain tumors
N

eu
ro-

O
n

colog
y

mean β value >0.1 and false discovery rate (FDR) corrected 
P < .05. Functional enrichment analysis was conducted 
using g:Profiler tool.

Plasma Extracellular Vesicles (EVs)

Neural cell adhesion molecule (NCAM, CD56) and L1 cell 
adhesion molecule (L1CAM, CD171) double positive EVs 
were measured by mixing and incubating 20 µL of plasma 
with Alexa Fluor 647 mouse anti-human CD56 (2  µL, BD 
Biosciences #557711) and PE mouse anti-human CD171 
(2  µL, BD Biosciences #564193) at room temperature. 
Isotype controls were prepared similarly with Alexa Fluor 
647 mouse IgG1  κ isotype control (2  µL, BD Biosciences 
# 57714) and PE Mouse IgG2a κ isotype control (2 µL, BD 
Biosciences #553457). A plasma sample from one cycle in 
every patient (Supplementary Table S3) was diluted by 1:30 
in sterile medical-grade water and measured in duplicates 
using a nanoscale flow cytometer (Apogee Flow Systems 
Inc., A60Micro-Plus) calibrated with Apogee calibration 
bead mix. Data analysis was performed using Apogee 
Histogram Software v2020.

Droplet Digital PCR (ddPCR)

Frequency of isocitrate dehydrogenase 1 (IDH1) R132H 
mutations in plasma-derived cfDNA was assessed using 
a Bio-Rad QX200 ddPCR system. The ddPCR reaction was 
performed in a 20 µL volume containing 10 ng of isolated 
plasma cfDNA or IDH1 R132H immunopositive tumor DNA 
(positive control), 10 µL of ddPCR Supermix for Probes (No 
dUTP; Bio-Rad, cat. #186-3023) and 1  µL of Human FAM 
IDH1  p.R132H c.395G>A ddPCR Mutation Detection Assay 
(Bio-Rad, Assay ID dHsaMDV2010055). After mixing by 
vortexing and a spin down, droplets were generated using 
a QX200 Droplet Generator. Droplets were pipetted into a 
96-well PCR plate, which was sealed and cfDNA samples 
amplified in the C1000 Touch Thermal Cycler (Bio-Rad) using 
the manufacturer’s recommended protocol. The fluores-
cent signal in each droplet was read with a QX200 Droplet 
Reader. Mutant and wild-type droplets were quantified 
using QuantaSoft analysis software ver.1.7.4.0917 (Bio-Rad).

Statistical Analysis

Descriptive statistics were used to summarize results, but 
wherever possible all data points were presented. Pairwise 
data were compared using Wilcoxon signed-rank test, with 
an alpha of 0.05.

Results

Large Volume BBBO of the Tumor and 
Peritumoral Regions

Nine patients with GBM were enrolled in a single-arm trial 
investigating serial MRgFUS BBBO to enhance the delivery 
of adjuvant temozolomide therapy. All patients had under-
gone surgical resection, some gross total resection, and con-
current chemoradiation. The status of molecular markers was 
collected from clinical pathology at the time of surgery (Table 
1). Notably, IDH1-R132H status by immunohistochemistry 
was wild type in all except patient 6 (P6).

The MRgFUS procedures were performed using a hemi-
spheric array device (ExAblate, InSightec), overlapping the 
first day of each 5-day temozolomide course (Figure 1A,B). 
Each regimen was prescribed monthly. In total, 38 proced-
ures were performed, with average of 7.8 ± 6.0 cm3 (range 
0.8-23.1  cm3) of tissue treated within sonication time of 
111 ± 39 minutes. In tailoring the target with MRI guidance, 
we prioritized the sonication of peri-tumor or peri-cavity re-
gions as well as regions with fluid attenuated inversion re-
covery (FLAIR) hyperintensities to improve temozolomide 
penetration to presumably abnormal tissue (Figure 1C). 
Ultrasound delivery was automated based on real-time 
monitoring of the acoustic emissions.

Immediately following the procedure, T1-weighted MRI visu-
alized additional areas of gadobutrol (604 Da) enhancement, 
indicative of successful BBBO. Decreases in the enhancement 
the next day in all cases demonstrate partial or complete res-
toration of the BBB permeability (Figure 1D). Maps of intensity 
differences show the spatial distribution of BBBO to envelope 
the tumor, which was feasible even for large, deep-seated le-
sions (Figure 1E). The MRgFUS treatments were overall well 
tolerated in all patients without any serious adverse events in 
keeping with previous reports (Supplementary Table S4).8,10

Transient BBBO Increases the Concentration of 
Liquid Biopsy Analytes

Blood samples were collected within 3 hours prior to 
the first sonication—during patient preparation—and 

on average 34 minutes after the last sonication. Plasma 
cfDNA concentration was acutely elevated after BBBO 
by 2.6  ± 1.2-fold (from 7.0  ± 3.3  ng/mL to 16.3  ± 5.2  ng/
mL of plasma, P < .01, Figure 2A). Values from individual 
cycles are listed in Supplementary Table S5. Up to a 7-fold 
increase in yield was measured. The cfDNA enhancement 
was consistently observed longitudinally through the adju-
vant temozolomide cycles (Figure 2B). To assess the quality 
and fragmentation pattern of the cfDNA, we performed 
DNA electrophoresis on one paired samples from each 
patient, and found the 0-280 bp fragments increased from 
4.9 ± 3.9 to 17.0 ± 14.9 ng/mL of plasma (P < .01) (Figure 2C, 
Supplementary Figure S1). These mononucleosome-sized 
cfDNA fragments are released during apoptosis and are 
relatively protected from rapid degradation in circulation.19

MRgFUS induced cfDNA increase appeared to share a 
positive correlation with treated volume (Spearman’s cor-
relation 0.33, P  =  .04, Figure 2D), and a weaker negative 
correlation with time elapsed from sonication (Spearman’s 
correlation 0.22, P  =  .20, Supplementary Figure S2). The 
level of cfDNA enhancement in two patients with subtotal 
resection was not different from the others (Supplementary 
Figure S3A), but there was a trend of greater enhancement 
with tumor progression (Supplementary Figure S3B).

We evaluated the possibility that a transient BBBO increases 
brain-derived biomarkers, specifically neuron-derived extra-
cellular vesicles (ndEV) and S100 calcium-binding protein B 
(S100b). The latter is primarily expressed by astrocytes. The 
former is robustly and specifically marked by NCAM and 
L1CAM surface proteins, and provides a diagnostic platform 
that can dynamically reflect and track neuropathological 
changes in vivo.20 From one randomly selected cycle from 
each patient, we observed a 3.2  ± 1.9-fold (P < .01, Figure 
2E) increase in double-positive NCAM and L1CAM particles 
using nanoscale flow cytometry (Supplementary Figure S4), 
and a 1.4 ± 0.2-fold (P < .01, Figure 2F) in S100b.

Post-BBBO cfDNA Have Distinctive Disease-
Specific Signature

DNA methylation profiling is a powerful tool for classifica-
tion of CNS tumors and their subtypes.21 Unsupervised 
clustering of methylation microarray data of pre- and 

  
Table 1  Patient Demographics

Patient Age Gender Eloquent Location Extent of Resection MGMT Promoter IDH-1 R132H

P1 49 F Yes GTR NA Wild type

P2 52 M No GTR Methylated Wild type

P3 56 F No GTR Unmethylated Wild type

P4 35 M Yes STR NA Wild type

P5 56 F Yes STR Unmethylated Wild type

P6 42 F No GTR NA Mutation

P7 40 F Yes GTR Unmethylated Wild type

P8 36 F Yes GTR Unmethylated Wild type

P9 68 M No GTR Methylated Wild type

Abbreviations: GTR, gross total resection; IDH, isocitrate dehydrogenase; MGMT, O[6]-methylguanine-DNA methyltransferase; NA, not available; 
STR, subtotal resection.

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noab057#supplementary-data
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post-BBBO cfDNA by principal component analysis shows 
a clear separation of the two groups by principal compo-
nent 1, explaining for 25% of the variability (Figure 3A). It 

was necessary to pool pre-BBBO samples collected from 
multiple cycles due to low cfDNA yield, while it was feasible 
to perform post-BBBO analysis on single sessions. Direct 
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comparison of the β values found 95% (330 of 346) of the 
differentially methylated probes in the post-BBBO samples 
were hypomethylated compared to pre-BBBO, suggestive 
of a cancer signature (Supplementary Figure S5).

We performed a gene set enrichment analysis on the 
group of hypomethylated probes using g:Profiler. Based 
on protein expression data from the Human Protein 
Atlas, the set was significantly enriched for glia and 

neuron as well as immunologic cells (Figure 3B). Of bi-
ological processes, enriched terms consisted of immune 
activation, vesicle-mediated transport, regulation of cell 
communication, and DNA-binding transcription factor 
activity.

To determine whether the methylation signature of post-
BBBO samples was unique to GBM patients, we incorpo-
rated control plasma samples provided by two non-brain 
tumor patients with a history of Alzheimer’s undergoing 
MRgFUS BBBO alone. Principal component analysis 
showed a clustering suggestive of post-BBBO samples 
having differentiated signatures amongst patients with dif-
ferent neurological disorders (Figure 3C).

IDH1 mutational status is one of the most important 
molecular classification and prognostication factors for 
high-grade gliomas.22 Only one GBM tumor out of nine 
was immunopositive for the R132H mutation. Targeted 
analysis of two different cycles with ddPCR, a highly sensi-
tive technique, found 3.5 and 5 IDH1-R132H-mutant copies 
per 10-ng cfDNA, which is considered a positive readout.23 
These measurements represent a 2- to 3-fold increase 
from 1.6 mutant copies measured in the same input pre-
BBBO cfDNA. In comparison, post-BBO samples from two 
patients with IDH1 wild-type tumors had 1.7 ± 0.1 mutant 
copies per 10 ng cfDNA.

Discussion

The BBB physically limits the number of tumor analytes 
in the circulation. Successful detection of rare events is 
highly dependent on sufficient blood sampling and shed-
ding of biomarkers from all areas of the tumor. We show 
for the first time in human patients that transcranial low-
frequency MRgFUS can enrich the signal of circulating 
brain-derived biomarkers, specifically proteins, cfDNA, 
and EVs, to help overcome this limitation. Using methods 
that are increasingly accessible in clinical oncology, we 
found a significant increase in cfDNA yield post-MRgFUS 
BBBO that bear a disease-specific methylation signa-
ture unique to brain tumor patients after BBBO. The level 
of cfDNA enhancement might also correlate with BBBO 
volume and tumor progression. We also saw an increased 
signal in clinically actionable plasma IDH1-R132H-mutant 
copies, although this was in a single patient harboring the 
IDH1-R132H tumor mutation. Finally, we demonstrated 
the practical feasibility of repeated large volume BBBO in 
patients over the longitudinal course of adjuvant chemo-
therapy, further supporting the flexibility of the technology 
when combined with liquid biopsy for disease monitoring.

While promising, this study has several limitations. 
Mainly, our findings were derived retrospectively 
from a small group of GBM patients, which limits sta-
tistical analysis and validation. In particular, the tar-
geted detection of IDH1-R132H ctDNA fell on the one 
patient with this specific mutation. Given the broad 
array of analytes explored, later experiments such as 
the ddPCR were limited by the biological sample re-
maining available. Furthermore, the low numbers and 
inconsistent availability of tissue samples restricted 
a coordinated effort at molecular characterization. 
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Indeed, the primary objective of this phase I  trial was 
to investigate the safety of MRgFUS BBBO after sur-
gical resection and chemoradiation. As such, the sonic-
ation tissue likely contained a mixture of inflammatory, 
tumor, and necrotic cells, which might be deduced by 
the functional enrichment of analysis of the differen-
tially methylated promoters. A  general sonication ef-
fect also cannot be entirely excluded. Therefore, the 
effect of BBBO on circulating tumor cells and mutant 
DNA copies, as well as the rate of false-positive or 
-negative in FUS aided liquid biopsy results when com-
pared against gold standard neuropathology exam-
inations will be interrogated in future studies with 
control or validation groups. Also, fundamental issues, 
such as the optimal interval for blood collection, which 
might depend on the temporal dynamics of the BBBO 
and analyte of interest, are important areas for future 
investigation. More specifically, serial blood sampling 
post sonications, at both minute and hour timeframes, 
will help better characterize the kinetics of biomarker 
changes post-BBBO. To minimize the burden on pa-
tients, we did not perform serial phlebotomies in this 
pilot group.

Nevertheless, our findings represent a novel, first-in-
human data that is hypothesis-generating for a valuable 
application of MRgFUS in medicine. They set the stage for 
investigations in MRgFUS-based liquid biopsy of brain tu-
mors and other brain pathologies as the sole objective or 
simultaneously with drug delivery for optimized, personal-
ized medicine. For instance, MRgFUS could combine with 
standard-of-care adjuvant temozolomide to enhance de-
livery, and at the same time help assay changes in tumor 
microenvironment that might predict recurrence or a need 
for alternative therapy prior to neuroimaging (Figure 4). 
This approach could also be helpful in differentiating ra-
diation necrosis from tumor recurrence or diagnosing le-
sions where surgical biopsy is risky or surgical debulking 
is unnecessary. We found here that MRgFUS can quickly 
and precisely achieve BBBO repeatedly in large tumor 
and peritumoral volumes. This capability could facilitate 
a more selective or comprehensive representation of the 
tumor in plasma. Finally, while an advantage of signal 
enrichment with MRgFUS is to leverage widely available 
commercialized methods, it could also be combined with 
more complex techniques such as BEAMing (beads, emul-
sions, amplification, and magnetics) to improve further 
sensitivity.

Supplementary Material

Supplementary material is available at 
Neuro-Oncology online.
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