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Abstract

Molecular pathological epidemiology research provides information about pathogenic

mechanisms. A common study goal is to evaluate whether the effects of risk factors on

disease incidence vary between different disease subtypes. A popular approach to carry-

ing out this type of research is to implement a multinomial regression in which each of

the non-zero values corresponds to a bona fide disease subtype. Then, heterogeneity in

the exposure effects across subtypes is examined by comparing the coefficients of the

exposure between the different subtypes. In this paper, we explain why this common

method potentially cannot recover causal effects, even when all confounders are mea-

sured, due to a particular type of selection bias. This bias can be explained by recogniz-

ing that the multinomial regression is equivalent to a series of logistic regressions; each

compares cases of a certain subtype to the controls. We further explain how this bias

arises using directed acyclic graphs and we demonstrate the potential magnitude of the

bias by analysis of a hypothetical data set and by a simulation study.
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Introduction

Modern disease etiology research seeks to identify

and characterize the pathogenic effects of risk factors

that may vary according to pathways (processes) to

specific disease subtypes.1–8 Molecular pathological

epidemiology (MPE) has been developed as an inter-

disciplinary science that integrates molecular patho-

logical methods into epidemiologic and statistical
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methods to gain more mechanistic insights into dis-

ease etiologies.1–8

Using the MPE approach, evidence for the differential

effects of exposures on various tumour subtypes has been

shown. For example, high-level microsatellite instability

(MSI) is one well-established feature observed in �15% of

colorectal cancer (CRC) cases.9 Existing results indicate

that the association between cigarette smoking and CRC is

stronger for the MSI-high subtype than for the non-MSI-

high subtype.10,11

Heterogeneity in risk factor effects on categorical

disease outcomes is usually studied using a multinomial

regression approach.4,12,13 Recently, there has been some

debate on whether the multinomial regression model is

suitable for studying heterogeneity.14,15 While important,

a key issue is missing from this discussion. Here, we focus

on whether the results of the standard analysis can yield

causal interpretation and demonstrate that a specific form

of selection bias is likely to arise when conducting MPE-

type research.

The multinomial regression approach for
disease heterogeneity

Let i index individuals, Yi ¼ 0 denote a disease-free partici-

pant, Yi ¼ 1 a non-MSI-high subtype CRC case and Yi ¼ 2

an MSI-high subtype CRC case. Let Ai ¼ 1 denote an

‘ever-smoker’ and Ai ¼ 0 a ‘never-smoker’. Adjustment for

confounders X i is typically carried out4,16 by fitting the

multinomial regression model

log
Pr Yi ¼ kjAi;X ið Þ
Pr Yi ¼ 0jAi;X ið Þ

� �
¼ a
�

k þ b
�

kAi þ c
�0

kX i (1)

for k ¼ 1;2 and Pr Yi ¼ 0jAi;X ið Þ ¼ 1� Pr Yi ¼ 1jAi;ð
XiÞ � Pr Yi ¼ 2jAi;X ið Þ.

The association parameter expðb
�

kÞ represents the odds

ratio (OR) between the exposure and the subtype k out-

come vs being disease-free Pr Yi¼kjAi¼1;X ið Þ
Pr Yi¼0jAi¼1;X ið Þ

Pr Yi¼0jAi¼0;X ið Þ
Pr Yi¼kjAi¼0;X ið Þ :

4 We

will refer to this parameter as the relative risk (RR) when

appropriate, as in rare-disease scenarios. This parameter is

sometimes implicitly interpreted as the causal effect of the

exposure on the subtype k outcome. Heterogeneity is stud-

ied by comparing exp (b
�

1Þ to expðb
�

2Þ. An observed discrep-

ancy provides information on whether a certain exposure

has a differential effect on the development of cancer

subtypes.

The multinomial regression Model (1) is equivalent to

two separate logistic-regression models; each compares

a different disease subtype to the healthy participants.

That is, the parameters a
�

k;b
�

k and c
�

k are identical to the

parameters of a logistic regression model for subtype-

specific cases when participants with other disease sub-

types are excluded.

Formulation in causal language

To examine the causal interpretation of parameters esti-

mated from the models above, we first formulate the rele-

vant potential outcomes.17 Let Y 1ð Þ 0ð Þ indicate a non-MSI-

high CRC under the value A ¼ 0 (never smoked) and let

Y 1ð Þ 1ð Þ be the indicator of having a non-MSI-high case un-

der the value A ¼ 1 (ever smoked). Similarly, let Y 2ð Þ að Þ be

the indicator of having an MSI-high CRC under A ¼ a. To

clarify, for controls Y 1ð Þ að Þ ¼ Y 2ð Þ að Þ ¼ 0. Furthermore,

each diseased individual may experience one specific sub-

type only, i.e. Y 1ð Þ að Þ ¼ 1 implies Y 2ð Þ að Þ ¼ 0 and, vice

versa, Y 2ð Þ að Þ ¼ 1 implies Y 1ð Þ að Þ ¼ 0:

Because the subtypes are mutually exclusive, the forego-

ing analysis of etiological heterogeneity across the subtypes

is inherently a competing-risks setup.18–22 As in many stud-

ies involving competing risks, two important issues arise.

First, the study focuses on the effects of an exposure on

both competing events (i.e. both subtypes) and the differ-

ence between these two effects. Second, since the study fo-

cuses on the same disease, partitioned into subtypes, there

may be unmeasured person-specific covariates U that are

strongly associated with the risk for both subtypes (e.g. ge-

netic factors). The causal directed acyclic graph (Figure 1)

Key Messages

• The multinomial regression approach has been the main statistical tool for studying etiologic heterogeneity with

categorical outcomes representing disease subtypes.

• Causal interpretation of the results of the multinomial regression approach has been missing from the discussion.

• Selection bias is likely to arise in etiologic heterogeneity studies due to unmeasured variables associated with all

disease subtypes.

• Using potential outcomes, directed acyclic graphs, a hypothetical data set and simulations, we demonstrate how this

bias arises and study its magnitude.
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illustrates this scenario, with smoking having no effect on

a non-MSI-high CRC, but it does increase the risk for an

MSI-high CRC.

With potential outcomes clearly defined, we can investi-

gate what causal effects, if any, can be estimated. The first

notion is that a contrast of the subtype-specific risks

Pr Y kð Þ 1ð Þ ¼ 1
� �

with Pr Y kð Þ 0ð Þ ¼ 1
� �

, known as the total

effect,21 may not provide the desirable scientific knowl-

edge. It might be that Pr Y 1ð Þ 1ð Þ ¼ 1
� �

6¼ Pr Y 1ð Þ 0ð Þ ¼ 1
� �

simply because A affects subtype 2. Therefore, it has been

recommended to consider the total effect of all events to

identify such potential cases. In MPE studies, researchers

have been using multinomial regression Model (1), essen-

tially comparing one subtype of patients with controls

while excluding cases with different subtypes.4 However,

expðb
�

kÞ can be very misleading. Consider the following

multinomial regression model, which is consistent with

Figure 1:

log
Pr Yi ¼ kjAi;X i; Uið Þ
Pr Yi ¼ 0jAi;Xi; Uið Þ

� �
¼ ak þ bkAi þ c0kX i þ hkUi;

(2)

for k ¼ 1;2, and Pr Yi ¼ 0jAi;X i;Uið Þ ¼ 1� Pr Yi ¼ 1jAi;ð
X i;UiÞ � Pr Yi ¼ 2jAi;X i;Uið Þ. In Figure 1, the absence of

an arrow from A to Y 1ð Þ implies that b1 ¼ 0. If e.g. U is a

genetic risk index increasing the risks of both subtypes,

then h1 > 0 and h2 > 0.

There are three potential reasons why expðb
�

kÞ, the OR

in Model (1), which ignores U, the common risk factor for

both subtypes, is not generally equal to expðbkÞ, the OR in

Model (2), where U is adjusted for. The first reason is the

non-collapsibility of the OR.23 The second reason is that,

if the true model is the full model [Equation (2)], then the

reduced model [Equation (1)] is mis-specified, as the logit

link function is not expected to hold for the reduced model,

especially if the effect of A is strong.24 The third reason is

the selection bias depicted in Figure 1 and explained

below.

Since each cancer subtype is a rare disease, the first two

problems are relatively negligible. However, even for rare

diseases, expðb
�

1Þ, the OR representing the exposure–sub-

type 1 relationship in Model (1), is not expected to be

equal to expðb1Þ in Model (2). In each of these logistic

regression models, only the subset of the participants free

of the other disease subtypes is included. For example,

when studying the effect of smoking ðAÞ on non-MSI- high

CRC (Y 1ð Þ), the analysis is conditioned on Y 2ð Þ ¼ 0 (MSI-

high CRC cases are excluded), which opens a back-door

path17 between A and Yð1Þ. Consider the scenario

exp b1ð Þ ¼ 1; exp b2ð Þ > 1; hk > 0. Because expðb
�

1Þ is the

same as the exponentiated logistic regression coefficient of

A in a logistic regression comparing non-MSI-high CRC

patients with controls, it is calculated in the subpopulation

created by ignoring MSI-high CRC patients. However, in

this subpopulation, the ever-smokers (A ¼ 1Þ have, on av-

erage, a lower U than the never-smokers ðA ¼ 0Þ.
Therefore, when fitting Model (1), it would appear as if

smoking has a protective effect against a non-MSI-high

CRC, whereas the reality is that smoking has no effect on

this subtype [exp b1ð Þ ¼ 1]. This source of bias is expected

in etiologic heterogeneity studies because unmeasured

common causes of both disease subtypes are likely to exist.

Under the example described above, selection bias is

expected for the effect on non-MSI-high CRC but not for

the effect on MSI-high CRC. Conditioning on Yð1Þ ¼ 0

does not open a non-causal path between A and Yð2Þ

(Figure 1).

Unmeasured factors associated with both subtypes but

not with the exposure are ubiquitous. When studying age

at menarche in relation to breast cancer (BC),

single nucleotide polymorphisms (SNPs) have been found

to have a consistent association with all BC subtypes (e.g.

SNP rs4415084) or stronger, heterogenous associations

Figure 1 A directed acyclic graph presenting the potential selection bias when studying exposure effects according to microsatellite instability (MSI)

status. In this directed acyclic graph, smoking (A, ever vs never) only affects MSI-high CRC. Nevertheless, a non-zero effect estimate is expected for

smoking effect on non-MSI-high CRC because the analysis is conditioned on being free of MSI-high CRC (Y ð2Þ ¼ 0), opening a non-causal path going

through the genetic-risk index (U).
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with nearly all subtypes (e.g. SNPs rs3104746 and

rs2981578).25 However, to our knowledge, none of these

SNPs has been found to explain age at menarche.26,27

Another example involves non-genetic factors. Aspirin-

taking has been associated with reduced risks for MSI-high

and non-MSI-high CRC subtypes.28 However, not all

exposures are associated with aspirin-taking, which is not

always available.

Selection bias may also arise when U is a post-exposure

mediator between the exposure and both disease subtypes

(Figure 2). For example, when researchers study the effect

of age at menarche on BC, subtyped by estrogen receptor

status, mammographic density is a potential mediator.24 In

this case, exp bkð Þ in Model (2) is no longer the causal ef-

fect of the exposure on subtype k. This problem persists

even if U is observed, as adjustment for mammographic

density to avoid the selection bias will block the effect of

age at menarche mediated by mammographic density.

Therefore, alternative approaches are desirable, including

targeting the total effect, defining a survivor average causal

effect29,30 or leveraging the separable effects paradigm22

(see the ‘Discussion’ section).

A hypothetical data set

We present a hypothetical example that can be also ana-

lysed by the reader to illustrate the selection bias. Table 1

presents data for a hypothetical population. In addition to

smoking status ðAÞ, there is also a continuous unmeasured

U that is associated with the outcome but not with A. For

illustrative purposes, there is no confounding in this exam-

ple. A logistic regression of Y ¼ 1 vs Y ¼ 0 on U and A

yields an estimated RR expðb̂1Þ ¼ 1:0 [95% confidence in-

terval (CI): 0.93, 1.08]. This corresponds to expðb1Þ in

Model (2). However, as U is unobserved by researchers,

the logistic regression of Y ¼ 1 vs Y ¼ 0 would only include

A, leading to a biased effect estimate expðb
�̂

1Þ ¼ 0:88 < 1

(95% CI: 0.82, 0.95).

Illustration of the problem by simulations

We further illustrate and quantify the magnitude of the

bias using simulations. In all scenarios considered, 1000

data sets were simulated. For simplicity, data were simu-

lated from a version of Model (2) with no confounders and

with a single normally distributed unmeasured risk factor

U � Nð0;1Þ. Initially, the exposure did not affect the first

subtype [exp b1ð Þ ¼ 1� and we varied the values of expðb2Þ
and of expðh1Þ ¼ expðh2Þ ¼ expðhÞ. The exposure, A, was

randomized with PrðA ¼ 1Þ ¼ 0:5. To mimic real-life

rare-disease data, the sample size was taken to be

n ¼ 50 000, with incidence proportions of 0.3%–1% (sub-

type 1) and 0.9%–4.3% (subtype 2).

For each simulated data set, we fit Model (1). For sub-

type 1, the mean estimated RR was nearly always <1 and

the absolute bias increased as the value of expðhÞ increased

(Figure 3). For subtype 2, the mean estimated RR was

lower than the true unconditional RR (Figure 4), but this

was due to the lack of collapsibility of the logistic func-

tion.23,24 Additional simulations confirmed this claim

(Section 1 of the Supplementary Material, available as

Supplementary data at IJE online).

The magnitude and direction of the bias depend on the

relationships between U, A and each of the disease sub-

types. Therefore, we conducted further simulations, vary-

ing the values of b1; b2; h1 and h2. The subtype 1 RR bias

can be positive or negative (Figures 5–7 and

Supplementary Figures 4–6, available as Supplementary

data at IJE online). In most scenarios, the absolute bias in-

creased as the A� Yð2Þ and U � Yð2Þ relationships were

stronger. When both non-collapsibility and selection bias

were present, the patterns were more complex (Figures 6

Figure 2 A directed acyclic graph presenting a second potential selection bias mechanism when studying exposure effects according to different sub-

types. In this directed acyclic graph, the age at menarche (A) affects both estrogen receptor positive (ESR1-POS) and estrogen receptor negative

(ESR1-NEG) breast cancer (BC) through the mediator mammographic density (U). Age at menarche also directly affects ESR1-NEG BC. A biased esti-

mate is expected for the age-at-menarche total effect on ESR1-POS BC because the analysis is conditioned on being free of ESR1-NEG BC (Y ð2Þ ¼ 0),

opening the non-causal path A! Y ð2Þ  U ! Y ð1Þ. Adjustment for U to block the non-causal path would also block the effect that age at menarche

has on ESR1-POS BC, leading to b1 from Model (2) not corresponding to the causal effect of age at menarche on ESR1-POS BC.
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and 7). Section 2 of the Supplementary Material, available

as Supplementary data at IJE online, presents more details.

We extended the simulation studies for non-rare-disease

scenarios. The results (Section 3 of the Supplementary

Material, available as Supplementary data at IJE online)

were qualitatively similar, with larger discrepancies be-

tween the estimated expðb
�

2Þ and expðb2Þ, presumably due

to the non-collapsibility of the logistic regression.

Finally, in Section 4 of the Supplementary Material,

available as Supplementary data at IJE online, we report

the results of an additional simulation study for the scenar-

ios in which U is a mediator between A and both subtypes.

This simulation verified that the multinomial regression

approach does not uncover the total effect of A on a spe-

cific subtype.

Discussion

In this paper, we formalized and reviewed the question of

causal inference for etiologic heterogeneity studies. We

demonstrated that selection bias is expected to arise in

these studies when the multinomial regression approach is

used. R code to recreate our results is available online

(https://github.com/daniel258/CausalMPE). In some spe-

cialized cases, selection bias is not expected. When study-

ing the effect on subtype 1, no selection bias is expected if

the following multiplicative model holds:

Pr Y 2ð Þ ¼ 0jA ¼ a;U ¼ u
� �

¼ f að Þg uð Þ, for some functions

f ; g, i.e. if U does not modify the effect A has on being free

of subtype 2.31

Table 1 Data on a hypothetical population of size 100 000 in-

cluding a risk score index (U, continuous with values

rounded), smoking status (A, 1: ever-smoker, 0: never-

smoker) and disease status with subtypes defined by

microsatellite (MSI) (Y, 0: Healthy, 1: Non-MSI-high CRC, 2:

MSI-high CRC). Positive and negative values of U are associ-

ated with increased and decreased risk, respectively.

Genetic-risk

index ðUÞ
Smoking

status ðAÞ
Outcome

ðYÞ
Count

�2 0 0 10 000

�2 0 1 10

�2 0 2 10

�2 1 0 10 000

�2 1 1 10

�2 1 2 20

�1 0 0 9800

�1 0 1 10

�1 0 2 10

�1 1 0 10 000

�1 1 1 10

�1 1 2 50

0 0 0 9700

0 0 1 60

0 0 2 60

0 1 0 9500

0 1 1 100

0 1 2 200

1 0 0 9500

1 0 1 400

1 0 2 350

1 1 0 9000

1 1 1 300

1 1 2 900

2 0 0 7500

2 0 1 1200

2 0 2 1300

2 1 0 6000

2 1 1 1000

2 1 2 3000

Figure 3 Mean estimated subtype 1-specific relative risk (RR) in simula-

tions when using Model (1) while data are simulated under Model (2).

True (conditional) RR between U and each subtype is simply expðhÞ in

Model (2) and represents the strength of the association between U and

Y ð1Þ and between U and Y ð2Þ:

Figure 4 Mean estimated subtype 2-specific relative risk (RR) in simula-

tions when using Model (1) while data are simulated under Model (2).

True (conditional) RR between U and subtype is simply expðhÞ in Model

(2) and represents the strength of the association between U and Y ð1Þ

and between U and Y ð2Þ:
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Figure 6 Mean estimated subtype 2-specific relative risk (RR) in simulations when using Model (1) while data are simulated under Model (2). True RR

is 1.5. True (conditional) RR between U and each subtype is simply expðhk Þ in Model (2).

Figure 5 Mean estimated subtype 1-specific relative risk (RR) in simulations when using Model (1) while data are simulated under Model (2). True RR

is 1. True (conditional) RR between U and each subtype is simply expðhk Þ in Model (2).
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Competing risks,18–22 as in the case of multiple disease

subtypes, present a challenge of choosing which causal ef-

fect to study. Recently, the different potential strategies, in-

cluding risk-based and hazard-based comparisons, and

their analogue causal effects (when those exist) were thor-

oughly investigated and reviewed.21

At face value, an alternative approach is the method de-

veloped by Sun et al.,14 who used a logistic model for
PrðYi¼kjAi; X iÞ
PrðYi 6¼kjAi; X iÞ rather than for PrðYi¼kjAi;X iÞ

PrðYi¼0jAi;X iÞ and utilized a

Bayesian approach to ensure that the probabilities sum to

one. Crucially, this approach does not suffer the selection

bias described in this paper. Furthermore, it corresponds to

a well-defined causal contrast of Pr Y kð Þ 1ð Þ ¼ 1
� �

and

Pr½Y kð Þ 0ð Þ ¼ 1� known as the total effect. However, the ex-

posure effect on subtype k represented by this contrast

could be the result of the exposure effect on other sub-

types.21 For example, the total effect might be non-null if

there are study participants who would have been diag-

nosed with subtype k when unexposed and other subtypes

when exposed. In this case, the total effect does not reveal

the reason for the seemingly protective effect against sub-

type k.

Other potential strategies include the survival average

causal effect,29,30 which is the causal effect of the exposure

on one subtype, within the population who would be free

of the other subtype under both exposure levels.

Alternatively, the recently proposed separable effects para-

digm22 could be promising, although it would require a

deeper knowledge about the causal mechanisms leading to

each tumour-subtype formulation.

In conclusion, we have shed light on an understudied

and important issue in the study of pathogenic heterogene-

ity. We expect an immediate impact on the way in which

results are interpreted. We end this paper with a call for al-

ternative methods targeting well-defined causal effects in

MPE-type analyses.

Supplementary data

Supplementary data are available at IJE online.

Acknowledgements
The authors thank two anonymous reviewers for helpful comments

that improved the paper.

Funding

This work was supported by grants from the U.S. National Institutes

of Health [R35 CA197735 (Shuji Ogino, Molin Wang) and R21

Figure 7 Mean estimated subtype 2-specific relative risk (RR) in simulations when using Model (1) while data are simulated under Model (2). True RR

is 2.5. True (conditional) RR between U and each subtype is simply expðhk Þ in Model (2).

1036 International Journal of Epidemiology, 2021, Vol. 50, No. 3

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa278#supplementary-data


CA230873 (to Shuji Ogino)]; Nodal Award (2016-02) (to Shuji

Ogino) from Dana-Farber Harvard Cancer Center; and funding

through the Cancer Research UK Grand Challenge OPTIMISTICC

Project.

Conflict of interest

None declared.

References

1. Jung S, Wang M, Anderson K et al. Alcohol consumption and

breast cancer risk by estrogen receptor status: In a pooled analy-

sis of 20 studies. Int J Epidemiol 2016;45:916–28.

2. Ogino S, Giovannucci E. Commentary: Lifestyle factors and co-

lorectal cancer microsatellite instability-molecular pathological

epidemiology science, based on unique tumour principle. Int J

Epidemiol 2012;41:1072–74.

3. Ogino S, Nishihara R, VanderWeele TJ et al. The role of molecu-

lar pathological epidemiology in the study of neoplastic and non-

neoplastic diseases in the era of precision medicine.

Epidemiology 2016;27:602–11.

4. Wang M, Spiegelman D, Kuchiba A et al. Statistical methods for

studying disease subtype heterogeneity. Stat Med 2016;35:

782–800.

5. Murphy N, Jenab M, Gunter MJ. Adiposity and gastrointestinal

cancers: epidemiology, mechanisms and future directions. Nat

Rev Gastroenterol Hepatol 2018;15:659–70.

6. Gunter MJ, Alhomoud S, Arnold M et al. Meeting report from

the joint IARC-NCI international cancer seminar series: a focus

on colorectal cancer. Ann Oncol 2019;30:510–19.

7. Zakhari S, Hoek JB. Epidemiology of moderate alcohol con-

sumption and breast cancer: Association or causation? Cancers

(Basel). 2018;10:349.

8. Ogino S, Nowak JA, Hamada T, Milner DA, Nishihara R.

Insights into pathogenic interactions among environment, host,

and tumor at the crossroads of molecular pathology and epide-

miology. Annu Rev Pathol Mech Dis 2019;14:83–103.

9. Inamura K. Colorectal cancers: An update on their molecular pa-

thology. Cancers (Basel) 2018;10:26.

10. Carr PR, Alwers E, Bienert S et al. Lifestyle factors and risk of spo-

radic colorectal cancer by microsatellite instability status: a sys-

tematic review and meta-analyses. Ann Oncol 2018;29:825–34.

11. Amitay EL, Carr PR, Jansen L et al. Smoking, alcohol consump-

tion and colorectal cancer risk by molecular pathological sub-

types and pathways. Br J Cancer 2020;122:1604–10.

12. Nevo D, Zucker DM, Tamimi RM, Wang M. Accounting for

measurement error in biomarker data and misclassification of

subtypes in the analysis of tumor data. Stat Med 2016;35:

5686–700.

13. Zabor EC, Begg CB. A comparison of statistical methods for the

study of etiologic heterogeneity. Stat Med 2017;36:4050–60.

14. Sun B, VanderWeele T, Tchetgen Tchetgen EJ. A multinomial re-

gression approach to model outcome heterogeneity. Am J

Epidemiol 2017;186:1097–103.

15. Begg CB, Seshan VE, Zabor EC. Re: A multinomial regression

approach to model outcome heterogeneity. Am J Epidemiol

2018;187:1129–30.

16. Chatterjee N. A two-stage regression model for epidemiological

studies with multivariate disease classification data. J Am Stat

Assoc 2004;99:127–38.

17. Hernán MA, Robins JM. Causal Inference: What If. Boca

Raton: Chapman & Hall/CRC, 2020.

18. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: com-

peting risk and multi-state models. Statist Med 2007;26:

2389–430.

19. Geskus RB. Data Analysis with Competing Risks and

Intermediate States. Data Analysis with Competing Risks

and Intermediate States. New York: Chapman and Hall/CRC,

2015.

20. Nevo D, Nishihara R, Ogino S, Wang M. The competing risks

Cox model with auxiliary case covariates under weaker missing-

at-random cause of failure. Lifetime Data Anal 2018;24:

425–42.

21. Young JG, Stensrud MJ, Tchetgen Tchetgen EJ, Hernán MA. A

causal framework for classical statistical estimands in failure-

time settings with competing events. Stat Med 2020;39:

1199–236.

22. Stensrud MJ, Young JG, Didelez V, Robins JM, Hernán MA.

Separable effects for causal inference in the presence of compet-

ing events. J Am Stat Assoc 2020;(just-accepted):1–23.

23. Greenland S, Robins JM et al. Confounding and collapsibility in

causal inference. Stat Sci 1999;14:29–46.

24. Nevo D, Liao X, Spiegelman D. Estimation and inference for the

mediation proportion. Int J Biostat 2017;13. https://doi.org/10.

1515/ijb-2017-0006

25. O’Brien KM, Cole SR, Engel LS et al. Breast cancer

subtypes and previously established genetic risk factors: a

Bayesian approach. Cancer Epidemiol Biomarkers Prev 2014;

23:84–97.

26. Elks CE, Perry JRB, Sulem P; The GIANT Consortium et al.

Thirty new loci for age at menarche identified by a meta-analysis

of genome-wide association studies. Nat Genet 2010;42:

1077–85.

27. Perry JRB, Day F, Elks CE; Australian Ovarian Cancer Study

et al. Parent-of-origin-specific allelic associations among 106

genomic loci for age at menarche. Nature 2014 Oct 2;514:

92–97.

28. Amitay EL, Carr PR, Jansen L et al. Association of aspirin and

nonsteroidal anti-inflammatory drugs with colorectal cancer risk

by molecular subtypes. J Natl Cancer Inst 2019 May 1;111:

475–83.

29. Frangakis CE, Rubin DB. Principal stratification in causal infer-

ence. Biometrics 2002;58:21–29.

30. Chiba Y, VanderWeele TJ. A simple method for principal strata

effects when the outcome has been truncated due to death. Am J

Epidemiol 2011;173:745–51.

31. Hernán MA, Hernández-Dı́az S, Robins JM. A structural ap-

proach to selection bias. Epidemiology 2004;15:615–25.

International Journal of Epidemiology, 2021, Vol. 50, No. 3 1037


