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Abstract

This 27-color flow cytometry panel was developed in order to assess immunological changes 

over the course of an immunization and challenge regimen in two experimental malaria vaccine 

trials. The aim of the study was to find correlates of vaccine-induced protection. Several studies 

have indicated that protection against malaria appears to involve immune responses at various 

immunological sites, with liver-resident responses playing an essential role. As it is not feasible to 

monitor the immune responses within the liver in humans, this panel is developed with the aim to 

thoroughly characterize the immune responses over time in blood in addition to detecting changes 

that might reflect what happens in other immunological sites like the liver. The focus of this panel 

is to detect several innate lymphoid cell populations, including NK cells and their activation status. 

Moreover, unconventional T cells like mucosal associated invariant T cells and γδ T cells are 

assessed in the panel.
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BACKGROUND

Malaria is still a major health threat, with 200 million cases and approximately 400,000 

deaths annually, mostly among children under 5 (1–3). The disease is caused by mosquito

transmittedPlasmodiumparasites that have a complicated lifecycle which occurs in multiple 

sites of the body, including the liver and the blood. Although efforts to design a potent 

anti-malaria vaccine have been ongoing for nearly a century, there is still no vaccine 
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that confers adequate durable immunity to infection. Furthermore, naturally occurring 

sterilizing immunity to malaria is rare, despite repeated infections (4,5). Immunization with 

radiation-attenuated sporozoites (RAS), which are parasites that have retained their ability to 

infect the liver, has been shown to confer sterilizing protection. However, the mechanism 

behind this protection is incompletely understood (1,6–9). Remarkably, the occurrence 

of natural infection seems to inhibit the development of protective sterilizing immunity, 

as clinical trials in nonendemic regions consistently report higher vaccine efficacies than 

those in malaria-endemic regions (10). It has been suggested that tolerogenic responses, 

immune exhaustion, and senescence play a role (11). Identifying the underlying immune 

mechanisms of anti-malarial immunity or the lack thereof will aid the development of a 

protective vaccine that is suitable for mass distribution. High parameter multicolor flow 

cytometry enables thorough characterization of immune responses against pathogens. Here 

we describe a 27-color panel that aims to detect immune responses that correlate with 

protection in experimental malaria vaccine trials, in addition to comparing responses in 

individuals from malaria endemic regions with those from nonendemic regions. This panel 

was developed for use with three other panels, in order to extensively phenotype the immune 

responses triggered by RAS-immunizations. The other panels we developed focus on T 

and B cells and we used a dendritic/monocyte panel published as an optimized multicolor 

immunofluorescence panel (OMIP) (Table 1) (12).

The panel described here is developed with a focus on innate lymphoid cells (ILCs), 

conventional NK cells and their activation status, γδ T cells, mucosal associated invariant 

T (MAIT) cells in addition to the major lineages including T cells, B cells and monocytes, 

both for exclusion of other lineages and to characterize potential expression of NK-relevant 

markers in these other cell types. All the reagents are listed in Table 2. The panel includes 

lineage markers CD14 and CD33 to gate out monocytes, dendritic cells, and granulocytes 

and CD19 for the exclusion of B-cells. For the gating of T cells, CD3, CD4, and CD8 are 

used to identify the conventional T cell subsets, although these markers can be expressed 

on several other cell types detected by this panel, such as NK cells. CD161 and TCRvα7.2 

are included to gate on MAIT cells. These cells are detected in peripheral blood, although 

they are more abundant at mucosal sites and in the liver. Their role in the protection against 

malaria infection is unknown, although MAIT cells were observed to contract and then 

expand in a controlled human malaria-infection(CHMI) study (13).

Another unconventional T cell subset that has generated attention in the malaria 

immunology field is the subset of T cells expressing the γδ T cell receptor (TCR). These 

γδ T cells have been shown to be expanded in acute malaria infection, and a recent 

study showed that the Vδ2 subset was found to correlate with protection in a large cohort 

of healthy, malaria-exposed individuals that were immunized with a RAS-vaccine (14). 

In addition, their relevance to malaria has also been demonstrated in animal models, for 

example, γδ T cells are required for the induction of sterile immunity in a rodent model 

(14). We have therefore included antibodies detecting the γδ TCR and Vδ2 to identify γδ T 

cells and the Vδ2 subset.

Animal models have helped elucidate some of the mechanisms needed for protective 

immune responses in the liver, and NK cells have previously been shown to be important 
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in the immune responses during the early phases of liver stage infection. NK cells likely 

contribute through the production of IFNγ and potentially through direct cytolysis of 

infected hepatocytes (15,16).

In humans, NK cells have been shown to play a role in malaria disease, both as 

having protective effects against the pathogen in addition to contributing to pathology in 

cerebral malaria (17). We have included several markers to extensively characterize NK 

phenotypes, in which maturation status, differentiation, and activation markers are included. 

To phenotype NK cells, we used CD56 in combination with CD16 to delineate different 

NK subsets. An extensive set of NK cells markers were included to monitor maturation 

and differentiation, which can also indirectly indicate the functionality of these NK subsets. 

Recently, so-called adaptive NK cells that lack FCεRI-γ were associated with protective 

effects in a large cohort of seasonal malaria transmission monitoring (18). This marker is 

combined with NKG2C, CD57 and a lack of NKG2A expression to identify these adaptive 

NK cells (19). CD27 has been implicated as another maturation or memory-like marker, 

and has therefore been included (20). CD27 on NK cells mark mature NK cells with low 

cytotoxic potential (21). CD27-expressing NK cells were also indicated as being memory

like NK cells in a murine tuberculosis model (22). NKp30, NKp46, and CD38 are included 

to monitor activation of NK cells. CD38 was recently described to be a key regulator in NK 

cells that are enhanced in their cytotoxic abilities and cytokine producing potential (23,24). 

The activating receptor NKG2D was shown to be highly expressed in liver-resident NK cells 

in a rodent model, and implicated in humans (20,25,26). NKG2D ligands are upregulated in 

response to type I interferons, which have been shown to be induced in plasmodium-infected 

hepatocytes in mice, and these cells could therefore be of interest to monitor (15,27). Several 

of the NK markers in this panel have been shown to be expressed on the conventional 

and unconventional T cells detected by this panel. For instance, NKG2A and CD27 can 

be detected on γδ T cells as indirect markers for IFNγ-producing γδ T cells (28), and 

CD57 expression on T cells can be used as an exhaustion marker, previously shown to be 

upregulated in Plasmodium falciparum infection (11).

The markers CD16, CD161, CD127 c-kit, and CRTH2 can together be used to differentiate 

the ILC subsets, which are found in low abundance in the blood, although they are more 

prevalent in tissues (29). The role of ILCs in malaria vaccine responses has not been 

identified yet, although sparse data indicate that ILCs may have a role in infection. For 

instance, blood stage infection led to a rapid loss of group 1 ILCs in the blood of subjects 

participating in a CHMI study (30). Another study suggested that group 2 ILCs were 

involved in protection against cerebral malaria (31). As an additional marker to phenotype 

cellular responses, we included Ki67 as a marker for proliferation and recent in vivo 

activation. Figure 1 shows an example of how these markers can be used to gate on different 

cell subsets. This panel can be used for preipheral blood mononuclear cells (PBMC), and 

possibly for other sample types.

SIMILARITY TO PUBLISHED OMIPs

This panel is unique, although there is some overlap with OMIP-056 (32), which also looks 

at MAIT, γδ T cells, and NK cells (Table 1). However, the focus of that panel is more on 
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functional responses in the context of HIV infection, and does not deeply phenotype subsets 

of NK cells and unconventional T cells, as in this panel. The 21-marker panel described 

in OMIP-055 (33) has nine markers in common with this panel, although four of those are 

lineage markers and all lineage markers are assigned to the same fluorochrome, which limits 

the depth of the analysis to ILC subsets. OMIP-039 (34) and OMIP-029 (35) describe panels 

that phenotype NK cells that partly overlap with this panel, although both panels are less 

elaborate, as they include 14 and 13 colors, respectively, and can therefore not combine 

both NK cell markers with MAIT and γδ T cells. OMIP-058 also has several markers that 

overlap with our panel, although the emphasis is on γδ T cells and iNKT cells and the 

depth of NK subset phenotyping is more limited than the panel we describe here. Overall, 

our panel is unique because it enables a deep assessment of NK subsets in addition to 

conventional and unconventional T cells, combined with an extensive set of activation and 

maturation markers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Example of the gating strategy of the 27-color measurement of cryopreserved PBMCs. 

(A) The cells from a healthy donor were stained and the data were subsequently acquired 

on a BD FACSymphony instrument. The plot depicting forward scatter (FSC) vs. time is 

to verify that there are no pressure fluctuations that might affect fluorescent signals. The 

FSC-Area (A) vs. FSC-Height (H) is to gate on single cells and to exclude doublets. Next, 

the UViD-negative events are gated to exclude dead or damaged cells. CD14 vs. Side scatter 

(SSC)-A is used to gate monocytes (CD14+ and SSChi) vs. lymphocytes (CD14− and 
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SSClo), and CD14 and CD16 are used to gate on the different monocyte subsets. In parallel, 

CD19 and CD33 are used as exclusion channels, to gate out B cells and granulocytes. 

Another clean-up gate for lymphocytes is included based on FSC and SSC. (B) The negative 

fraction is then plotted for CD3 to gate on T cell subsets. First, MAIT cells are gated as 

CD3+ TCRγδ− CD161+ and TCRva7.2+. The non-MAIT cells are then used to gate γδ 
T cells, as CD3+ and TCRγδ+. The vδ2 T cells are double positive for TCRγδ+ and the 

vδ2TCR. The negative fraction is then used to gate on conventional T cells that are either 

CD4+ or CD8+. (C) The CD3-gate is use for further delineation of ILCs. The ILC subsets 

are gated as CD3-CD16-CD127 + CD161+, although ILC1 and LTi have been shown to 

lack CD161 expression, so ILCs can be gated on without this marker as well. Further 

differentiation between ILC1, ILC2, and ILC3 can be done with CRTH2 and cKit, with 

CRTh2-CKit- cells gated as ILC1, CRTh2+ cells gated on as ILC2 and ILC3 are cKit+. (D) 

The CD3-fraction is alternatively gated as CD56 vs. CD16 for NK subsets. The second plot 

in this row shows that CD57 is mainly expressed on CD56dim NK cells. These cells are 

then plotted as NKG2A vs. NKG2C, the latter of which are adaptive NK cells. (E) The 3 

NK subsets as shown in the left plot in each row are plotted separately for the remaining 

NK subset markers (CD57, NKG2A, NKG2C, NKG2D, NKp30, and NKp46), overlaid on 

the total CD3− population in gray. Also the expression of FCεRIγ is measured, “adaptive 

NK cells” have a low expression of this marker (36). (F) Depiction of the γδ T cells (blue 

overlay) and NKG2A, NKG2D and CD27 against vδ2.The background depicts total CD3+ 

cells, in gray. (G) A subset of CD3+ cells is positive for CD56 and these will include NK T 

cells. The expression of CRTH2, HLA-DR, and NKG2A is plotted vs. CD56 to demonstrate 

several phenotypic differences between the CD56+ and CD56− populations. The two plots 

in the third row show the CD4 versus CD8 pattern and how the CD56+ CD3+ cells have 

a CD4+ population that dimly expressed CD8. (H) Ki67+ is used as a proliferation marker 

and plotted against CD3+ on all CD14-CD33-CD19− lymphocytes, and shown as overlay 

combined with several markers that are different between the CD3+ and CD3− populations. 

[Color figure can be viewed at wileyonlinelibrary.com]
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Table 1

Summary table for application of OMIP-064

Purpose Extensive phenotyping

Species Human

Celltype PBMC

Cross-references OMIP-029, OMIP-039, OMIP-044, OMIP-055, OMIP-056, and OMIP-058
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