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Abstract

Heat shock proteins (Hsps) are molecular chaperones that also play important roles in activation of 

the heat shock response (HSR). The HSR is an evolutionary conserved and protective mechanism 

that is used to counter abnormal physiological conditions, stressors, and disease states, such 

as those exemplified in cancer and/or neurodegeneration. In normal cells, heat shock factor-1 

(HSF-1), the transcription factor that regulates the HSR, remains in a dormant multi-protein 

complex that is formed upon association with chaperones (Hsp90, Hsp70 etc.), co-chaperones, 

and client proteins. However, under cellular stress, HSF-1 dissociates from Hsp90 and induces the 

transcriptional upregulation of Hsp70 to afford protection against the encountered cellular stress. 

As a consequence of both peripheral and central neuropathies, cellular stress occurs and results 

in the accumulation of unfolded and/or misfolded proteins, which can be counterbalanced by 

activation of the HSR. Since Hsp90 is the primary regulator of the HSR, modulation of Hsp90 by 

small molecules represents an attractive therapeutic approach against both peripheral and central 

neuropathies.
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Introduction

The Heat Shock Response (HSR) is a major cellular stress relief pathway that has 

been evolutionarily conserved across various species to refold denatured proteins1–11. 

Under stressful conditions (such as exposure to heat, toxic chemicals, radiation, etc.) the 

transcription factor, Heat Shock Factor-1 (HSF-1), activates the transcription of genes that 

encode for various chaperones (Hsps) that coordinate with one another to reverse cellular 

stress and refold denatured proteins12,13. Under normal conditions, chaperones maintain 

cellular homeostasis by folding nascent polypeptides into their correct three-dimensional 

conformations, as well as misfolded proteins into functional proteins14. However, Hsps 
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also facilitate the clearance of misfolded proteins by chaperoning those substrates to the 

ubiquitin-proteasome pathway for subsequent degradation15,16. Along with these functions, 

Hsps also play an important role in autophagy and lysosomal degradation, which will be 

expanded upon later. Many pathological conditions, such as diabetes, cancer, dyslipidemia, 

neurodegenerative diseases, and aging can lead to a dysfunctional HSR and consequently, a 

loss of HSF-1 activation17,18. Researchers have also shown that diminished levels of Hsps (a 

direct result of deactivated HSF-1) can give rise to additional consequences of diabetes18,19, 

such as neuropathy19–22, retinopathy23,24, nephropathy25,26, cardiovascular diseases27,28, 

etc. In contrast, it has been shown that the induction of specific Hsps by small molecules can 

elicit neuroprotection21,22. This review will focus on the modulation of Hsps as a therapeutic 

option to treat both central and peripheral neuropathies.

Although some molecular chaperones are Hsps, not all chaperones are induced by the heat 

shock response or other cellular stresses29. The Heat shock protein family is categorized 

by molecular weight (in kDa); large heat shock proteins (L-Hsps) such as Hsp100, Hsp90, 

Hsp70, Hsp4030 and small heat shock proteins (S-Hsps) such as those with molecular 

weights between 12 – 43 kDa31. These molecular chaperones are also subcategorized into 

individual isoforms/paralogs32–34. Patients with neuropathy or related neurological disorders 

are known to express lower levels of both L-Hsps and S-Hsps, whereas the activation 

and/or overexpression of molecular chaperones has proven beneficial in several of these 

disease states31,35. For example, the upregulation of Hsp70 has been shown to reverse 

Diabetic Peripheral Neuropathy (DPN) by refolding aggregated and damaged proteins, 

which ultimately leads to the recovery of mitochondrial bioenergetics, dampening of pro­

inflammatory cascades, and the reinnervation of nerve fibers35,36. Furthermore, patients 

with high Hsp27 levels manifest better nerve function as compared to those with lower 

levels37,38.

In stress-free normal cells, Hsp90 suppresses the transcriptional activity of HSF-1 by 

existing as an Hsp90-HSF-1 complex (Figure 1)39–42. However, under stressful conditions, 

such as glycemic insult, HSF-1 dissociates from Hsp90, undergoes trimerization, and enters 

the nucleus to induce the expression of antioxidant proteins and chaperones, such as 

Hsp7039,43. This response leads to the refolding of misfolded proteins and/or their clearance 

to alleviate cell stress44–49. In recent years, several small molecule Hsp90 modulators have 

been developed that can disrupt the Hsp90-HSF-1 complex.

Modulation of Hsp90 to Induce the HSR

The Hsp90 dimer is comprised of three domains: 1) An N-terminal ATP-binding domain 

(25 kDa), 2) a co-chaperone and client protein binding middle domain (33 kDa), and 3) 

a C-terminal dimerization domain (12 kDa) that is essential for maintaining the active 

homodimer (Figure 2)50,51. Hsp90 forms a series of complexes with co-chaperones, Hsp70, 

and client proteins in order to fulfill its chaperone activity. An interesting phenomenon that 

makes Hsp90 an intriguing and druggable target is that Hsp90 inhibitors have been shown 

to act as either cytotoxic or cytoprotective agents, depending on cell type and the cellular 

stressor18,21,22.
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Hsp90 N-terminal inhibitors:

As mentioned earlier, the Hsp90 N-terminal domain contains an ATP-binding site that is 

responsible for the hydrolysis of ATP, which provides the energy necessary for the folding 

and release of Hsp90-dependent client proteins (Figure 3). In 2003, Kamal and co-workers 

demonstrated that Hsp90 remains in an uncomplexed and homodimeric state in normal cells; 

however in tumor cells, Hsp90 resides in a heteroprotein complex that manifests ~200-fold 

higher affinity for ATP than the homodimer alone52. A similar phenomenon was later 

described for Hsp90 in Alzheimer’s disease, wherein high-affinity Hsp90-CHIP (carboxy 

terminus of Hsp70–interacting protein) complexes were found to exist, which is in contrast 

to normal tissue53. In recent years, extensive work to characterize these high-affinity Hsp90 

complexes that are responsible for cancer cell survival and disease progression has been 

pursued. While the normal function of the cellular proteome is maintained by an array 

of chaperones and enzymes, the chronic disease state manifests an epigenetically different 

chaperome in stressed cells54. In fact, the term “epichaperome” has been proposed to 

describe the unique heteroprotein complex present in stressed cells55. As a result, Hsp90 N­

terminal inhibitors represent an attractive therapeutic opportunity that may impart selectivity 

for stressed cells as a consequence of these heteroprotein complexes and their differential 

binding affinities.

N-terminal inhibitors have demonstrated the ability to afford neuroprotection against 

diseases wherein neurodegeneration results from a protein folding disorder. For example, 

the Hsp90 N-terminal inhibitors 17-AAG56 (17-(Allylamino)-17-allylamino geldanamycin) 

(Figure 4) and several synthetic57,58, semi-synthetic59 and bio-engineered60 analogs of GDA 

(geldanamycin) (Figure 4) reverse the formation of β-amyloid and tau aggregation, while 

inhibiting the binding of tau to microtubules61. The increased levels of Hsp70 induced by 

these compounds prevent neuronal apoptosis, a common phenomenon found in patients with 

Alzheimer’s, Parkinson’s, and Huntington’s diseases62.

There are two isoforms of Hsp90 that reside in the cytosol and these include Hsp90α, which 

is the inducible isoform, and Hsp90β, which is constitutively expressed63. Recent studies 

have demonstrated that Hsp90α and Hsp90β exhibit differential binding affinities toward 

both client proteins and N-terminal inhibitors. For example, one resorcinol-based inhibitor, 

STA-9090, manifests higher affinity for Hsp90β than for Hsp90α, and it is well known 

that some client proteins are dependent upon a particular isoform for their conformational 

maturation as well64,65. In fact, it has been shown that Hsp90α binds HSF-1 with higher 

affinity, suggesting that Hsp90α inhibitors may be more effective at induction of the HSR, 

which could then manifest cytoprotective and/or neuroprotective activity65.

Hsp90 C-terminal inhibitors:

The size of the C-terminal domain of Hsp90 is approximately one half of the N-terminal 

domain and allosterically facilitates nucleotide exchange at the N-terminus, but does 

not exhibit ATPase activity66. This domain is primarily responsible for maintaining 

Hsp90’s dimeric form and coordinating interactions with Hsp90 partner proteins that 

contain a tetratricopeptide repeat (TPR)67,68. Despite the interest in Hsp90 function, no 

co-crystal structure of an inhibitor bound to the C-terminal domain has been solved. 
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However, medicinal chemistry studies have shown that this region can be modulated by 

small molecules to promote cytotoxic or cytoprotective activities. In fact, two classes 

of novobiocin-based inhibitors have emerged for this domain. One class of compounds 

binds the Hsp90 C-terminal domain to disrupt interactions with Aha1, which then inhibits 

Aha1-stimulated ATPase activity69. For example, KU-174 (Figure 5) exhibits cytotoxicity 

against prostate cancer cell lines without induction of the HSR70. In contrast, the second 

class of C-terminal modulators induce the HSR without client protein degradation. This 

latter class of C-terminal modulators, such as A4, KU-32 and KU-596 (Figure 5), 

exhibit cytoprotective activities that are useful for the treatment of neurodegenerative 

disorders71,72. These distinct activities result from the existence of a large benzamide side 

chain that leads to cytotoxic activities, as opposed to the smaller acetamide side chain 

that manifests neuroprotective activity22. The C-terminal inhibitor, AEG3482 (Figure 5), 

an imidazothiadiazole sulfonamide, induces Hsp70 levels by activation of HSF-1. The 

increased levels of Hsp70 induced by AEG3482 prevent the induction of the c-jun N­

terminal kinase (JNK) signaling cascade73, which is responsible for neuronal apoptosis62. 

KU-32, KU-596, and AEG3482 have undergone in vivo evaluation and have exhibited 

efficacy. The effect of KU-32 and KU-596 on neurons will be discussed.

The middle domain:

While the Hsp90 C-terminal domain is responsible for binding proteins with TPR domains, 

the amphipathic middle domain is responsible for recognizing non-TPR co-chaperones and 

client protein substrates. Sato and co-workers were the first to demonstrate that the serine/

threonine-specific protein kinase (Akt) binds Hsp90 at a location distinct from the N- or 

C-terminus74. Subsequent confirmation was achieved by solution of the co-crystal structure 

of the middle domain of Hsp90 in complex with Akt75. To our knowledge, no molecule that 

binds the Hsp90 middle domain and manifests neuroprotective activity has been reported to 

date.

The Nervous System

The nervous system plays an important role as a regulator of many bodily functions. It is 

divided into two major parts; the Central Nervous System (CNS) and the Peripheral Nervous 

System (PNS)76. The CNS consists of the brain and spinal cord, which receive information, 

coordinate function, and then influence other parts of our body. The PNS (consisting of 

nerves and ganglia) connects the limbs, organs and various parts of our bodies with the CNS. 

Signals from the brain and spinal cord are carried to the periphery by motor nerves, whereas 

sensory nerves relay the information from the periphery back to the brain. Together, the CNS 

acts as a “power house” and the PNS plays the role of “supply line and message carrier” as 

they work in concert with one another to maintain bodily functions77,78.

Based on a similar division of our nervous system, neuropathies are separated into two major 

classes as well; peripheral and central neuropathies (collectively called neurodegenerative 

diseases). The various pathological states and the roles played by Hsps in these diseases are 

described below as well as the small molecule modulators of Hsps that have demonstrated 

therapeutic potential.
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Diabetic Peripheral Neuropathy (DPN)

According to the World Health Organization, 422 million people were living with 

diabetes around the globe in 2014. Secondary complications of diabetes mellitus include 

retinopathy, nephropathy, atherosclerosis and neuropathy18. Among these, neuropathy is 

a major complication that is present in ~50% of diabetic patients79. The manifestation 

of this neuropathy is diverse in nature. For example, one can have sensory numbness 

(reduced feeling or hypoalgesia in response to temperature change or pain), or in contrast, 

spontaneous sharp pain or hyperalgesia in the hands, feet and legs, as well as paresthesia 

and allodynia80. The latter is referred to as painful diabetic neuropathy (PDN), and is 

experienced by one third of diabetic neuropathy patients81. The most common phenotype 

manifested by ~75% of the diabetic neuropathy patients is a “change in sensation”81,82. This 

“change in sensation” occurs due to the neurodegeneration that begins at the distal ends 

of sensory neurons (axons) and progresses toward the proximal extremities when diabetes 

remains poorly managed for long periods of time.

Hyperglycemia, neuronal insulin deficiency or resistance, as well as dyslipidemia are the 

major contributors to DPN21. Other biochemical conditions can also cause nerve dysfunction 

and the degeneration of sensory fibers (unmyelinated C fibers or thinly myelinated 

Aδ sensory fibers) and aggravate DPN via oxidative/nitrosative stress, mitochondrial 

dysfunction, etc. Since the etiology of DPN is multifaceted and its presentation multi­

symptomatic, a combinatorial therapeutic approach may be required, and at present, 

therapeutic options to treat DPN are limited to symptomatic relief22,83.

Managing blood glucose levels by controlling diet, exercise, medication, and insulin 

levels represent conventional approaches toward the management of DPN84. However, 

α-Lipoic acid (ALA) is an FDA approved therapeutic that can lessen some of the 

oxidative stress associated with DPN85. Other therapeutics under development include; 

1) an aldose reductase inhibitor – ranirestat86,87, 2) a vascular endothelial growth factor 

gene transfer88, and 3) a protein kinase Cβ inhibitor – ruboxistaurin mesylate89–91. All 

of these therapeutic options have limitations, as they slow disease progression, but do not 

significantly reverse DPN pathology. Several reviews18,21,22,92–104 have been published that 

outline recent progress toward the elucidation of biochemical pathways that contribute to 

DPN pathogenesis, as well as some therapeutic strategies to modulate disease progression.

No direct correlation has been found between DPN and any specific misfolded protein; 

however, it is evident that hyperglycemia can induce protein misfolding by causing 

oxidative processes that lead to the modification of amino acid residues47,105,106. As such, 

experiments have confirmed that induction of the HSR can elicit a cytoprotective response 

in neurons against such glycemic/oxidative insults18,22. KU-32 (Figure 5) is a novel, 

novobiocin-based, C-terminal inhibitor that binds Hsp90 but does not disrupt Aha1-Hsp90 

interactions. As a result, KU-32 induces the HSR and increases Hsp70 levels, which elicits 

a cytoprotective mechanism to overcome oxidative stress, mitochondrial degeneration and, 

as a result, affords neuroprotection against glycemic insult without altering blood glucose 

levels107–109. Another KU-32 inspired C-terminal inhibitor, KU-596 (Figure 5), has been 

developed to contain a meta-fluorinated biphenyl ring that replaces the coumarin core 
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of KU-32. KU-596 works in a manner similar to KU-32 and also induces Hsp70 levels 

in hyperglycemic cells110–112. Both KU-32 and KU-596 were shown to restore sensory 

and motor neuron function in animal models of DPN. Notably, diabetic Hsp70 knockout 

(Hsp70 KO) mice were unresponsive to KU-596 treatment, highlighting the neuroprotective 

role played by Hsp70112 (Figure 6). KU-596 was licensed to Reata Pharmaceuticals and 

is currently awaiting Phase II clinical evaluation for the treatment of DPN. Mimics of 

the noviose sugar moiety present in KU-596 have also been investigated and several 

surrogates or “noviomimetics” have been synthesized and evaluated110,111. Recently, a 

benzyl containing novologue (Figure 5) was identified as the most potent Hsp70 inducer 

in a luciferase reporter assay111. Studies are now underway to further optimize this new 

class of compounds.

KU-32 can also protect against 5-flurouracil (5-FU)-induced neuropathy. 5-FU is a 

commonly prescribed chemotherapeutic agent that is used against various cancers including 

breast, bowel, skin, stomach, oesophageal (gullet), and pancreatic113. Unfortunately, 5-FU 

causes chemobrain and cognitive impairment as a major adverse event114. Studies in rats 

revealed that 5-FU treatment along with KU-32 produced significant neuroprotection against 

5-FU induced cognitive impairment115.

Central Nervous System Neuropathies / Neurodegeneration

The accumulation of misfolded proteins is a hallmark of several neurotoxic pathologies 

including Alzheimer’s disease (AD), Parkinson’s disease (PD), and other neurodegenerative 

diseases. Since Hsps regulate the folding, maturation, and clearance of more than 300 client 

proteins within the cell116,117, Hsps have emerged as promising therapeutic targets for the 

treatment of CNS disorders in which the aggregation of misfolded proteins leads to cellular 

stress, disruptions in signaling networks, and/or cell death. Microtubule-associated Protein 

Tau (MAPT, tau) is perhaps the most characterized and well known of the client proteins 

regulated by Hsps, as the aggregation of oligomeric tau drives the progression of a family of 

neurodegenerative syndromes collectively called tauopathies.

In 2002, Kakimura and coworkers discovered that Hsp90 levels are increased in both 

cytosolic and membranous fractions of AD brains and that Hsp90 colocalizes with amyloid 

plaques118; however, the significance of these findings and the contribution of Hsp90 to the 

pathology of AD and other tauopathies remained unresolved for several years. It has since 

been established that Hsp90 plays a role in the regulation of tau hyperphosphorylation as 

well as the seeding of tau fibrils through interactions with various co-chaperones, including 

FK506 Binding Protein 51 kDa (FKBP51, a peptidyl-prolyl cis-trans isomerase), and the 

Activator of Hsp90 ATPase Homolog 1 (Aha1, the only co-chaperone known to stimulate 

Hsp90’s ATPase activity). Levels of both Aha1 and FKBP51 correlate directly with Braak 

stage in human AD brains; however, the mechanisms by which these two co-chaperones 

cooperate with Hsp90 to facilitate pathological tau progression are quite different (Figure 7).

Knockout of the FKBP5 gene (which encodes for FKBP51) reduced levels of tau in 

Fkbp5−/− mice, whereas the overexpression of FKBP51 by a viral vector in the rTg4510 

tau mouse model disrupted the proteasomal clearance of tau, which led to the accumulation 
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of oligomeric tau species, and eventually, neuronal cell death. The neurotoxic effects 

manifested by FKBP51 overexpression were attributed to increased interactions between 

FKBP51 and Hsp90, but precisely how the two proteins promote tau oligomerization was 

only recently elucidated. In a series of NMR-based structural investigations of the highly 

dynamic FKBP51/Hsp90/tau ternary complex, Hsp90 was shown to serve as a scaffold 

that orients the proline-rich region of tau into the FKBP51 PPIase catalytic site119. As tau 

hyperphosphorylation and aggregation have been shown to be dependent upon isomerization 

of its proline-rich region, it is believed that Hsp90 facilitates FKBP51-mediated proline 

isomerization of tau, which propagates tau fibril formation and leads to insoluble tau 

accumulation.

The mechanism by which Hsp90 interacts with Aha1 to modulate tau accumulation is 

less studied; however, combinations of both Aha1 and Hsp90 have been shown to be 

the most potent inducers of tau fibril formation identified to date. Shelton and coworkers 

demonstrated that the Aha1-E67K mutant, which is unable to bind Hsp90, is incapable 

of enhancing tau fibril formation; furthermore, these researchers determined that ATP is 

required for Aha1-stimulated tau aggregation120. These findings suggest that Aha1’s ability 

to control the Hsp90 ATPase cycle is critical for tau fibril formation – a proposition that 

was further supported by the fact that Aha1 overexpression in rTg4510 mice resulted in 

a significant increase in oligomeric and insoluble tau species, and subsequently led to 

neuronal loss and cognitive impairment. While the three-dimensional structure of the Aha1/

Hsp90/tau complex has not yet been solved, there is precedence that disruption of the Aha1/

Hsp90 complex can elicit a reduction in insoluble tau aggregation.

Hsp90, along with its co-chaperones and other smaller molecular chaperones, is also 

an important regulator of two major pathways that are associated with the clearance of 

misfolded and aggregated protein substrates – both of which are impaired in several 

central neuropathies. First, Hsp90 interacts with Heat Shock Cognate 71 kDa (Hsc70 / 

HSPA8) via the Hsc70-Hsp90 Organizer Protein (HOP) to regulate the Chaperone-Mediated 

Autophagy (CMA) pathway. Hsc70 is a chaperone that recognizes cytosolic proteins that 

contain a conserved KFERQ motif and transports them to the lysosomal membrane-bound, 

LAMP-2A receptor. There, LAMP-2A acts as a transporter to import protein substrates 

into the lysosome for their degradation and the recycling of amino acids121 (Figure 8). 

CMA is an important pathway for the clearance of oxidized cytosolic proteins, and several 

proteins associated with various neuropathic pathogeneses, such as tau and α-synuclein, 

are bonafide CMA substrates122,123. Interestingly, inhibition of Hsp90 with geldanamycin, 

a pan-Hsp90 inhibitor, was found to significantly activate the CMA response in IMR-90 

cells124, suggesting that Hsp90 may attempt to refold these protein substrates prior to 

trafficking them to the lysosome for degradation.

Second, Hsp90 works in concert with Hsp70 and at least three ubiquitin ligases to 

mediate the proteolytic ubiquitin-proteasome system (UPS), which is the primary catabolism 

pathway responsible for the degradation of cellular proteins in mammals. Under normal 

conditions, Hsp90 binds client proteins that are delivered by Hsp70 and stabilizes them by 

preventing the exposure of hydrophobic residues that are present on client substrates, so 

that they can be properly folded into their active three-dimensional conformations. However, 
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mutations or post-translational modifications to the protein substrate can destabilize its 

interaction with Hsp90. The destabilized complex recruits C-terminal Hsp70-interacting 

Protein (CHIP), an E3 ubiquitin ligase, to ubiquitinylate the mutated or modified 

client protein substrate. Consequently, the ubiquitinylated substrate is chaperoned to the 

proteasome for degradation and the recycling of amino acids (Figure 8). Ubiquitin, an 8 

kDa cellular protein that serves as a marker for the proteasomal degradation of proteins, is 

elevated in the brains of patients with Alzheimer’s disease125 and other neurodegenerative 

disorders. The increased ubiquitinylation of cellular proteins is a consequence of the cell’s 

attempt to remove aberrant and aggregated proteins in these disease states. An example of an 

Hsp90 client protein whose clearance is mediated by the UPS is the Huntingtin (Htt) protein, 

the mutant form of which is known to aggregate and give rise to Huntington’s disease. 

Inhibition of Hsp90 disrupts the interaction between Hsp90 and Htt and ultimately promotes 

its clearance through the UPS126. This pathway has also been shown to be important for the 

degradation of post-translationally modified tau, α-synuclein, and other neurotoxic proteins 

whose clearance is disrupted in central neuropathies.

Smaller Hsps have also been studied in the context of central neuropathies. In particular, 

Hsp27 has been extensively investigated for its role in AD pathology. Hsp27 is significantly 

upregulated in astrocytes and degenerating neurons within AD brains127,128, interacts 

with amyloid-β in amyloid plaques129, and has been shown to interact physically with 

hyperphosphorylated tau and GSK3β, a known tau kinase130. Importantly, Hsp27 can be 

co-immunoprecipitated with tau antibodies from AD brains, but not from healthy brains131. 

The overexpression of Hsp27 in AD appears to play a role in the persistence of several 

cell cycle markers in AD130 and contributes to microtubule instability by mediating tau 

phosphorylation. However, it is unclear whether Hsp27 is a contributing factor to AD 

pathology or whether it plays a role in the cell’s effort to combat progression of the disease. 

In PD, Hsp27 appears to play a neuroprotective role, as the overexpression of Hsp27 

manifests a potent anti-apoptotic effect against the damaging effects of wild-type and mutant 

forms of α-synuclein132.

Hsp27 and ɑB-crystallin, Two S-Hsps, in Neurodegeneration

Similarly, ɑB-crystallin is a polydisperse protein and a member of the S-Hsp family 

(HSPB5) that exhibits chaperone-like properties (including the ability to prevent denatured 

proteins from forming insoluble protein aggregates) and is also increased in AD brains 

and amyloid plaques129,133. Although ɑB-crystallin prevents the formation of Aβ1–40 

fibrils, it has been shown that ɑB-crystallin can promote β-sheet formation of amyloid-

β133 and increase Aβ1–40-associated toxicity134, presumably by promoting the nonfibrillar 

and highly toxic form of Aβ1–40. ɑB-crystallin has also been found to be the most 

abundant transcript in Multiple sclerosis lesions as compared to healthy brains168. Yet, 

others have found evidence that ɑB-crystallin confers a protective role against autoimmune 

encephalomyelitis135,136, stroke137, ischemic optic nerve neuropathy138, and myocardial 

infarction139. For these reasons, it has largely been accepted that ɑB-crystallin plays a role 

to combat neuropathic disease progression, but the specific role played by ɑB-crystallin 

plays appears to be disease state-specific.
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Along with ɑB-crystallin, Hsp27 has been shown to be critically involved in the 

pathogenesis of diseases associated with amyloid deposition. Specifically, the N-terminal 

portion of Hsp27 and ɑB-crystallin have been shown to prevent amyloid fibril formation 

and confer cytoprotective activities140. Tau protein has also been shown to bind Hsp27 as 

well as to ɑB-crystallin, and these interactions are believed to be involved in the mechanism 

by which cells defend themselves from the type of neuropathic injury associated with 

pathological tau aggregation141. It appears that interactions between beta-strands on S-Hsps 

such as Hsp27 and ɑB-crystallin and beta-strands of aggregation-prone proteins can result in 

either stabilization of their structures, prevention of their aggregation, and/or facilitation of 

their proteolytic degradation142.

Hsp90 as a Therapeutic Target for Central Neuropathies

Small molecules that modulate Hsp90’s inherent ATPase activity have shown great promise 

in preclinical models of neurodegeneration, but this success has not yet translated into the 

clinic. Dickey and coworkers143 were the first to demonstrate that Hsp90 inhibitors able 

to cross the blood-brain barrier could decrease tau protein levels in vitro. Later, it was 

discovered that Hsp90 inhibitors enhance the degradation of phosphorylated tau through 

a mechanism involving the Carboxy Terminus of Hsp70-interacting Protein (CHIP), a tau 

ubiquitin ligase. In fact, disruption of the Hsp90/CHIP-mediated refolding complex led to 

decreased levels of phosphorylated tau in a murine model of tauopathy. Furthermore, the 

Hsp90 inhibitor, 17-AAG, promoted the degradation of Akt/PKB, an upstream regulator 

of tau kinase Microtubule Affinity-regulating Kinase 2 (PAR1/MARK2). Hence, Hsp90 

inhibitors demonstrated the ability to modulate specific interactions between Hsp90 and 

CHIP, which serve to regulate pathways implicated in neurodegenerative tauopathies.

Geldanamycin, an N-terminal pan-Hsp90 inhibitor, manifested neuroprotective activity in 

cells that express mutant forms of tau via the increased expression of Hsp90 and Hsp70, 

which occurs upon N-terminal inhibition61. Similarly, A4, a novobiocin-based C-terminal 

Hsp90 inhibitor, protected primary neurons against amyloid-beta-induced neurotoxicity 

by inducing the expression of Hsp70 without concomitant inhibition of the chaperone 

machinery72. Clearly, the modulation of Hsp90 and Hsp70 expression represents a viable 

and promising approach for the treatment of central neuropathies in which the pathologies 

result from the accumulation of misfolded/aggregated proteins.

By 2008, Hsp90 had emerged as one of the most promising targets for the treatment 

of Alzheimer’s and Parksinson’s diseases. Consequently, a class of novobiocin analogs 

was developed and screened for their ability to protect differentiated SH-SY5Y cells 

from amyloid-beta-induced cell death via Hsp90 C-terminal inhibition. Data from these 

experiments showed several of these compounds to manifest neuroprotective activity at low 

nanomolar concentrations144. Not surprisingly, novobiocin-based small molecules continue 

to be actively pursued for neuroprotection against pathological species of amyloid and tau in 

neurodegenerative diseases.

Studies performed on mouse models of tauopathy have suggested that hyperphosphorylated 

tau species are the primary drivers of cognitive deficits in central neuropathies and that 
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Hsp90 plays a key role in regulating the phosphorylation of tau via several mechanisms145. 

First, it has been shown that Hsp90 inhibition can directly reduce the tau kinase activities 

of Cdk5146 and Akt147 and subsequently lower levels of tau aggregates in both cellular 

and mouse models of tauopathy. Consequently, direct inhibition of Hsp90 represents a 

therapeutic opportunity to decrease hyperphosphorylated tau species through disruption of 

tau kinase activities148. Second, Hsp90 influences the stability of hyperphosphorylated tau 

through interactions with Cdc37, a co-chaperone that co-localizes and interacts directly with 

tau and tau kinases in neuronal cells. It has been shown that Cdc37 knockdown in HeLa 

cells significantly alters the phosphorylation state of tau due to the reduced stability of 

tau kinases149. Lastly, Hsp90 appears to regulate the phosphorylation status of tau through 

interactions with a number of cellular phosphatases. In particular, two Hsp90 co-chaperones 

have been shown to dephosphorylate tau, PP5 and CacyBP/SIP150–152. A recent study found 

the levels of CacyBP/SIP to be significantly increased in regions of the brain that are 

implicated in several neurodegenerative diseases153. Another study suggested that impaired 

PP5 activity also contributes to tau hyperphosphorylation in AD brains150. Therefore, small 

molecules that modulate interactions between Hsp90 and these co-chaperones to regulate tau 

phosphorylation may also represent a therapeutic option to treat patients with AD or other 

tauopathies.

Small molecules that target Hsp90 and exploit its modulation of the UPS may also be 

therapeutically useful. The administration of geldanamycin has been shown to inhibit 

huntingtin protein aggregation in cellular models of Huntington’s disease154 and rescue 

dopaminergic neurons from degeneration in Drosophila models of Parkinson’s disease155, 

presumably through mechanisms involving the UPS. Hsp90 inhibition has also been shown 

to promote the proteasomal clearance of Htt126, suggesting that Hsp90 inhibition may be a 

therapeutic strategy to reduce the mutant Htt accumulation in Huntington’s disease.

Small molecule modulators of Hsp90 have demonstrated promising activities in in vivo 
models of central neuropathies as well. For instance, one CNS-permeable Hsp90 inhibitor, 

OS47720, was found to promote dendritic spine formation and rescue spatial learning 

and memory in a Tg2576 mouse model of Alzheimer’s disease via an HSF1-dependent 

mechanism156. More recently, a vaccine consisting of Grp94 and α-synuclein was shown 

to suppress PD-associated microgliosis in the substantia nigra and striatum in a chronic 

MPTP murine model of PD157, suggesting that formulations consisting of disease-related 

misfolded proteins and Hsps – specifically, isoforms of Hsp90 – may be beneficial for the 

treatment of central neuropathies that involve misfolded proteins. Lastly, the compound PU­

AD, an orally administered brain-penetrable inhibitor of Hsp90 epichaperomes discovered 

by the Chiosis laboratory, is being advanced by Samus Therapeutics to Phase 1 clinical 

evaluation in Alzheimer’s disease. In preclinical studies, PU-AD promoted neuronal survival 

by preventing the aggregation and hyperphosphorylation of tau, while stimulating its 

degradation158.

Aha1 as a Therapeutic Target for CNS Neuropathies

Disruption of the Aha1/Hsp90 complex has emerged as an alternative therapeutic strategy 

and may provide an additional opportunity to overcome the poor blood-brain barrier 
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permeability and toxicities associated with direct inhibitors of Hsp90 and Hsp70. Shelton 

et al. were the first to demonstrate that disruption of the Aha1/Hsp90 complex with small 

molecules can dramatically reduce tau fibril seeding and formation of insoluble tau species 

both in vitro and in cultured cells120. Importantly, the molecules were shown to manifest 

neuroprotective activity without inhibition of the Hsp90-mediated refolding process. Such 

data provides evidence that strategic disruption of the interaction between Hsp90 and Aha1 

can reduce tau accumulation without affecting Hsp90’s ability to fold other client proteins. 

Therefore, inhibition of the Aha1/Hsp90 complex represents a promising therapeutic 

strategy for the development of small molecules to treat AD and other tauopathies.

A select number of small molecule Aha1/Hsp90 disruptors have been discovered to date 

(Figure 9). In the aforementioned study, KU-177 demonstrated the ability to disrupt 

interactions between Hsp90 and Aha1 in co-immunoprecipitation experiments and ablated 

Aha1-driven enhancement of Hsp90-dependent tau aggregation120. Using a FRET-based 

screen, Stiegler and coworkers identified another small molecule, HAM-1, that disrupts the 

Aha1/Hsp90 complex and selectively inhibits Aha1-stimulated ATPase activity of Hsp90, 

but not Hsp90’s basal ATPase activity in the absence of Aha1159. In contrast to the well­

characterized interaction site between the N-terminal domain of Aha1 and middle domain 

of Hsp9075, NMR studies revealed that HAM-1 binds the Hsp90 N-terminus at a site that 

serves as a transient Aha1 C-terminal domain interaction site. This second interaction site is 

in close proximity to Hsp90’s ATP-binding site and the interaction between the two proteins 

at this site is transient only enough to allow for stabilization of a rate-limiting, closed state of 

the Hsp90 ATPase cycle160,161.

Two other Aha1/Hsp90 complex disruptors, A12 and A16, were identified by amplified 

luminescence proximity homogeneous assays (Alpha)162. Both of these compounds 

restored chloride channel activity in cells expressing mutant cystic fibrosis transmembrane 

conductance regulator (CFTR) protein and may be further developed to treat cystic fibrosis, 

as Aha1 appears to play a disruptive role in CFTRΔ508 degradation during cystic fibrosis 

pathology163,164. A quinaldine red ATPase assay was used to identify one final compound, 

SEW04784 that binds to the C-terminal domain of Aha1 and disrupts its interaction with 

Hsp90165. This compound inhibits the Aha1-stimulated ATPase activity of Hsp90, but not 

Hsp90’s basal ATPase activity.

HSR Induction and Hsp70 as Therapeutic Targets for CNS Neuropathies

Markers of HSR induction, including increased expression of Hsp70, have been found to 

accumulate in plaques and neurofibrillary tangles, and have been detected in the brains of 

patients with AD166,167. Interestingly, Hsp70 appears to combat the early stages of AD 

pathogenesis, as preparations of recombinant Hsp70, its co-chaperone Hsp40, and Hsp90 

can block the assembly of amyloid-β oligomers, although these preparations exhibited little 

effect during amyloid-β fibrillar assembly168. In the same study, researchers discovered that 

the anti-aggregation activity of Hsp70 could be enhanced by pharmacological stimulation of 

Hsp70 or conversely, inhibited by ATPᵧS, a non-hydrolyzable ATP analog.
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In PD, Hsp70, Hsp90, Hsp60, Hsp40, and Hsp27 have been detected in Lewy bodies 

extracted from patients with cortical Lewy body disease169. It is believed that the 

sequestration of these molecular chaperones into Lewy bodies results in their cellular 

depletion, and the subsequent loss of chaperone activity may lead to degeneration155. In 

agreement with this hypothesis, HSR induction and subsequent elevations in Hsp70 levels 

protected against α-synuclein-induced cell death in a yeast model of PD170 and prevented 

cell death in the MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) model of PD171,172. 

The exact role played by Hsp70 in PD – in particular, its contributions to α-synuclein­

induced toxicity – remains unclear. However, it has been shown that Hsp70 binds α­

synuclein filaments to mediate their inhibitory effects on the proteasome173. Hsp70 has also 

been shown to bind prefibrillar α-synuclein species and prevent key steps of α-synuclein 

aggregation174. It is clear that stimulation of Hsp70 manifests neuroprotective activity 

against α-synuclein-associated toxicity, which is supported by the fact that the expression of 

Hsp70 reduces aggregate formation and toxicity that is induced by C-terminally truncated 

forms of α-synuclein in cells. Furthermore, Hsp70 overexpression that results upon crossing 

human α-synuclein transgenic mice with transgenic mice overexpressing rat Hsp70 resulted 

in a significant reduction of insoluble α-synuclein aggregates175. In summary, agents whose 

activities result in HSR induction, enhancement (or restore) Hsp70 expression, and/or 

stimulation of chaperone activity are being actively pursued for their ability to protect 

neurons against toxicities associated with misfolded proteins in both AD and PD.

Outlook

Heat shock proteins (Hsps) are evolutionarily conserved proteins that play a critical role 

in cells by “chaperoning” newly formed polypeptides as well as minimizing protein 

aggregation through the refolding of denatured proteins or regulating their degradation 

through the UPS or CMA. While Hsps maintain cellular homeostasis in normal cells, they 

form distinct “epichaperome” complexes in diseased cells. In fact, their abnormal function 

or expression level (elevation or downregulation) can be observed in many pathological 

conditions, including both peripheral and central neuropathies. In this review, the biological 

roles played by the heat shock proteins during the pathology of such diseases as well as the 

therapeutic potential that small molecule inhibitors and/or modulators of heat shock proteins 

exhibit for the treatment of these diseases is summarized. Hsp regulation continues to be 

an active and compelling area of research, and may offer therapeutic opportunities to treat 

additional neuropathies in the future.
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Figure 1. 
Mechanism of HSF-1-mediated transcriptional activation
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Figure 2. 
Structure of the Hsp90 homodimer

Chaudhury et al. Page 24

Med Res Rev. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The Hsp90 ATPase/protein folding cycle
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Figure 4. 
Structures of select N-terminal Hsp90 inhibitors
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Figure 5. 
Structures of select C-terminal Hsp90 inhibitors
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Figure 6. 
Mechanism of cytoprotection afforded by KU-596 elicitation of the HSR
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Figure 7. 
Hsp90-mediated tau oligomerization
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Figure 8. 
Chaperone-mediated autophagy versus the ubiquitin-proteasome system for degradation of 

protein substrates
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Figure 9. 
Structures of select Aha1/Hsp90 disruptors
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