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Abstract

The emergence of diffusion, structural, and functional neuroimaging methods has enabled major 

multi-site efforts to map the human connectome, which has heretofore been defined as containing 

all neural connections in the central nervous system (CNS). However, these efforts are not 

structured to examine the richness and complexity of the peripheral nervous system (PNS), which 

arguably forms the (neglected) rest of the connectome. Despite increasing interest in an atlas 

of the spinal cord (SC) and PNS which is simultaneously stereotactic, interactive, electronically 

dissectible, scalable, population-based and deformable, little attention has thus far been devoted 

to this task of critical importance. Nevertheless, the atlasing of these complete neural structures is 

essential for neurosurgical planning, neurological localization, and for mapping those components 

of the human connectome located outside of the CNS. Here we recommend a modification to the 

definition of the human connectome to include the SC and PNS, and argue for the creation of an 

inclusive atlas to complement current efforts to map the brain’s human connectome, to enhance 

clinical education, and to assist progress in neuroscience research. In addition to providing 

a critical overview of existing neuroimaging techniques, image processing methodologies and 

algorithmic advances which can be combined for the creation of a full connectome atlas, we 

outline a blueprint for ultimately mapping the entire human nervous system and, thereby, for 

filling a critical gap in our scientific knowledge of neural connectivity.
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1. Introduction

Originating with the influential work of Brodmann (1909), anatomical atlases of the 

brain form the foundation of modern neuroscience research and provide the modern basis 

of neurosurgical practice and education. Prior to the advent of modern neuroimaging, 

most atlases of human neuroanatomy consisted of artistic drawings and/or photographs 

taken during post mortem dissections. Typically, such atlases conveyed neuroanatomical 

information obtained from only a single human subject. The extent of inter-subject 

variability across the general population is difficult—if not impossible—to extract with 

acceptable accuracy from such representations. Partly for this reason, much effort in the past 

30+ years has been devoted to compiling neuroanatomical atlases which not only capture 

brain architecture, but also convey its structural variability across subjects in both health 

and in disease. Because interactive three-dimensional (3D) atlases provide rapid appreciation 

of spatially-relative neuroanatomy useful for basic research and efficient surgical planning, 

numerous digital brain atlases have been designed (Thompson and Toga 1996, Thompson, 

Woods et al. 2000, Nowinski, Johnson et al. 2012).

Most recently, considerable attention has been granted to mapping the human connectome 

(Toga, Clark et al. 2012, Van Essen, Smith et al. 2013, Bookheimer, Salat et al. 2019, Van 

Essen, Donahue et al. 2019). As originally defined, the human connectome refers to “a 

comprehensive structural description of the network of elements and connections forming 

the human brain” (Sporns, Tononi et al. 2005). Since the brain stem and cerebellum are 

traditionally categorized as parts of the brain (Duvernoy 2012), these structures are typically 

considered to belong to the central nervous system (CNS), such that the human connectome 

includes them, according to many authors (Bota, Sporns et al. 2015, Quartarone, Cacciola 

et al. 2020). Nevertheless, a substantial and critically important portion of nervous system 

(NS) connections consist of neurons, connections, and circuits outside the brain itself, i.e. 
in the spinal cord (SC) and peripheral nervous system (PNS). Since 2010, the National 

Institutes of Health (NIH) have financially supported the Human Connectome Project 

(HCP) and its derivative projects (https://neuroscienceblueprint.nih.gov/human-connectome/

connectome-programs), whose purpose is to allow navigation of the brain in ways which 

were previously impossible, to study major brain pathways, and to compare major circuits 

from the standpoint of their architecture and function. While critically important, HCP 

efforts have focused exclusively on mapping the neuronal pathways within the central 

nervous system (CNS). This leaves connections involving the SC and PNS as contributors 

to the human connectome largely overlooked and, thus, points to the HCP as only a partial—

rather than comprehensive—mapping of the body’s neuronal connections.

Despite intense interest from clinicians and researchers in the task of employing modern 

imaging methods (Figure 1), addressing the injuries and diseases which affect the SC (Yoon, 
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Kim et al. 2013, Gupta, Gupta et al. 2014, Koskinen, Hakulinen et al. 2014, Hawasli, 

Rutlin et al. 2018), and the nerves which form the PNS (Cauley and Filippi 2013, Mathys, 

Aissa et al. 2013, Stoll, Wilder-Smith et al. 2013) (Figure 2), little attention has thus 

far been devoted to the goal of creating a population-based 3D atlas of these complex 

and wide-ranging structures. To satisfy the high standards of contemporary scientific and 

medical practice, such an atlas should be stereotactic, interactive, electronically dissectible, 

extendable, accurate, scalable, deformable, and completely labeled (Nowinski, Johnson et 

al. 2012, Nowinski, Chua et al. 2013). Furthermore, its navigation principles should include 

dynamic (de)composition, manipulation-independent 3D labeling, interaction combined with 

animation and quantification. Nevertheless, such organization, exploration, and visualization 

of these rich, whole-body connectomic data sets can be expected to form unprecedented 

challenges for the neuroinformatics community. With this in mind, we here propose that 

the concept and definition of the connectome should be augmented to include neuronal 

elements and connections within the entirety NS, rather than in the brain alone. Additionally, 

we advocate for the continued refinement of population-level, stereotactic, human atlas of 

the SC and PNS to complement current NIH-supported efforts to map the human brain 

connectome and thereby to fill a serious gap in the scientific state-of-the-art.

For the benefit of both scientific research and medical practice, we provide a 

general overview of existing neuroimaging techniques, image processing methodologies, 

algorithmic, and informatics advances which can be combined for the purpose of this 

important and momentous neuroimaging undertaking. Furthermore, recommendations and 

guidelines concerning the implementation of such a scientifically ambitious program are 

outlined and discussed.

2. Significance of SC and PNS connectome mapping

In neuroscience and many medical specialties—neurology, neurosurgery, and psychiatry, in 

particular—atlases of the NS and of its connections are essential for a variety of purposes, 

including neuroanatomy instruction, academic material preparation, clinical training, formal 

evaluation of medical practitioners, self-testing, neurosurgical planning, neurological 

localization, and many more (Brazis, Masdeu et al. 2011). Neuroanatomical knowledge 

of the cranial nerves (Table 1), of the musculature associated with the spinal nerves 

(Table 2), of their various nuclei and of their branching patterns has long been essential 

to medical students, neurologists, and neurosurgeons for purposes like 3D localization, 

surgical planning, stereotactic navigation during operating room interventions, and many 

more potential applications (Lo and Chiang 2016). The somatic nervous system (SNS or 

voluntary nervous system), for instance, is associated with the voluntary control of body 

movements via skeletal muscles. The system governs the process of voluntary reflex arcs 

which link sensory input to specific motor output. In contrast, the autonomic nervous system 

is a control system, acting largely below the level of consciousness, which regulates bodily 

functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, 

and sexual arousal. The system is the primary mechanism in control of initial physiological 

responses associated with the fight-or-flight response. These and other systems have been 

classically examined and characterized from post-mortem anatomy, although their mapping 
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using neuroimaging is scant. Their importance to the overall nervous system architecture of 

the human body is undeniable.

Virtual navigation of 3D stereotactic atlases via well-designed, user-friendly software is 

likely to decrease the perceived difficulty of human anatomy and to increase motivation by 

medicine and neuroscience trainees to study material with fewer time constraints imposed 

by surgery or by cadaveric dissections. In addition, 3D scenes and images obtained from 3D 

atlases can typically be saved in electronic format to provide high quality materials and to 

enable prompt preparation of anatomical materials in both print and in electronic formats.

It was not until the advent and popularization of magnetic resonance imaging (MRI) and 

computed tomography (CT) that sophisticated noninvasive 3D imaging of the CNS, PNS 

and SC became feasible (see Smith, Pekar et al. 2012, for overview). Although both 

methods have been widely used to image various anatomic components of the CNS and 

PNS, insufficient progress has been made toward creating a stereotactic, electronically 

dissectible, population-level 3D atlas of neural connections outside the brain. In complement 

to the benefits of MRI and CT, opportunities to perform virtual dissections of white matter 

(WM) tracts in the SC and to visualize nerve pathways in the human body are among 

the most promising applications of diffusion weighted imaging (DWI) and of diffusion 

tensor imaging (DTI) tractography within the fields of SC imaging and neurography. The 

spinocerebellar tracts, which provide a rich neural representation of the musculature in 

the trunk and extremities (Table 3), are of particular interest (e.g. Flechsig’s tract) in 

the study of proprioception and limb coordination (see Koh and Markovich 2020, for a 

recent review). By applying motion-probing gradients (MPGs) which suppress signals from 

locations with relatively unimpeded diffusion, DWI and DTI can reveal the trajectories of 

peripheral nerves and SC tracts along the lengths of their myelin sheaths, and allow one to 

distinguish vascular elements from neural ones (Skorpil, Rolheiser et al. 2011). For these 

reasons, aside from standard T1- and T2-weighted MRI (which can image nervous pathways 

accurately), DWI/DTI methodologies tailored for SC and PNS imaging are important in 

a variety of clinical applications (Takahara and Kwee 2010, Hiltunen, Kirveskari et al. 

2012), and their use can complement current efforts to map the human brain connectome. 

For example, one metric provided by DWI is mean diffusivity (MD), which quantifies the 

average extent of water diffusion along WM and nerve axons. It has been proposed that 

an abnormal MD increase along nerves reflects inflammation, whereas an MD decrease 

may be associated with demyelination, axonal loss, or with an increase in isotropic water 

volume (Eppenberger, Andreisek et al. 2014). A growing number of studies have pointed 

out that the lack of normative values for metrics like MD make statistical comparisons 

of individual patient lesions to the normal population difficult at best (Renoux, Facon et 

al. 2006, Shanmuganathan, Gullapalli et al. 2008, Theaudin, Saliou et al. 2012). Thus, 

the development of novel neuroimaging approaches for the accurate representation and 

quantification of SC and PNS connections is imperative and would be extremely useful to 

the clinical community. Such development could provide an adequate level of granularity 

when attempting to map the neuroanatomical innervation of the body (e.g. the afferents and 

efferents of the viscera; see Figure 3), to improve lesion localization, to improve diagnostic 

accuracy, to guide surgery and to enhance treatment planning, (Takahara and Kwee 2010).
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3. Advances required for SC imaging

A panel of clinicians familiar with the aims and strategic goals of the International 
Spinal Research Trust (spinal-research.org) and of the Wings for Life Foundation 
(wingsforlife.com) have noted that only very few research groups in the world are actively 

involved in the development of SC imaging methods, and that “the potential outcomes of 

advancing these methods are tremendous, enhancing our basic understanding of healthy 

human SC function, and impacting our ability to accurately diagnose and treat injury 

and disease, and [to] predict outcomes” (Stroman, Wheeler-Kingshott et al. 2014). These 

clinicians specializing in the treatment of SC pathologies additionally pointed out that there 

is an acute paucity of imaging methods tailored to address the unique challenges of imaging 

the human SC and its connections to the rest of the NS. Specifically, imaging this structure 

is inherently difficult (Thurnher and Law 2009) due to 1) the presence of bone surrounding 

the spinal canal, 2) physiological motion of the SC and adjacent tissues, 3) the SC’s small 

cross-sectional dimensions, and/or 4) the possible presence of metallic implants in injured 

patients.

Due to large differences in magnetic susceptibility between bone, soft tissue and air, 

magnetic field inhomogeneity in the vicinity of the SC is appreciable, and this can lead 

to poor image quality. Whereas shimming may alleviate the effects of this phenomenon, 

shimming cannot typically compensate for the presence of sharp, localized magnetic field 

variations, like within the cartilaginous disks between vertebrae (Stroman, Krause et al. 

2001). Most MRI methods are either based on a gradient echo (GE) or a spin echo 

(SE) pulse sequence. As echo time (TE) increases, such sequences gradually become 

T2*- or T2-weighted, respectively. SE uses a refocusing pulse to briefly reverse static 

field inhomogeneity effects, such that, in SE MRI, the signal is relatively free of field 

inhomogeneity artifacts at the peak of the refocusing pulse. For this reason, SE scans 

provide advantages for SC imaging (Stroman, Wheeler-Kingshott et al. 2014). Nevertheless, 

recent efforts have led to the tailored development of GE sequences which are also suitable 

for this purpose (Cohen-Adad and Wheeler-Kingshott 2014, Levy, Benhamou et al. 2015, 

De Leener, Levy et al. 2017, Grussu, Battiston et al. 2020).

Cerebrospinal fluid (CSF) in the spinal canal flows back and forth in the head-to-foot 

direction with every heartbeat, which can make SC imaging very challenging due to 

the motion artifacts induced by this phenomenon (Feinberg and Mark 1987, Matsuzaki, 

Wakabayashi et al. 1996). For this reason, one important requirement for effective PNS 

imaging is minimizing the possible presence of phasic motion artifacts due to respiration 

during the short diffusion-encoding time when MPGs are applied (Muro, Takahara et al. 

2005, Koh, Takahara et al. 2007). The periodic physiological motion of the cord due to 

heart beats and breathing can be partially addressed by synchronizing the slice acquisition 

intervals with the cardiac and respiratory cycles. Specifically, images can be acquired during 

the quiescent part of the cardiac cycle by means of peripheral gating or cardiac monitoring, 

with an appropriate delay specified for each subject so that data sampling can be performed 

during the cardiac diastole (Fenyes and Narayana 1999, Summers, Staempfli et al. 2006, 

Loy, Kim et al. 2007, Summers, Ferraro et al. 2010). Although this can increase the 

acquisition time by a factor of 2 or 3 and may also result in a variable repetition time 
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(TR) for image acquisitions, the approach has been found to be adequate in several studies 

(Gudbjartsson, Maier et al. 1996, Spuentrup, Buecker et al. 2003, Madi, Hasan et al. 2005, 

Kim, Loy et al. 2007). Techniques like dynamic shimming have been proposed to correct 

artifacts related to dynamic B0 variations due to respiration (van Gelderen, de Zwart et al. 

2007).

To reduce T1-induced signal variation due to variable TR, long TR values (typically in excess 

of 5 s) have been employed. Other techniques like motion-compensating gradients and 

averaging of the MR signal across multiple phases of motion can also be applied to reduce 

artifacts. Because the SC can undergo not only translational but also rotational motion 

during MR image acquisition, nonlinear phase navigation methods have been proposed 

to correct for bulk motion artifacts due to SC rotation (de Crespigny, Marks et al. 1995, 

Bammer, Fazekas et al. 2000). In addition, to account for motion-related changes in SC 

curvature, line scan imaging sequences have been implemented (Gudbjartsson, Maier et al. 

1996, Maier, Gudbjartsson et al. 1998) and specialized spinal phantoms which simulate 

physiological sources of noise in spinal MRI have been developed (De Tillieux, Topfer et 

al. 2018). Machine learning methods have been applied to speed up processing by removing 

DWI volumes which have been degraded by motion (Li, Shi et al. 2012, Li, Shi et al. 

2014). Additionally, faster DWI imaging can be attained using constrained reconstruction 

(Kim and Haldar 2016) and compressed sensing methods (Sharma, Fong et al. 2013) which 

under-sample k space and then impute un-sampled data, resulting in fully acquired image 

volumes. When imaging the SC, axial scans have been favored due to their ability to 

reveal more information about specific WM fiber bundles (Holder, Muthupillai et al. 2000, 

Schwartz, Chin et al. 2005, Cohen-Adad, Benali et al. 2008, Ellingson, Ulmer et al. 2008, 

Smith, Edden et al. 2008). To reduce image artifacts and spatial distortion, various correction 

methods can be applied, including the estimation of a nonlinear warping field constrained 

in the phase-encoding direction. This field can be estimated based on the phase difference 

between two GE images acquired at slightly different TE values (Schneider and Glover 

1991, Wilson, Jenkinson et al. 2002, Cusack, Brett et al. 2003).

Enhanced imaging sequences can be used in conjunction with offline motion correction 

algorithms which take into account the non-rigid nature of the spinal column in contrast to 

that of the head. The algorithms which have been found to be most valuable for this purpose 

are based on slice-wise motion correction, where B0 images are interspersed throughout 

the DWI acquisition process. Motion is then estimated based on the B0 images because 

they have the same contrast—although higher signal-to-noise ratios (SNRs)—compared to 

DWI images, and are thus easier to co-align. When combined with eddy current correction 

and robust diffusion tensor fitting, this type of imaging has been found to produce the 

highest contrast-to-noise ratio (CNR) and least variation in fractional anisotropy (FA) maps 

(Mohammadi, Freund et al. 2013)

The physical properties of the SC suggest that high spatial resolution is paramount for its 

precise and accurate imaging. For example, the widest cervical enlargement of the spinal 

canal is ~15 mm across, with average transverse areas of ~50, ~25 and ~30 mm2 in the 

cervical, thoracic and lumbar regions, respectively (Ellingson, Ulmer et al. 2007, Bosma and 

Stroman 2012). High-resolution slices can reduce partial volume effects, although reduced 
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voxel size also comes at the cost of decreased SNR, and optimization strategies have been 

developed to achieve an acceptable balance between the two (Stroman 2005). Whereas axial 

slices with high in-plane resolution and greater thickness can be acquired with high SNR, 

the scan time in this approach is higher than desirable. By contrast, sagittal slices allow 

greater coverage but suffer from greater partial volume effects unless slice thickness is very 

small (Clark, Barker et al. 1999, Ries, Jones et al. 2000).

4. Challenges of imaging the PNS

Whereas imaging of the SC is challenging primarily due to the magnetic susceptibility 

profile of this organ and to the large number of degrees of freedom involved in its 

motion, PNS imaging is additionally difficult because of the small cross section and 

abundant branching structure of the peripheral nerves and of their connections to one 

another. Nevertheless, MRI/DWI sequences which are particularly suitable for peripheral 

nerve neurography have been designed; these include short-tau inversion recovery (STIR), 

chemical shift selective (CHESS) techniques, spectral adiabatic inversion recovery (SPAIR), 

reversed fast imaging with steady-state precession (PSIF), suppression of heavily isotropic 

objects imaging (SUSHI), etc. For example, an STIR pre-pulse can implement robust fat 

suppression over a large FOV even in body areas which are subjected to substantial magnetic 

field inhomogeneities, such that the resulting imaging volumes can be post-processed 

using slab minimum intensity projections (MIPs) or the so-called soap-bubble projection 

(Wrazidlo, Brambs et al. 1991, Etienne, Botnar et al. 2002) with minimal image degradation 

due to artifacts (Takahara and Kwee 2010). 3D DW-PSIF has been used to evaluate cranial 

nerves, the lumbar plexus and peripheral nerves with good suppression of moving structures

—including vascular flow—which makes this sequence particularly amenable to nerve 

localization and/or presurgical evaluation (Hodaie, Quan et al. 2010, Chhabra, Subhawong 

et al. 2011). The use of a hyperbolic secant adiabatic inversion pulse might be advisable 

for imaging peripheral nerves in the neck and chest, where fat signals over the large FOV 

can obscure critical signals from areas deep within the body. DWI neurography techniques 

tailored specifically for whole body imaging, such as DWIBS—diffusion-weighted whole­

body imaging with background body signal suppression (Kwee, Takahara et al. 2008, 

Sasatomi and Ogata 2009, Yamashita, Kwee et al. 2009)—are particularly suitable for 

imaging nerves throughout the entire body for the purpose of PNS atlasing and connectomic 

mapping.

To address the imaging challenges posed by the length and small cross-section of the 

SC and peripheral nerves, reduced field of view (rFOV) methods have been developed 

and compared favorably to conventional single-shot echo-planar imaging (EPI) sequences 

(Zaharchuk, Saritas et al. 2011). In rFOV, a two-dimensional (2D) echo-planar radio 

frequency (RF) pulse is used to excite and subsequently to read out a rectangularly-shaped 

FOV by traversing k-space faster than usual for some given spatial resolution. In parallel 

imaging, which is a type of rFOV technique, images are acquired simultaneously from 

multiple coils and spatial information from each coil is used. This type of imaging has been 

highlighted as particularly useful for both SC and nerve imaging because the total number of 

phase-encoding steps is substantially reduced, the total acquisition time is decreased and the 

effects of susceptibility gradients are attenuated (Bosma and Stroman 2012). Two types of 
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parallel imaging are commonly used, namely sensitivity encoding (SENSE) and generalized 

auto-calibrating partially parallel acquisition (GRAPPA) (Blaimer, Breuer et al. 2004), both 

of which reduce susceptibility artifacts at the price of SNR. To compensate for this latter 

drawback, parallel imaging to reduce the EPI factor or the echo train length (ETL) can 

be enhanced by acquiring multiple thin image sections which are subsequently averaged 

for SNR enhancement. Aside from parallel imaging sequences like GRAPPA and SENSE, 

rFOV techniques which can correct motion artifacts include zonally magnified oblique 

multi-section (ZOOM) EPI sequences (Finsterbusch and Frahm 1999, Dowell, Jenkins et al. 

2009, Mohammadi, Freund et al. 2013) and saturation band methods (Martin, Aleksanderek 

et al. 2016).

Myelin imaging techniques are particularly promising for PNS mapping. Myelin water­

fraction (MWF) MRI, for example, indicates the fraction of tissue water bound to the 

myelin sheath, which is a valuable marker for myelination (Whittall, MacKay et al. 1997, 

Wu, Alexander et al. 2006). The MWF is significantly lower in patients with multiple 

sclerosis (MS) and with other pathological conditions (Laule, Leung et al. 2006), and this 

technique is thus very suitable when comparing the myelination of axons in the spine of 

a given patient to that typical of the general population. Because the MWF could be used 

as a neuroanatomical indicator of disease severity, inclusion of its values and descriptive 

statistical parameters in a SC atlas is highly recommended, like in that of Liu et al (2020). 

Other techniques which can be leveraged to image myelin include magnetization transfer 

imaging (MTI) (Schmierer, Scaravilli et al. 2004), quantitative magnetization transfer MRI 

(qMT-MRI) (Ou, Sun et al. 2009), inhomogeneous MT (ihMT) MRI (Taso, Girard et 

al. 2016) and ultrashort TE (UTE) MRI (Pang, Bow et al. 2018). MTI can indirectly 

characterize water protons in macromolecular structures like myelin and is particularly 

useful for investigating WM integrity because it provides a sensitive way to quantify WM 

abnormalities in the spinal cord and other structures containing WM (Zackowski, Smith et 

al. 2009). qMT MRI can capture the interactions between free water protons and immobile 

macromolecular protons in myelin, yielding indices like the macromolecular proton fraction 

(MPF), which correlates with WM myelin content (Smith, Dortch et al. 2014). ihMT MRI 

is a dipolar-order relaxation time-weighted imaging technique with enhanced selectivity 

for myelin-rich structures and which has been validated against the gold standard of 

green fluorescence protein microscopy (Duhamel, Prevost et al. 2019). Finally, UTE MRI 

facilitates the direct detection of myelin signal using whole body clinical MRI scanners. 

In its basic form, a 2D UTE sequence uses a half pulse or short rectangular pulse for 

signal excitation, followed by radial mapping of k-space from the center out. The data from 

these excitations are added to produce a single radial line of k-space and raw data are 

reconstructed after re-gridding using an inverse Fourier transform. Because myelin accounts 

for a small fraction of the total signal acquired, the primary signal are from long-T2 gray 

matter (GM) and long-T2 WM, which are then suppressed to generate high contrast specific 

to myelin (Ma, Jang et al. 2020).

An important consideration for PNS imaging is how to best leverage high-field imaging to 

map the SC and peripheral nerves in detail. High-resolution SC and nerve imaging at high 

field strengths (7 T and above) has been implemented with promising results and the results 

of such studies have been compared very favorably to those involving 1.5 T or 3 T imaging 
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using the rigorous Kellman method for SNR estimation (Kellman and McVeigh 2005, Barry, 

Vannesjo et al. 2017). High field imaging has been shown to benefit from increased ability 

to identify structures otherwise undistinguishable at lower field strengths, like denticulate 

ligaments and nerve roots (Sigmund, Suero et al. 2012). Resting state functional MRI has 

also been successfully explored at 7 T in healthy subjects (Barry, Rogers et al. 2016) 

as well as in patients with MS (Dula, Pawate et al. 2016). One technique suitable for 

the comprehensive imaging of the PNS in cadavers is that of micro-neurography (Bilgen, 

Heddings et al. 2005), which allows involves the use of 9 T scanners with gradients of 400 

mT/m to obtain images with stunning histological precision, at a spatial resolution of ~30 

μm. Intrinsic connectivity mapping of the SC in nonhuman examinations at 9.4 T has shown 

much potential (Chen, Mishra et al. 2015, Wu, Wang et al. 2018) and applications in human 

samples can be expected. Thus, it can be argued that imaging neural connections located 

outside the brain at high fields is equally as useful and promising of an approach as it is in 

the case of mapping the brain connectome.

5. Devising a full-body stereotactic coordinate system

Whereas consideration of the level of dermatomes provides a course level of localization 

(Figure 4), establishing a coordinate system convention which accommodates the entire 

body (including the trunk, abdomen and limbs) is essential for generating a comprehensive, 

stereotactic atlas of the PNS. One essential advantage of a stereotactic atlas is the ability to 

provide a reference coordinate system for the unique identification of any anatomic location 

and for facilitating the process of mapping such locations from the atlas to any individual 

subject and vice versa. In the case of brain atlases, such coordinate systems have been not 

only proposed, but are also being used widely by the neuroscience community. Such atlases 

include the original Talairach & Tournoux (1988) coordinate system, which was based on a 

single brain, as well as more sophisticated atlases which are based on populations of healthy 

adult subjects, such as the Montreal Neurological Institute (MNI) atlas (Evans, Collins et 

al. 1993). Although such reference coordinate systems for the brain are well established, 

analogous coordinate systems which encompass the rest of the human body have been 

proposed relatively recently (De Leener, Fonov et al. 2018).

The only full-body reference system which is broadly familiar to both life scientists 

and clinicians is that defined by the three ‘natural’ axes of the human body, namely 

the anterior-posterior (sagittal), mediolateral (left-right, or transverse), and longitudinal 

(superior-inferior, or sagittal) axes. This coordinate system is widely used not only in these 

two fields, but also in engineering and other areas of science (Gietzelt, Schnabel et al. 2012). 

If the human body is represented in standing position, the longitudinal axis is usually labeled 

as the z axis, whereas the antero-posterior and mediolateral axes typically correspond to 

the x and y axes, respectively. The origin of the coordinate framework is often within the 

sternum. Although this convention is certainly useful, it is by no means universal. For 

example, the origin of such a coordinate system often differs from context to context, as 

does the labeling of axes. If the body is in supine position, the antero-posterior axis can 

be conveniently labeled as the z axis, such that the body roughly lies in the x-y plane. 

Similarly, the origin of the coordinate system can be arbitrarily positioned in the trunk or 

upper abdomen, or anywhere along the longitudinal axis, for that matter. Thus, although this 
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convention is a starting point for defining a coordinate system for the human body, it is far 

from being a consistent one, and furthermore it does not provide a stereotactic reference 

system.

Several studies have attempted to provide a consistent reference system for the entire human 

body. In 1977, Malmivuo et al. proposed both a rectangular as well as a spherical polar 

coordinate system for the human torso (Malmivuo, Wikswojun et al. 1977). These authors 

noted that a rectangular coordinate system should be right-handed—to be consistent with 

the conventions of physical sciences—and proposed that the center of the coordinate system 

should be the geometric center of the heart. Although this convention can be very useful for 

the study of the cardiovascular system, it suffers from at least one important disadvantage, 

namely that the heart and the other thoracic organs move during respiration. This means 

that co-registering CT or MRI volumes acquired from different subjects can be particularly 

difficult if the center of the coordinate system changes location during the imaging scan.

Wang et al. (2008) proposed that (A) coordinate values should be normalized by individual 

thoracic size so that they are universal to the human population, and that (B) the origin of the 

coordinate system should be at the center of one of the thoracic vertebrae. One argument in 

favor of the latter convention is that only the spine is relatively stationary during respiration, 

which makes the spinal canal more suitable as a line of reference. To generate a coordinate 

system for the entire torso, Wang et al. identified the geometric centers of the fifth and tenth 

thoracic vertebrae (T5 and T10, respectively) and selected the line passing through these two 

points as the z axis, with the coordinate system origin at the geometric center of T10 and 

z increasing toward the head. T5 and T10 were selected because they are not adjacent to 

either the cervical or the lumbar vertebrae, such that the effect of neck or waist motion is 

minimized. The antero-posterior plane was defined as the sagittal mid-plane of the human 

trunk because this plane is stationary during respiration. With these assumptions, the x and 

y axes can be readily found since they are orthogonal with respect to each other and to the z 
axis.

Aside from the obvious advantages of the procedure described by Wang et al. for defining 

a coordinate system for the entire trunk, these authors’ strategy suffers from the drawback 

that small lateral flexions of the spinal column, together with subtle movements of the 

sagittal mid-plane, can introduce small motion artifacts which may systematically bias the 

procedure of co-registering any two distinct bodies, or even longitudinal scans of the same 

body. A more sophisticated approach is that of Vrtovec et al. (2005), who advocate the 

automatic definition and extraction of the spinal curve c(n) as a function of a continuous 

independent variable n which parametrizes the curve in terms of Cartesian coordinates, i.e. 

c(n) = [x(n),y(n),z(n)]. To render a complete 3D representation of the coordinate system, 

Vrtovec et al. use three directional, mutually orthogonal variables u, v and w, where v can 

be used to specify the extent of spinal column rotation at each point along the cord. One 

can define the quantity φ(n), parametrized as φ(v(n),y′(n)), as the angle between v and the 

corresponding projection y′(n) of the Cartesian coordinate y onto the plane orthogonal to the 

spine curve. By means of this procedure, any subject’s spine can be described by a specific 

curve, and co-registration of different subjects’ spines can be accomplished by nonlinearly 

mapping one curve onto the other, or by mapping the curves onto a reference curve specified 
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by an atlas. This powerful technique not only allows co-registration of any given subject’s 

trunk from her/his coordinate system to that of an atlas or vice versa, but also creates an 

appropriate context for defining a consistent, unique and reliable origin of a stereotactic atlas 

coordinate system.

Whereas the procedures described thus far for creating a stereotactic coordinate system can 

be applied to the human trunk, further complexities are introduced by the additional degrees 

of freedom associated with limb movement. Fortunately, however, the Standardization and 

Terminology Committee (STC) of the International Society of Biomechanics (ISB) has 

introduced standards for defining Cartesian coordinate systems for all joints of the upper 

and lower limbs, all of which are reviewed extensively by Wu et al. (2002, 2005). Based 

on the ISB conventions, the task of generating a full-body stereotactic coordinate system 

and of handling the considerable number of degrees of freedom involved can be made 

substantially simpler. Specifically, one can first assume rigidity of all joints in, say, the 

well-known posture of the Vitruvian Man proposed by Leonardo da Vinci around the 

year 1490. This allows one to reduce the problem at hand to one where only the angle 

between each limb and the sagittal plane of the spinal curve must be specified, such 

that a stereotactic coordinate system for the entire body can be created. Incidentally and 

significantly, conversion of coordinates between this system and either of the Talairach 

and MNI coordinate systems can be accomplished straightforwardly using a set of easily 

predefined scalings, rotations, and translations, all of which are affine transformations.

6. Atlasing extracranial neural connections

At least three essential requirements of robust PNS atlas design have been identified, namely 

modularity, scalability and decomposition (Nowinski, Johnson et al. 2012). A connectomic 

atlas which satisfies all these three features has individual components in the virtual model 

which can be composed and decomposed freely, and which can be shown, highlighted, 

hidden, measured and manipulated with ease. A deformable atlas of neural connections 

outside the brain could not only accommodate anatomic variations across different subjects, 

but could also offer the opportunity to explore and to classify variations in anatomy related 

to development or pathology (Thompson and Toga 1996).

Although the standard neuroanatomy of human cranial nerves in the context of their 

surrounding structures is illustrated in a variety of articles (Saylam, Ucerler et al. 2007, 

Skorpil, Rolheiser et al. 2011), anatomical treatises, textbooks and software suites (Snell 

2010), hardly any resource makes this information available in 3D together with depictions 

of surface neuroanatomy, vasculature, inter-connectivity and MRI. For example, Kakizawa 

et al. (2007) developed an interactive 3D model of the skull and cranial nerves based 

on measurements from several human specimens. Similarly, Yeung et al. (2011) created 

a computer-assisted learning module in 3D based on the Visible Human Project dataset. 

Although interactive, this module does not allow free rotation or translation and the level 

of detail provided is not as high as in the model of Kakizawa et al. The commercially 

available 3D Skull Atlas developed by Brown & Herbranson (eHuman.com) enables free 

display—although not manipulation—of individual cranial nerves or nuclei.
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One atlas of the cranial nerves which comes close to satisfying many of the stringent criteria 

set by today’s clinicians for purposes such as neurosurgical planning is that of Nowinski et 

al. (2012). These authors employed a ‘pyramidal principle from blocks to brain’ to construct 

virtual geometric models of individual cranial nerves and nuclei and to integrate these 

models with an existing brain atlas. Subsequent to initial extraction of cranial nerves and 

of their nuclei from MRI volumes, these authors implemented fine tuning, post-processing 

and synthesizing of each extracted structure via tubular iso-surface modeling followed by 

adaptive compression of each polygonal object to facilitate interactivity. Cranial nerves were 

(1) corrected against self-intersections as well as against intersections with major vessels 

(such as the internal carotid artery, the cerebellar arteries and the internal jugular vein) and 

with the brain, (2) labeled according to Terminologia Anatomica (FCAT 1998), and (3) 

uniquely colored and capped at each end.

One disadvantage of many atlases is that they are based on only one or a few specimens, 

which implies that they do not offer adequate information on inter-subject variability in 

the location, spatial configuration, and physical properties of neuroanatomical structures. 

In addition, an undesirable consequence of using standard MRI sequences to perform 

PNS imaging is the reduced ability to identify small branches of cranial nerves and of 

other nerves, which can only be appropriately imaged in post-mortem human specimens 

and/or with more advanced MRI scanning sequences which are specifically designed and 

customized for the task.

7. Algorithmic advances required for next-generation PNS and SC imaging

The creation of a 3D stereotactic atlas of neural connections outside the brain requires the 

development and implementation of highly robust and accurate non-rigid registration and 

deformation algorithms which can accommodate the large variability in human body shape 

and in the specific position of the limbs, trunk, neck and other body parts during MRI 

scanning. To address such challenges, warping algorithms must be developed to calculate 

3D deformation fields which can be used to register one subject to another in a nonlinear 

fashion, and subsequently to transfer anatomic data from distinct individuals to a unique 

anatomic template, which can enable information from different subjects to be integrated 

(Thompson, Woods et al. 2000). In other contexts, density-based approaches with high 

spatial dimensions (Christensen, Rabbitt et al. 1994) have been proposed to compute elastic 

matching transformation mappings between an atlas and a target subject, and to preserve 

atlas topology and connectivity under these complex transformations. In fragment bundling 

(Dorfer, Donner et al. 2013), by contrast, MRI or CT scans of body sections are treated as 

‘fragments’ of a larger structure (the whole body), which can be reconstructed by ‘bundling’ 

the volumes together to create a larger atlas which incorporates all available fragments.

In addition to deformable atlases which can be elastically transformed into the individual 

anatomic space of any particular subject, probabilistic atlases of neural connections 

outside the brain are also needed to generate anatomical templates which can serve as 

expert diagnostic systems and as knowledge-based imaging tools which retain quantitative 

information on inter-subject variability (Thompson, Woods et al. 2000). Importantly, the 

statistics associated with the physical properties of WM bundles in the PNS can be encoded 
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locally to specify the magnitude and directional biases of anatomical variation, as well as the 

effects of pathology and of other factors upon the SC and PNS (Collins, LeGoualher et al. 

1996, Davatzikos 1998). Yao & Summers (2009) demonstrated a statistical location model 

(SLM) to build a probabilistic density model for each organ which incorporates automated 

spinal column extraction and partitioning accompanied by abdominal cavity standardization, 

the latter being especially useful due to large variability among subjects. Similarly, Reyes 

et al. (2009) used principal factor analysis (PFA) to describe anatomical variability of body 

shape and structure and to create point distribution models of the human body whose 

principles can also be applied to the creation of a PNS atlas. Other approaches include fuzzy 

connectedness (Zhou and Bai 2007), expectation maximization (EM) (Lorenzo-Valdes, 

Sanchez-Ortiz et al. 2004), active contour models (Qatarneh, Noz et al. 2003), and thin 

plate spline (TPS) warping transforms (Park, Bland et al. 2003).

When designing a 3D stereotactic atlas of the SC and PNS, previous methods for creating 

analogous atlases of WM fibers in the human brain (Mori, Oishi et al. 2008) can be used 

as sources of inspiration and as starting points for the development of novel methodologies. 

Specifically, as in the case of the atlas template created by the International Consortium of 

Brain Mapping (ICBM), the task of creating SC and PNS atlases involves the opportunity to 

establish a PNS WM coordinate system, to study pathology mechanisms in relationship to 

WM anatomy, and to understand disease patterns in the context of population-level statistical 

analyses. Establishing a WM structural map of the SC and PNS which is similar in concept 

to previously created brain maps is therefore very important. SC atlases available thus far 

include the spinal fMRI 8 atlas of Stroman et al. (Stroman, Wheeler-Kingshott et al. 2014), 

the Spinal Cord Toolbox (De Leener, Levy et al. 2017), groupwise multi-atlas segmentation 

via the Java Image Science Toolkit (JIST) (Chen, Carass et al. 2013) and SpineSeg (Bergo, 

Franca et al. 2012).

Whereas a notable amount of effort has been dedicated to the task of performing automatic 

segmentation of the SC from MRI and CT, very little attention has been dedicated to the 

creation of an atlas of the PNS. Nevertheless, valuable insight can be gained in this respect 

from at least two sources, namely from (1) previous experience in mapping the lymphatic 

system, as well as from (2) methods for atlasing human vasculature. Because the lymphatic 

and vascular systems both involve tubular vessels which branch richly throughout the entire 

body, imaging analysis algorithms developed for these systems can be used as starting points 

for the development of PNS atlases (Figure 5).

Approaches which have been used for the development of 3D atlases of cerebral vasculature 

can, for the most part, also be applied to the creation of a PNS atlas. In the following 

order, these include: 1) nerve segmentation, 2) extraction of nerve centerline and radius, 

3) centerline editing, correction and smoothing, 4) modeling of nerve segments and 

bifurcations, and 5) nerve labeling.

Nerve segmentation can be performed in a manner analogous to that of vasculature 

segmentation, where segmentation seeding is followed by tracking the image intensity ridge 

representing the vessel skeleton in 3D (Bullitt, Muller et al. 2005). Subsequent to this, 

the tree structure of vessels (or nerves, in this case) can be calculated using parent-child 
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relationships which can be mapped using a minimum spanning tree algorithm (Bullitt, 

Aylward et al. 2001). Additional information which can be extracted involves the number 

of nerves, their radii and branching frequencies. The entire process has been referred to 

as ‘skeletonization’ (Nowinski, Thirunavuukarasuu et al. 2005) and its implementation 

typically involves the application of distance transforms in step (3) and of sliding average 

filters in step (4) (Yi and Hayward 2002). A tubular geometry has typically been adopted to 

model vascular segments, and this is also applicable to the modeling of nerves. Bifurcations 

have been rendered using so-called B-subdivisions (Nowinski, Thirunavuukarasuu et al. 

2005) which involve bicubic uniform B-spline surface refinement (Catmull and Clark 1978). 

Once defined, such an atlas may be deformed accordingly to a variety of representations 

(Figure 6a, 6b, 6c).

8. Accounting for inter-subject variability

Information on the inter-subject statistical variability of neuroanatomic inter-connectivity 

outside the brain, particularly as this pertains to statistical estimates of the thickness, 

shape, length and other physical properties of the SC at specific locations within the 

vertebral column, has recently become available, as this pertains to spinal vs. vertebral 

levels (Cadotte, Cadotte et al. 2015), the morphometry of the SC and of its GM (Fradet, 

Arnoux et al. 2014), and the microstructure of the human spinal cord (Duval, Saliani et 

al. 2019) and the inter-subject variability of cord morphometry (De Leener, Fonov et al. 

2018). Information regarding the inter-subject variability of spinal nerve thickness values 

and spatial trajectories is also slowly becoming available. Whereas these resources address 

the previous paucity of such information despite obvious prior and current need for it in 

the medical field, analogous knowledge pertaining to other nerves in the PNS is relatively 

lacking. For example, there is currently no accurate set of atlasing methods which can 

allow one to stereotactically map and quantify fine scale nerve branchings throughout the 

human body, the spatial location and inter-subject variability thereof, as well as basic 

physical parameters of peripheral nerves such as thickness, length, degree of myelination 

and connectivity with other neural pathways.

Information regarding the statistical variability of physical properties and of connectivity 

patterns pertaining to nerves and to the SC across the healthy adult population is very 

difficult to retrieve from available literature. Because off this, it is currently very challenging 

to assess and to compare the extent of nerve or SC damage in a given patient to normative 

values of these measures. This situation obviously constitutes a tremendous setback to the 

clinical task of evaluating the severity of various forms of PNS pathology, particularly in the 

context of current efforts aimed at implementing patient tailored approaches to treatment. At 

this time, for example, it is not altogether feasible or straightforward to assess the severity 

of nerve demyelination or of various forms of PNS injury by performing a personalized 

statistical comparison between the pathology profile of some given patient and the normative 

values for the physical parameters of the affective nerve as derived from the general, healthy 

adult population. Consequently, the current unavailability of a 3D stereotactic SC and PNS 

atlas which incorporates information pertaining to inter-subject variability in humans is of 

great detriment to neurological and neurosurgical practice.
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Based only upon ex vivo dissection methods, information is poor regarding the inter-subject 

variability of the physical properties, spatial configurations and connectomic patterns of the 

SC and of PNS structures (Gulekon, Anil et al. 2005). Recently, the compilation of Lang 

et al. (1995) was identified as “the most comprehensive, though far from being complete, 

account on measurements of the cranial nerves on 52 head halves” (Nowinski, Johnson 

et al. 2012). In their own study, Nowinski et al. attempted to infer the absolute ranges 

of cranial nerve diameters, although even this is challenging when only several specimens 

are available. As these authors pointed out, the task is made even more difficult by the 

presence of systemic inaccuracies, contradictions and obvious mistakes in the neuroanatomy 

literature. For the SC and other nerves excluding the cranial nerves, even such information 

appears to be lacking, which highlights the need for creating an atlas which can fill 

these lacunae in current knowledge. The availability of statistical normative values of PNS 

structures within a stereotactic, connectomic atlas could enhance the ability to evaluate 

neurogenic tumors, the extent of abnormal nerve thickening due to inflammatory processes, 

as well as the severity of nerve thinning resulting from traumatic injuries (Takahara and 

Kwee 2010). Quantitative measures afforded by DTI—e.g. FA, MD and the apparent 

diffusion coefficient (ADC)—have been measured in peripheral nerves (Kabakci, Gurses 

et al. 2007, Khalil, Hancart et al. 2008) and can be altered substantially in the presence of 

pathology. Nevertheless, it remains challenging to use such measures to quantify disease 

severity unless the statistical distribution parameters associated with each of these metrics in 

the healthy population is known a priori at the time of the neurological examination.

In the case of MS, studies involving statistical comparisons between the values of DTI­

derived metrics (FA, MD, ADC) acquired from MS patients and corresponding values 

acquired from healthy control (HC) subjects have been hampered by problematic issues 

related to the unavailability of a sufficiently large sample size which could allow one 

accurately to capture the variance in DTI measurements across the healthy adult population 

(Valsasina, Rocca et al. 2005, Ohgiya, Oka et al. 2007, Cruz, Domingues et al. 2009). In SC 

injury (SCI), increases in MD compared to HCs have been observed at injury sites whereas, 

in amyotrophic lateral sclerosis (ALS), decreases in FA and MD have been measured 

(Cosottini, Giannelli et al. 2005, Agosta, Rocca et al. 2009, Nair, Carew et al. 2010). Similar 

analyses have been implemented in progressive muscular atrophy (PMA), myelitis (Renoux, 

Facon et al. 2006, Lee, Park et al. 2008), tumors (Liu, Germin et al. 2011), SC ischemia 

(Loher, Stepper et al. 2001, Loher, Bassetti et al. 2003, Fujikawa, Tsuchiya et al. 2004, 

Kuker, Weller et al. 2004) and in other conditions. In many of these and other studies, the 

recent availability of normative samples has partially facilitated the application of statistical 

inference techniques, e.g. in studies of chronic pain (Albrecht, Ahmed et al. 2018), ALS 

(Paquin, El Mendili et al. 2018), spinal muscular atrophy (Querin, El Mendili et al. 2019), 

cervical myelopathy (Martin, De Leener et al. 2018) and MS (Yiannakas, Mustafa et al. 

2016).

9. Sex-specific PNS mapping

The sex specificity of the PNS needs to be taken into consideration if the imaging 

community is to provide maximal clinical utility involving sexual dimorphism. For instance, 

pelvic pain due to endometriosis in women has recently been examined using diffusion 
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imaging methods (Manganaro, Porpora et al. 2014). In this condition, tractography analysis 

has provided evidence of altered sacral roots microstructure, with FA values reduced along 

S1-S3 in endometriosis compared to HC females. Thus, from such studies, arises the 

possibility that sacral nerve root alterations can help to describe and explain the nature 

of endometriosis-related chronic pelvic pain. Likewise, DTI imaging of the female breast 

(Partridge, Murthy et al. 2010, Baltzer, Schafer et al. 2011) has been shown to have promise 

for mapping breast tumor and lesions resulting from cancer biopsies and excision surgeries 

(Partridge, Ziadloo et al. 2010, Tsougos, Svolos et al. 2014). Although tractography of 

nerve pathways in the breast has only been reported at 1.5 T (Wang, Zhang et al. 2014), 

such imaging at higher magnetic field strengths could critically complement the assessment 

of nerve damage during surgery or that of lesions due to radiation therapy. In males, 

DWI of the healthy prostate gland has been undertaken (Li, Chen et al. 2011) and DTI 

tractography has been shown to be particularly apt for mapping the periprostate fiber plexus 

(Panebianco, Barchetti et al. 2013). Such imaging of nerves pathways within and proximal 

to the prostate may be useful for patients with (suspected) prostate cancer (Park, Kim et 

al. 2014), where DTI may have specific diagnostic advantages over traditional transrectal 

ultrasound approaches (Chen, Pu et al. 2011). Thus, because of the need for sex specificity 

in many medical applications, imaging scientists should aim to create distinct PNS atlases 

for each sex.

10. Validation of SC and PNS atlasing

Some of the most noteworthy and widely used brain atlases, including that of Talairach 

& Tournoux (1988), have been utilized—often detrimentally (see Laird, Robinson et al. 

2010, for review)—without validation. The task of validation is exceptionally important 

when compiling an atlas of the SC and PNS because of (1) the large number of individual 

neuroanatomical structures involved and (2) the large inter-subject variability of their spatial 

locations, configurations, physical properties and connectomic patterns. Yeung et al., for 

example, had their anatomic models assessed by a board-certified otolaryngologist, by a 

neuroanatomist, as well as by graduate students (Yeung, Fung et al. 2011). Nowinski et al. 

validated their atlas by verifying that their constructed cerebral model conformed to typical 

human anatomy, topology and geometry based on compilations from the literature in terms 

of nerve origin, supply/terminal regions, course, branches, surrounding structures, definition 

and physical features (Nowinski, Thirunavuukarasuu et al. 2005). When undertaking atlas 

validation, it is very important to assess both intra- and inter-observer variability of nerve 

trajectories, diffusion properties (FA, MD, etc.) and other quantitative measures. This can be 

accomplished by calculating measures like the intra-class correlation coefficient (ICC) while 

accounting for two-way random effects, including observer effects and measurement effects 

(Guggenberger, Eppenberger et al. 2012, Guggenberger, Nanz et al. 2012). Other strategies 

like Bland-Altman analysis (Bland and Altman 1986) are also useful.

Manual segmentation of the SC and of the nerves can be used in combination with automatic 

and semi-automatic methods of segmentation to achieve cross-validation of atlas models. 

To this end, semi-automatic SC segmentation methods with intrinsic smoothness constraints 

have been proposed based on active surface (AS) models of the SC (Horsfield, Sala et al. 

2010). Importantly, the intra- and inter-observer reproducibility of such automated methods 
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has been compared favorably with that of manual methods (Coulon, Hickman et al. 2002, 

McIntosh and Hamarneh 2006). One advantage of AS models is that the centerline of the 

SC can be resampled into a plane in which the former is embedded as a straight line, thus 

allowing co-registration of SCs from different patients into the same morphological and 

anatomical space. More advanced techniques involving voxel-based morphometry (VBM) of 

the SC have been used to test the correlation between SC tissue loss and aging (Valsasina, 

Horsfield et al. 2012), to assess WM and GM atrophy due to SCI, as well as for other 

clinical purposes. Methods are now available for the fully automatic 3D segmentation of the 

thoracolumbar spinal cord and of the vertebral canal using K-means clustering (Sabaghian, 

Dehghani et al. 2020), variational segmentation methods (Tsagkas, Horvath et al. 2019), 

deep learning (Paugam, Lefeuvre et al. 2019), convolutional neural networks for contusion 

injury segmentation (Gros, De Leener et al. 2019, McCoy, Dupont et al. 2019), and tubular 

deformable models (De Leener, Kadoury et al. 2014, De Leener, Cohen-Adad et al. 2015). 

The reader is referred elsewhere (De Leener, Taso et al. 2016) for a comprehensive review of 

these methods.

For the CNS, to minimize mis-registration due to motion- and eddy-current image distortion, 

co-registration using 12-parameter affine transformation (Jenkinson, Bannister et al. 2002) 

and diffusion tensor multi-linear fitting can be applied to DWI volumes. The resulting 

transformation matrix can be applied to the calculated diffusion tensor fields (Alexander, 

Pierpaoli et al. 2001, Xu, Mori et al. 2003) and the linearly transformed fields from 

individual subjects can be averaged via scalar averaging of tensor elements, such that 

DTI metrics like FA, MD and the averaged tensor field can be recalculated. After this, 

nerves can be labeled according to standard neuroanatomical nomenclature. Registration 

quality can be assessed by placing landmarks at desired locations within the topological 

space of each subject, and affine transformation of the landmarks into atlas space can then 

be applied. The residual distances of the landmark displacements between the subjects 

and the atlas can then be compared statistically to craft probabilistic atlases. For the 

PNS, however, analogous data processing algorithms need to be developed, tested, and 

validated, which likely requires considerable effort by mathematicians, data specialists, and 

neuroinformaticians. For any new PNS atlasing effort, the task of determining how best to 

define, represent and manipulate a PNS atlas space will require considerable reflection and 

effort.

11. The neuroinformatics of NS-wide atlasing

The computer science and informatics needed to support the comprehensive mapping of the 

SC and PNS will be a serious and critical consideration for any major atlasing enterprise. 

Since the earliest days of brain mapping (Fox, Mikiten et al. 1994, Mazziotta, Toga et al. 

1995), databases of human brain primary and derived data have provided critical means 

for aggregating image volumes for atlasing and quantifying normal variability. Archives of 

anonymized raw and processed data, in addition to summary results, now permit researchers 

to explore data which were previously available only to the researchers who had acquired 

the original data. Data sharing of such archives has been proposed as an essential element 

of modern neuroimaging (Poline, Breeze et al. 2012), enabling the widest possible audience 

to utilize such data; the byproducts of such secondary analyses have been both novel 
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and wide-ranging (Van Horn and Ishai 2007). Nevertheless, existing archives designed 

primarily for databasing brain volumes are likely ill-equipped for storing, representing, and 

facilitating additional SC and PNS neuroimaging data sets. For instance, HCP diffusion 

imaging datasets of the brain acquired using the 3 T Connectome MRI scanner at the 

Massachusetts General Hospital typically require storage on the order of tens of Gigabytes 

per subject after conversion from standard DICOM file format to uncompressed NIFTI 

format (http://nifti.nimh.nih.gov/nifti-1). By contrast, MRI datasets of the entire body can 

be expected to larger by a factor greater than 10. Moreover, such datasets are likely to be 

acquired not as a single MR volume but rather as several volumes of the torso, limbs, and 

portions thereof. If high-resolution multimodal data (e.g. T1-, T2-weighted structural MRI, 

DWI, etc.) are acquired from the same bodily segments, aggregate full-body datasets will 

likely be relatively large compared to brain-only datasets. For this reason, a robust and 

reliable data storage and databasing infrastructure is likely required to accommodate such 

big data.

If data are obtained as a series of distinct scans for various body segments, then the 

harmonization, co-registration and unification of such scans into a single, complete and 

multimodal volume of the whole body for subsequent image manipulations and analysis 

will greatly challenge the capabilities of today’s most commonly available image processing 

platforms. Modern scientific workflows capable of executing processing tasks in parallel 

on large computational clusters will be required to apply novel methods for combining 

data volumes with differing dimensions and native coordinate systems. This will necessitate 

efficient software design practices for the judicious use of computer memory and rapid 

processing speed. Additionally, novel file formats may be needed to accommodate the 

aggregate datasets and results, to permit the exchange of PNS connectivity information, and 

to set the stage for subsequent atlasing efforts.

The coordinate system of the atlas used to represent SC and PNS connectivity will 

require careful consideration. Initially, there may not exist a single representation at all, 

but rather a family of linked spaces of different Cartesian coordinates in addition to 2D 

representations, 3D spherical projections and to other such atlas frameworks. The use of 2D 

projections for representing brain morphometry and connectivity have become common in 

the connectomics literature, e.g. for connectograms (Irimia, Chambers et al. 2012, Van Horn, 

Irimia et al. 2012); similar methods can be expected to provide similar utility for mapping 

SC and PNS connectivity. Spherical representations of brain anatomy are commonplace 

and imply the use of latitude/longitude coordinate systems for brain surface topology (Van 

Essen and Drury 1997). In each case, the coordinate systems provide abstracted but useful 

means for the organization and consideration of underlying information on brain anatomy 

and wiring. It can be expected that a considerable informatics effort will be required to a) 

create such 2D/3D representations, and then to b) craft computer algorithms and software 

for the efficient conversion of native data into these graphical representations and for their 

inclusion into large archives using appropriate file types.
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12. Modeling whole-body connectomic network properties

Network modeling approaches (Bassett and Sporns 2017), which have been so readily 

applied to data obtained in diffusion (Irimia and Van Horn 2016) and functional (Friston, 

Moran et al. 2013) imaging studies of the CNS, may also be applied to the PNS and, 

potentially, the complete NS. Several recent studies suggest this is possible. For example, 

Kerkman and colleagues (2018) utilized network analysis to examine the relationship 

between anatomical and functional connectivity in the musculoskeletal system as presented 

in the Hosford Muscle Tables (Hosford 1998). Anatomical networks were defined by the 

physical connections between 36 distinct muscles, while functional networks were based 

on intermuscular coherence assessed during postural tasks. They identified a modular 

structure of functional networks which was strongly shaped by the anatomical constraints 

of the musculoskeletal system. Changes in postural tasks were associated with frequency­

dependent reconfigurations of the coupling between functional modules. In a similar study, 

Murphy et al. (2018) constructed a simplified whole-body musculoskeletal network, also 

based on the Hosford tables, wherein single muscles were connected to multiple bones. 

Using this streamlined approach, they determined that a muscle's role in the network 

offered theoretical predictions for the susceptibility of surrounding components to secondary 

injury. Importantly, they illustrated that sets of muscles cluster into network communities 

which mimic the organization of control modules in primary motor cortex. Where systems 

could also be also informed by underlying NS connectomic imaging, fully predictive 

computational frameworks for assessment of system properties would be undoubtedly be 

feasible. These might have implications for clinical neurological disorders having primary 

motor symptomatology (e.g. Parkinson’s, Multiple Sclerosis, etc). Applications to other 

body-wide systems (such as the enteric system (Barth and Shen 2018) and/or gut-brain 

axis (Osadchiy, Martin et al. 2019)) may offer unique insights and a wider appreciation of 

overall system dynamics in health and in disease, at the individual and/or population level. 

However, the Hosford tables of musculoskeletal anatomy are likely to be insufficient to 

describe the neuronal properties of the CNS+PNS connectome, nor will they account for 

subject-to-subject variations. Though this may be helpful for identifying the positions of the 

joints and the motion of the limbs with respect to them, 3D motion capture is distinct from 

the mapping of neural pathways, which would be a superseding goal of any whole body 

connectomic atlas. For this, medical imaging is likely needed.

One might imagine considerable community-driven effort in the definition of the nodal 

structure of whole-body network models. For instance, as noted above, initial nodes defined 

at the neuromuscular junction for major muscle groups, based upon published tables thereof, 

has been employed in prior work to then explore PNS network structure. However, further 

refinement might be required to enhance the density of connectivity and explore in more 

detail the properties of networks with increasing density. Moreover, (my)enteric systems, 

autonomic, and somatic nervous system components may necessitate distinct network 

modeling. Cranial Nerve X alone innervates the heart, esophagus, stomach, and other 

organs via numerous branches and any simple nodal structure may not fully capture this 

extensive connectivity. Additionally, the nodal architecture may be multi-scaled, involving 

connections representing neuromuscular junctions, enteric nervous system, the sensorimotor 
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systems, joints, and so on. Moreover, simply defining nodes without accompanying network 

edges determined from neuroimaging would likely be insufficient for the examination of 

whole-body networks wherein. Spinal reflexes or the nuclei of the medulla, for example, 

include additional synaptic relays which current graph theoretical network applications do 

not often account for. At this time, in the absence of complete medical imaging data sets 

involving these varied systems, it would be hasty to be overly prescriptive on how such work 

might proceed. Indeed, these and other considerations suggest that the connectomics of the 

whole body do not simply involve scaling-up the type of mapping presently undertaken for 

the CNS alone. Determining the locations of nodal endpoints for the Vagus nerve alone is 

likely to require collective, multi-disciplinary input in order to achieve actionable consensus.

13. Potential clinical impact of full-body connectome mapping

Because DWI and DTI have the promise to facilitate the visualization of cranial, spinal and 

peripheral nerves—as well as of the SC itself—in 3D, the use of these modalities in the 

context of a stereotactic, deformable, population-level connectomic atlas has the potential to 

a) improve clinical understanding of PNS reflex processes (Table 4) and to b) enable finer 

diagnosis and characterization of peripheral nerve disorders. Additionally, this can optimize 

lesion localization, assist in mapping the entire human connectome, and also enable more 

straightforward evaluation of neural dysfunction compared to the extent to which this can 

be accomplished using conventional MRI alone (Takahara and Kwee 2010). GE MRI and 

DTI neurography could also be useful for determining the location and extent of injuries 

outside the SC or extradural space, particularly when findings can be corroborated by 

electroneurographic recordings (Yoshikawa, Hayashi et al. 2006).

Understanding the anatomic and connectomic variability of the SC and spinal nerves across 

patients is crucial in many clinical settings. A review of the recent clinical literature on 

PNS disorders suggests that a sophisticated 3D atlas of the PNS could substantially enhance 

the ability to diagnose a wide range of conditions, including peripheral neuropathy or 

plexopathy (Takahara and Kwee 2010, Healy, Redmond et al. 2020), peripheral and optic 

neuritis (Dailey, Tsuruda et al. 1997, Maravilla and Bowen 1998, Moore, Tsuruda et al. 

2001, Meltzer, Frohman et al. 2018), peripheral nerve sheath tumors (Weber, Montandon 

et al. 2000, Lee, Kim et al. 2020), traumatic injuries, neuralgias and nerve compressions 

(DeSouza, Hodaie et al. 2014, Konieczny, Reinhardt et al. 2020), axonotmesis and 

neurotmesis (Chen, Carass et al. 2011, Chen, Carass et al. 2013), nerve root irregularities 

and loss of unidirectional nerve course, nerve entrapment due to carpal tunnel syndrome 

(Kabakci, Gurses et al. 2007, Khalil, Hancart et al. 2008, Stein, Neufeld et al. 2009, 

Hiltunen, Kirveskari et al. 2012, Negm, Nagm et al. 2017), etc. For many other conditions, 

preliminary studies indicate that the availability of a stereotactic, deformable, population­

based and connectomic atlas of the SC and PNS would be useful for predicting the course 

of disease, for monitoring disease progression, and for monitoring the effects of therapeutic 

interventions (Valsasina, Rocca et al. 2005, Ohgiya, Oka et al. 2007, Cruz, Domingues et 

al. 2009, Bosma and Stroman 2012, Tarawneh, D'Aquino et al. 2020). Such an atlas would 

greatly improve the ability of DTI tractography to quantify the severity of neurological 

deficits due to MS (Schwartz, Duda et al. 2005, Durand-Dubief 2020), ALS (Agosta, Rocca 

et al. 2009, Nair, Carew et al. 2010, Valsasina, Horsfield et al. 2012, Paquin, El Mendili 
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et al. 2018), encephalomyelitis (Constantinescu, Farooqi et al. 2011, Koelman, Benkeser 

et al. 2017), traumatic SCI (Deboy, Zhang et al. 2007, Rao, Zhao et al. 2013, Seif, Curt 

et al. 2018), SC tumors and vascular disorders of the SC (Ozanne, Krings et al. 2007, 

Setzer, Murtagh et al. 2010), spinal dysraphism (Hatem, Attal et al. 2009), Brown-Sequard 

Syndrome (Tattersall and Turner 2000), cervical disc herniation (Chen, Carass et al. 2011, 

Chen, Carass et al. 2013, Varlotta, Ge et al. 2020), irritable bowel syndrome (Labus, 

Naliboff et al. 2008), etc. Finally, a detailed and multimodal atlas of the type proposed 

here would be invaluable for assessing the severity of traumatic axonal injury at various 

locations along either nerves or along the SC (Song, Sun et al. 2003, Loy, Kim et al. 2007, 

Kim, Loy et al. 2010, Noristani, Boukhaddaoui et al. 2017) using such metrics as local FA, 

ADC and MD, which have been shown to be sensitive markers of change in axonal integrity.

14. Conclusion

Mapping the connectome of the human brain has been a task of tremendous importance 

and whose achievement remains likely to facilitate a broad range of scientific advances 

in clinical practice in addition to numerous substantial discoveries in neuroscience (Toga, 

Clark et al. 2012). Such mappings of CNS connectivity are now being actively examined 

across the lifespan in large-scale studies from North America (Kruggel, Masaki et al. 

2017, Hagler, Hatton et al. 2019), Europe (Amunts, Ebell et al. 2016), and elsewhere. 

Nevertheless, because a large proportion of NS processes in the human body lie completely 

outside the brain, our desired understanding of structural and functional neural patterns and 

of their importance in health and disease remains incomplete without the availability of a 

connectomic, stereotactic atlas of the SC and PNS. Although useful technological advances 

have been made to facilitate connectome mapping, our knowledge of neural connections 

outside the brain remains unsystematic, fragmentary and often disorganized. Importantly, no 

major research enterprise has been dedicated to the tasks of (1) synthesizing the plethora of 

neuroimaging techniques now available for PNS and SC imaging and (2) developing novel 

medical imaging techniques for mapping nerve pathways outside the brain at a level of detail 

which can rival the state of the art in brain connectomics. Because such progress is critical 

for the advancement of both scientific knowledge and clinical practice, we hereby propose 

the implementation of a large-scale scientific effort to map neural connections outside the 

brain, thereby complementing current WM brain mapping efforts and completing the task of 

charting the entirety of the human connectome.
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Figure 1. 
The complete human connectome comprises not only the CNS but also nervous tissues 

located throughout the body which are suitable for neuroimaging. These include: a. the 

CNS (the authors); b. brachial plexus (Gasparotti 2011); c. cervical spinal cord (Vedantam, 

Jirjis et al. 2014); d. thoracic spinal cord (Alizadeh, Fisher et al. 2018); e. lumbar spinal 

cord (Eguchi, Ohtori et al. 2011); f. sacral spinal cord (van der Jagt, Dik et al. 2012)◊; g. 

sciatic nerve (Cervantes, Van et al. 2018); h. cranial nerves (Zolal, Sobottka et al. 2016)◊; i. 

the enteric nervous system (Stowers Institute for Medical Research)◊; j. extremity: forearm 

(Haakma, Jongbloed et al. 2016)◊; k. extremity: wrist (Lindberg, Feydy et al. 2013)◊; l. 

extremity: thigh (Charles, Suntaxi et al. 2019)♦; m. the reproductive system (Hedgire, 

Tonyushkin et al. 2016); n. extremity: tibial nerve (Simon, Lagopoulos et al. 2016); o. 

visible human (male), National Library of Medicine, National Institute of Health, Bethesda, 

USA.♦

◊ Reproduced with author’s/publisher’s permission; ♦ Open access, unrestricted use.
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Figure 2. 
Cranial nerves of the brain. The cranial nerves provide motor and sensory innervation 

mainly to the structures within the head, neck, and into the upper torso. Sensory innervation 

includes both general sensations such as temperature and touch, and specialized innervations 

such as taste, vision, smell, balance and hearing. The olfactory nerve (I) conveys the sense 

of smell. The optic nerve (II) transmits visual information. The oculomotor nerve (III), 

trochlear nerve (IV) and abducens nerve (VI) coordinate eye movement. The trigeminal 

nerve (V) comprises three distinct parts: The Ophthalmic (V1), the Maxillary (V2), and the 

Mandibular (V3) nerves. Lesions of the facial nerve (VII) may manifest as facial palsy. The 

vestibulocochlear nerve (VIII) splits into the vestibular and cochlear nerve. The vestibular 

part is responsible for innervating the vestibules and semicircular canal of the inner ear; 

this structure transmits information about balance, and is an important component of the 

vestibuloocular reflex, which keeps the head stable and allows the eyes to track moving 

objects. The cochlear nerve transmits information from the cochlea, allowing sound to be 

heard. The glossopharyngeal nerve (IX) innervates the stylopharyngeus muscle and provides 

sensory innervation to the oropharynx and back of the tongue. The vagus nerve (X) provides 

sensory and autonomic (parasympathetic) motor innervation to structures in the neck and 

also to most of the organs in the chest and abdomen. Damage to the accessory nerve (XI), 

involved in head motion and the movement of the shoulders, will lead to ipsilateral weakness 

in the trapezius muscle. The hypoglossal nerve (XII), responsible for tongue movement, is 

unique in that it is innervated from the motor cortices of both hemispheres of the brain. See 

also Table 1.
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Figure 3. 
The dermatomes of the body innervated by spinal nerves. A dermatome is an area of the skin 

which is primarily supplied by a single spinal nerve. There are 8 cervical nerves (C1 being 

an exception with no dermatome), 12 thoracic nerves, 5 lumbar nerves and 5 sacral nerves. 

Each of these nerves relays sensation (notably pain information) from a particular region of 

skin to the brain. Along the thorax and abdomen of the human body the dermatomes are 

like a stack of discs, each supplied by a different spinal nerve. Along the arms and the legs, 

the pattern is different: the dermatomes run longitudinally along the limbs. Although the 

general pattern is similar in all humans, the precise zones of innervation are unique to each 

individual.
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Figure 4. 
Spinal afferents and efferents of the viscera (the soft internal organs of the body, especially 

those contained within the abdominal and thoracic cavities). These include, the lungs, heart, 

liver, pancreas, stomach, intestines, kidneys, bladder, and genitalia, among other smaller 

organs.
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Figure 5. 
Idealized depiction of the CNS and PNS represented in a 3D Cartesian coordinate system. 

Such a system can be formed by rotating and extending the classic Talairach and Tournoux 

brain atlas laterally, along the anterior/posterior axis, and inferiorly until it contains the 

limits of the body.
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Figure 6. 
A. The CNS/PNS represented on a 2D planar projection system in which various nerves 

have been laid flat. B. Alternative version of A displaying a limb arrangement similar to 

that of the familiar Vitruvian Man pose. C. Spinal and peripheral nerves superimposed and 

projected onto the surface of a sphere to provide a latitude and longitude-based—or azimuth 

and elevation-based—polar coordinate system, similar to the commonly utilized spherical 

representations of the hemispheres of the brain.
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Table 1.

The cranial nerves, their sensory modality, and basic functions. After Wilson-Pauwels, L., Akesson, E.J., and 

Stewart, P.A. (1988) Cranial Nerves: Anatomy and Clinical Comments. B.C. Decker, Philadelphia.

Modality

Nerve Number Somatic
Motor

Brachial
Motor

Visceral
Motor

Visceral
Sensory

General
Sensory

Special
Sensory

Function

Olfactory I ✓ Smell

Optic II ✓ Vision

Oculomotor III
✓

Motor control of all extraocular 
muscles except the superior oblique 
and lateral rectus muscles

✓ Parasympahetic supply to ciliary and 
pupillary constrictor muscles

Trochlear IV ✓ Motor control of the superior oblique 
muscle

Trigeminal V ✓ Motor control to muscles of 
mastication, etc. (V3)

✓

Sensory function from the surface of 
head and neck, sinuses, meninges, 
and lymphatic membrane (external 
surface)

Abducens VI ✓ Motor control to lateral rectus muscles

Facial VII ✓ Motor control to the muscles of facial 
expression, etc.

✓
Parasympathetic supply to all glands 
of the head except the parotid and 
integumentary glands

✓
General sensation from a small area 
around the external ear, tympanic 
membrane (external surface)

✓ Taste, anterior two-thirds of tongue

Vestibulocochlear VIII ✓ Balance

✓ Hearing

Glossopharangeal IX ✓ Motor control of the stylopharyngeus 
muscle

✓ Parasympathetic supply to parotid 
gland

✓ Visceral sensation from carotid body

✓
General sensation from posterior one­
third of tongue and internal surface of 
the tympanic membrane

✓ Taste, posterior one-third of tongue

Vagus X ✓ Motor control of pharynx and larynx

✓ Parasympathetic supply to pharynx, 
larynx, thoracic and abdominal viscera

✓ Visceral sensory input from pharynx, 
larynx, and viscera

✓ General sensation from small area 
around external ear
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Modality

Nerve Number Somatic
Motor

Brachial
Motor

Visceral
Motor

Visceral
Sensory

General
Sensory

Special
Sensory

Function

Accessory XI ✓ Motor control of sternomastoid and 
trapezius muscles

Hypoglossal XII
✓

Motor control of intrinsic and 
extrinsic muscles of the tongue except 
palatoglossus
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Table 2.

Spinal segment innervation of major muscles. Spinal segments: C = cervical; T = thoracic; L = lumbar; S = 

sacral; major spinal segments indicated in bold.

Limb/Joint Movement Peripheral Nerve (Muscle) Spinal Cord Segment

Arm Abduction Supracapular (supraspinatus) C5, C6

Elbow Flexion Musculocutaneous (brachialis, biceps) C5, C6

Radial (brachioradialis) C5, C6

Extension Radial (triceps) C6, C7, C8

Wrist Flexion Median, ulnar C6, C7, C8

Extension Radial C5, C6, C7, C8

Hand Finger movements Median, radial, ulnar C7, C8, T1

Thumb movements Median, radial, ulnar C7, C8, T1

Hip Flexion Lumbar spinal nerves, femoral (iliopsoas) L1, L2, L3

Extension Inferior gluteal (gluteus maximus) L5, S1, S2

Knee Flexion Sciatic (hamstrings) L5, S1, S2

Extension Femoral (quadriceps) L2, L3, L4

Ankle Dorsoflexion Sciatic → peroneal (tibiaslis anterior) L4, L5

Plantar flexion Sciatic → tibial (gastrocnemius) S1, S2
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Table 3.

The major spinocerebellar tracts.

posterior spinocerebellar tract anterior spinocerebellar tract cuneocerebellar tract

origin Clarke’s nucleus (T1-L2/L3) spinal border cells (T12-L5) lateral cuneate nucleus (medulla)

body part represented trunk, lower extremities trunk, lower extremities trunk, upper extremities

principle inputs mechanoreceptors in muscles, 
joints, skin

mechanoreceptors, movement-related 
interneurons

mechanoreceptors in muscles, 
joints, skin

midline crossing none once in spinal cord, again in cerebellum None

peduncle used to enter 
cerebellum

inferior Superior Inferior
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Table 4.

Peripheral nerves, their spinal segments, and their reflexes commonly assessed by clinicians. Spinal segments: 

C = cervical; T = thoracic; L = lumbar; S = sacral.

Peripheral nerve Reflex Muscles involved Principal SC segment

Musculocutaneous Biceps Biceps brachii C5

Radial Brachioradialis Brachioradialis C6

Radial Triceps Triceps brachii C7

Femoral Knee-jerk (patellar) Quadriceps femoris L4

Tibial Ankle-jerk (Achilles) Gastrocnemius, soleus S1
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