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ABSTRACT: Molecular dynamics simulations provide a mechanistic description of molecules by relying on
empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven
models derived with machine learning approaches. Here, we present TorchMD, a framework for molecular
simulations with mixed classical and machine learning potentials. All force computations including bond, angle, dihedral, Lennard-
Jones, and Coulomb interactions are expressed as PyTorch arrays and operations. Moreover, TorchMD enables learning and
simulating neural network potentials. We validate it using standard Amber all-atom simulations, learning an ab initio potential,
performing an end-to-end training, and finally learning and simulating a coarse-grained model for protein folding. We believe that
TorchMD provides a useful tool set to support molecular simulations of machine learning potentials. Code and data are freely
available at github.com/torchmd.

1. INTRODUCTION

Classical molecular dynamics (MD) is a compute-intensive
technique that enables quantitative studies of molecular
processes. Of the possible modeling approaches, classical all-
atom MD represents all of the atoms of a chosen system
explicitly (including solvent) and accounts for interatomic
forces through classical bonded and nonbonded potentials. It
has seen remarkable developments due to its fidelity, and it has
been applied with success to problems such as conformational
changes, folding, binding, permeation, and many others.1 It
has, however, faced two significant challenges: first, the
calculation of the tables of interatomic potentials known as
force fields2 has traditionally been highly time-consuming and
requires significant fine-tuning; second, it is compute-intensive,
and despite heroic efforts and progress in accelerating MD
codes,3 it still struggles to reach the temporal scales of several
important physiological processes.
Machine learning (ML) potentials have become especially

attractive with the advent of deep neural network (DNN)
architectures, which enable the example-driven definition of
arbitrarily complex functions and their derivatives. As such,
DNNs offer a very promising avenue to embed fast-yet-
accurate potential energy functions in MD simulations, after
training on large-scale databases obtained from more expensive
approaches. One particularly interesting feature of neural
network potentials is that they can learn many-body
interactions. The SchNet architecture,4,5 for instance, learns a
set of features using continuous filter convolutions on a graph
neural network and predicts the forces and energy of the
system. SchNet was originally used in quantum chemistry to
predict energies of small molecules from their atomistic
representations. A key feature of using SchNet is that the
model is inherently transferable across molecular systems.
More recently, this has been extended to learn a potential of
mean force which involves averaging of a potential over some

coarse-grained degrees of freedom,6−12 which however pose
challenges in their parametrization.13,14 Indeed, molecular
modeling on a more granular scale has been tackled by so-
called coarse-graining (CG) approaches before,15−20 but it is
particularly interesting in combination with DNNs.
Here, we introduce TorchMD, a molecular dynamics code

built from scratch to leverage the primitives of the ML library
PyTorch.21 TorchMD enables the rapid prototyping and
integration of machine-learned potentials by extending the
bonded and nonbonded force terms commonly used in MD
with DNN-based ones of arbitrary complexity. The two key
points of TorchMD are that, being written in PyTorch, it is
very easy to integrate other ML PyTorch models, like ab initio
neural network potentials (NNPs)5,22 and machine learning
coarse-grained potentials.8,9 Second, TorchMD provides the
capability to perform end-to-end differentiable simula-
tions,14,23,24 being differentiable on all of its parameters.
Similarly, Jax25 was used to perform end-to-end differentiable
molecular simulations on Lennard-Jones systems26 and for
biomolecular systems as well.27 Other efforts have tackled the
integration of MD codes with DNN libraries, although in
different contexts. For all-atom models, Wang et al.23

demonstrated the use of graph networks to recover empirical
atom types. Ab initio QM-based training of potentials is being
tackled by several groups, including Gao et al.,22 Yao et al.,28

and Schütt et al.29 but not using a differentiable PyTorch
environment.
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This paper provides an account of the capabilities of
TorchMD (Section 2), highlighting the functional forms
supported and an effective fitting strategy for data-driven
DNN potentials. All of the TorchMD code, including a tutorial
on coarse-graining the chignolin protein and the corresponding
training data, is open-source and available at github.com/
torchmd.

2. METHODS
2.1. TorchMD Simulations. TorchMD is, at first glance, a

standard molecular dynamics code. It offers NVT ensemble
simulations including a Langevin thermostat. Starting atomic
velocities are derived from a Maxwell−Boltzmann distribution.
Integration is done using the velocity Verlet algorithm. Long-
range electrostatics are approximated using the reaction field
method.30 TorchMD also supports simulations of periodic
systems. Minimization is done using the L-BFGS algorithm.
Because it is written in Python using PyTorch arrays, it is also
very simple to modify, and simulations can be run on any
devices supported by PyTorch (CPU, GPU, TPU). However,
unlike specialized MD codes31 it is not designed for speed.
TorchMD uses chemical units consistent with classical MD
codes such as ACEMD,31 namely kcal/mol for energies, K for
temperatures, g/mol for masses, and Å for distances.
2.2. Analytical Potentials. TorchMD supports reading

AMBER force-field parameters through parmed.32 In addition
to that, to allow for faster prototyping and development, it
implements its own easy to read YAML-based force-field
format. An example YAML force-field file for the simulation of
a water box is given in Figure 1. Currently, TorchMD’s missing
features include hydrogen bond constraints and neighbor lists.
TorchMD implements the functional form of the AMBER

potential.33 It offers all basic AMBER terms: harmonic bonds,
angles, torsions, and nonbonded van der Waals and electro-
static energies. The above potentials are implemented as
follows. The bonded potential terms are calculated as

= −V k r r( )bonded eq0
2

where k0 is the force constant, r is the distance between the
bonded atoms, and req is the equilibrium distance between
them.
The angle terms are calculated as

θ θ= −θV k ( )angle eq
2

where θ is the angle between the three bonded atoms, kθ is the
angular force constant, and θeq is the equilibrium angle.
The torsion terms are calculated as

∑ ϕ γ= + −
=

V k n(1 cos( ))torsion
n

n

n
1

max

where ϕ is the dihedral angle between the four atoms, γ is the
phase offset, and kn is the amplitude of the harmonic
component of periodicity n.
The nonbonded van der Waals (VdW) terms are calculated

as

= −V
A

r
B
rVdW 12 6

where A = 4ϵσ12 and B = 4ϵσ6 with ϵ being the well depth of
the interaction of two atoms, and σ is the distance at which the
energy is zero. The VdW potential also supports a cutoff by

using a switching distance. Its energy is then obtained by
multiplying the VVdW term with the scaling factor

= − + −S x x x1 6 15 105 4 3

= − −x r r r rwith ( )/( )s c s

where rs is the switching distance, and rc is the cutoff distance.
Electrostatics without cutoff are implemented using the

following potential
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4 0
is Coulomb’s constant, qi and qj are the

charges of the two atoms, and r is the distance between them.
Electrostatics with cutoff are modified to use the reaction field
method30 as follows
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Figure 1. An example YAML force field for water molecules.
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where rc corresponds to the cutoff distance, and ϵsol
corresponds to the solvent dielectric constant.
In addition to the above, TorchMD also trivially allows the

use of any other external potential Vext written in PyTorch
which takes atomic coordinates as input and output energy and
forces.
Thus, the total potential is calculated as

∑ ∑ ∑

∑ ∑ ∑

= + +

+ + +
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Since PyTorch offers automatic differentiation, there is no
need to calculate analytical gradients from the forces. Forces
can be obtained with a single autograd PyTorch call on the
total energy of the system. Analytical gradients have been
nevertheless implemented for all analytical AMBER potential
terms for performance reasons.
2.3. Training Machine Learning Potentials. TorchMD

provides a fully usable code for training neural network
potentials in PyTorch called TorchMD-Net (github.com/
torchmd/torchmd-net). Currently we are using a SchNet-
based4 model. However, it would be straightforward to derive
the forces from nonparametric kernel methods like FCHL,34

by providing a simple force calculator class, or other ML
potentials. This object just takes as input the positions and box
every time step and returns the external energies and forces
computed with the method of choice.
For the present work, we took the featurization and atom-

wise layer from SchNetPack29 but rewrote entirely the training
and inference parts. In particular, to allow training on multiple
GPUs, the network is trained using the PyTorch lightning
framework.35 TorchMD can also run concurrently a set of
identical simulations by just changing the random number
generator seed, arranging the neural network potential into a
batch for speed, thus recovering, at least partially, the efficiency
of optimized molecular dynamics codes.
For the QM9 data set,36 we trained the model using a

standard loss function using mean square error over the
energies. For the coarse-grained model, training is performed
using the bottom-up “force matching” approach, focused on
reproducing thermodynamics of the system from atomistic
simulations, as described in previous work.8,9

3. RESULTS
To demonstrate the functionalities of TorchMD, here we
present some application examples. First, a set of typical MD
use cases (water box, small peptide, protein, and ligand) is
used mainly to assess speed and energy conservation. Second,
we validate the training procedure on QM9, a data set of 134k
small molecule conformations with energies.36 In this case,
however we cannot run any dynamical simulations as the data
set only presents ground state conformations of the molecules,
so we are mainly validating the training. Then, we demonstrate
end-to-end differentiable capabilities of TorchMD by recover-
ing force-field parameters from a short MD trajectory. Finally,
we present a coarse-grained simulation of a miniprotein,
chignolin,37 using NNP trained on all-atom MD simulation
data. Here, we also describe how to produce a neural network-
based coarse-grained model of chignolin, although the
methods exposed are general to any other protein. A step-

by-step example of the training and simulating CG model is
presented in the tutorial available in the github.com/torchmd/
torchmd-cg repository.

3.1. Simulations of All-Atom Systems and Perform-
ance. The performance of TorchMD is compared against
ACEMD3,31 a high-performance molecular dynamics code. In
Table 1, we can see the three different test systems comprised

of a simple periodic water box of 97 water molecules, alanine
dipeptide, and trypsin with the ligand benzamidine bound to it.
As it can be seen, TorchMD is around 60 times slower on the
test systems than ACEMD3 running on a TITAN V NVIDIA
GPU. Most of the performance discrepancy can be attributed
to the lack of neighbor lists for nonbonded interactions in
TorchMD and is currently prohibitive for much larger systems
as the pair distances cannot fit into GPU memory. This is not a
strongly limiting factor for the CG simulations conducted in
this paper as the number of beads remains relatively low for the
test case. However, we believe that, with an upcoming
implementation of neighbor lists, TorchMD can reach a
much better performance, albeit still slower than highly
specialized codes as ACEMD3 due to the generic nature of
PyTorch operations in addition to the PyTorch library
overhead.
Despite the low performance of the current TorchMD

implementation, its end-to-end differentiability allows re-
searchers to perform experiments which would not be possible
with traditional much faster MD codes as demonstrated in the
following sections.
To evaluate the correctness of the TorchMD implementa-

tion of the AMBER force field, we compared it against
OpenMM for 14 different systems ranging from ions, water
boxes, and small molecules to whole proteins, thus testing all
the different force-field terms. In all 14 test cases, the potential
energy difference between OpenMM and TorchMD was lower
than 10−3 kcal/mol when computed with the same parameters.
Energy conservation was validated with TorchMD by running
an NVE simulation of a periodic water box for 1 ns with a 1 fs
time step. Energy conservation normalized per degree of
freedom was calculated as Etotal/ndofR where ndof = 870 is the
number of degrees of freedom of the system, and R is the ideal
gas constant. We obtained a mean value of 1.1 × 10−5 K per
degree of freedom showing a good energy conservation.

3.2. Training Validation on the QM9 Data Set. We
trained and evaluated the performance on the QM9 bench-
mark data set36 in order to validate the training procedure of
TorchMD-Net. QM9 comprises 133,885 small organic
molecules with up to nine heavy atoms of type C, O, N, and
F reporting several thermodynamic, energetic, and electronic
properties for each molecule. We trained on the energy U0 and
excluded 3,054 molecules due to failed geometric consistency
checks as suggested by the data set. The remaining molecules
were split into a training set with 110,000 samples and a
validation set with 6,541 samples (5%), leaving 14,290 samples
for testing.

Table 1. Performance Comparison for 50,000 Steps at 1 fs/
timestep on Different Systems

system atoms TorchMD ACEMD

water 291 6 min 56 s 7 s
alanine dipeptide 688 8 min 44 s 8 s
trypsin 3,248 13 min 2 s 16 s
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The network was trained using an Adam optimizer38 with a
learning rate scheduler on multiple GPUs by using PyTorch
Lightning.35 An example of the configuration file for QM9
training is presented in Figure 2. We performed multiple

trainings using TorchMD-Net with different amounts of
training data (Figure 3). The learning rate scheduler was

determined with a patience of 10 on a validation subset of 5%
of all data chosen at random. The performance reported is for
the randomly chosen test set. The linear shape of the test
performance in the log−log scale demonstrates the correctness
of the training.39 With the current set of hyperparameters
(Figure 2), we report a best performance of 10 meV for
110,000 training points, marginally better than the reported
best performance of SchNet for QM9.29

3.3. Demonstration of End-to-End Differentiable
Simulations. The availability of automatic differentiation
(AD) within a molecular dynamics package is beneficial
beyond ML applications. Being able to compute gradients for
all numerical operations opens up new avenues for sensitivity
analysis, force-field optimization, and steered MD simulations,
as well as simulations under highly complex constraints and
restraints. To demonstrate these capabilities, the present
example infers force-field parameters from a short MD
trajectory.

First, a small water box containing 97 water molecules and
one Na+/Cl− ion pair was simulated using the TIP3P water
model with flexible bonds and angles. After energy
minimization and NVT equilibration at 300 K, the simulation
was run for 10 ps in the microcanonical ensemble. The
simulation used a 1 fs time step, a 9 Å cutoff with a 7.5 Å
switch distance, and reaction field electrostatics. Coordinates
and velocities were saved every 10 steps.
Next, all partial atomic charges q in the system were

annihilated (in practice, they were scaled by 0.01 to ensure
nonvanishing gradients of the electrostatic potential). In order
to infer q from the MD trajectory, the integrator was initialized
with snapshots r(ti), v(ti) from the trajectory. Then, 10 steps of
simulation were run with the modified charges, and the final
positions from this short simulation were compared with the
respective subsequent trajectory snapshot r(ti+1). In other
words, the simulation served as a parametrized propagator Q:
(r(t), v(t); q)|→r(t + δt) with δt = 10 fs. Due to the AD
capabilities within TorchMD, this propagator is end-to-end
differentiable.
To recover the charges, we minimized the loss function

= − +L r t v t q Q r t v t q r t( ( ), ( ); ) ( ( ), ( ); ) ( )i i i i i 1 2
2

i.e., the mean-squared distance between the ground-truth
trajectory and the propagated coordinates (taking into account
periodic boundary conditions). This loss function is differ-
entiable with respect to the charges q so that gradients can be
obtained via backpropagation. Training was performed using
Adam with a learning rate of 10−3 over one snapshot at a time.
To enforce net neutrality, the positive charges (qH and +qNa )
were implicitly obtained from the oxygen and chlorine charges,
and only qO and −qCl were explicitly optimized. Figure 4 shows
the evolution of the training loss and the partial atomic charges

Figure 2. An example of a training input file for training QM9.

Figure 3. Learning curve for the QM9 data set.

Figure 4. Inference of partial atomic charges q from a short trajectory.
Training loss (top) and charges (bottom) during training.
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during training. After just one epoch (1000 iterations), the
original charges were recovered up to 3% accuracy.
3.4. Coarse-Graining All-Atom Systems. For our last

application example, we built two coarse-grained models of
chignolin: one solely based on α-carbon atoms (CA) and
another one based on α-carbon and β-carbon atoms (CACB)
(Figure 5).

3.4.1. Training Data. We selected the CLN025 variant of
chignolin (sequence YYDPETGTWY), which forms a β-
hairpin turn while folded (Figure 5). Due to its small size (10
amino acids) and fast folding, it has been extensively studied
with MD.40−45 Training data was obtained from an all-atom
simulation of the protein in explicit solvent with ACEMD31 on
the GPUGRID.net distributed computing network.46 The
system containing one chignolin chain was solvated in a cubic
box of 40 Å, containing 1881 water molecules and two Na+

ions. The system was simulated at 350 K with the
CHARMM22* force field47 and the TIP3P model of
water.48 A Langevin integrator was used with a damping
constant of 0.1 ps−1. The integration time step was set to 4 fs,
with heavy hydrogen atoms (scaled up to four times the
hydrogen mass) and holonomic constrains on all hydrogen-
heavy atom bond terms.49 Electrostatics were computed using
Particle Mesh Ewald with a cutoff distance of 9 Å and a grid
spacing of 1 Å. We used an adaptive sampling approach50

where new simulations were started from the least explored
states. As a result, we obtained a total simulation time of 180
μs with forces and coordinates saved every 100 ps giving a total
of 1.8 × 106 frames.
To obtain the training data for the CA model, the initial

training set of coordinates and forces was filtered to retain only
CA atoms positions and forces. In this example, a coarse-
grained system contains 10 beads, built out of seven unique
types of beads, one for each amino acid type. The training set
for the CACB model as prepared in a similar fashion, filtering
both CA and CB atoms and achieving 19 beads and 8 unique
types of beads, as all CA atoms was classified as one bead type
with the exception of glycine, and each CB was assigned an
amino acid-specific bead type. Details of bead selection for
both models are described in Supporting Methods.
3.4.2. Neural Network Potential Training. For coarse-

grained simulations, it is important to provide some prior
(fixed) potentials in order to limit the space that the dynamics
can visit to the space sampled in the training data.9 All the
terms of the force field could be applied, but for simplicity, we
limit them to bonds and repulsions. Bonds prevent the protein
polymer chain from breaking, and repulsions stop computing
NNP on very close atom distances where there is no data.

For pairwise bonded terms, we used the all-atom training
data to construct distance histograms for each pair of bonded
bead types. Specifically, for each bonded pair, we counted the
fraction of time that the respective distance spent in an equally
spaced bin in a distance range appropriate to the bead
selection, 3.55 and 4.2 Å for all bonds between α carbon beads
and 1.3 and 1.8 Å for all bonds between α carbon and β
carbon. The distance distributions were Boltzmann-inverted to
obtain free-energy profiles, and these were used to fit the
equilibrium distance r0 and the spring constant k of the
respective harmonic potential

= − +V r k r r V( ) ( )harmonic
(prior)

0
2

0

where r is the distance between the beads involved in the bond.
Prior potentials for nonbonded repulsive terms were derived

analogously. Distance histograms were constructed with 30
equally spaced distance bins between 3 Å and 6 Å and were
used to fit the parameter ϵ of the repulsive potential

= ϵ +−V r r V( ) 4repulsive
(prior) 6

0

where r, as above, is the distance between the nonbonded
beads. In fitting the potential curves, we corrected for the
reference state by normalizing counts of each bin by the
volume of the corresponding spherical shell. Nonlinear curve
fits were performed with the Levenberg−Marquardt method of
the SciPy package.51

The parameters of the prior forces are stored in a YAML
force-field file. Plots presenting the quality of fits are included
in the Supporting Information (Figures S1−S4) as well as
YAML files describing the prior force field.
Based on the resulting prior force field and input

coordinates, we calculated a set of prior forces acting on the
beads and then deducted them from true forces, resulting in a
set of forces that we refer to as delta-forces. Along with
coordinates, delta-forces were used as the input for training. In
the case of the CA model, embeddings correspond to integers
unique for each amino acid type. For the CACB model, all α
carbons have the same embedding with the exception of
glycine, and each β carbon has an embedding unique for each
amino acid type.
The network was trained using a force matching approach,

where a predicted force is compared to a true force from the
training set.8,9 In the example presented here, the network
consisted of 3 interaction layers, 128 filters used in continuous-
filter convolution, 128 features to describe atomic environ-
ments, a 9 Å cutoff radius, and 150 Gaussian functions for the
CA model and 300 Gaussians for the CACB model as the basis
set of the convolutions filters. Increasing the number of
Gaussian functions for the CACB model was found to provide
a higher stability of the model and prevent forming collapsed
nonphysical structures during the simulation. Models for
simulation were selected when the validation loss reached a
plateau. The training and validation loss as well as learning
rates are presented in Supporting Figure 5.

3.4.3. Simulation of the NNP. The combinations of the
force fields covering prior forces and the trained networks are
used to simulate both CA and CACB systems with TorchMD.
We introduce the parameters of the simulation as a YAML-
formatted configuration file (Figure 6), although the
simulation can be also started from the command line. The
network is introduced to TorchMD as an external force, with
the specified network’s location, embeddings, and a calculator.

Figure 5.Miniprotein chignolin: heavy-atom representation (left) and
coarse-grained representations: CA beads connected by bonds
(middle) and CA and CB beads connected by bonds (right). The
beads in coarse-grained representations were colored by bead type.
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An external force calculator class must have a “calculate”
method that returns a tuple with energy and forces tensors. In
our case, for both models, we run the simulation at 350 K for
10 ns with a 1 fs time step, saving the output every 1000 fs.
Note that while the simulations use a small time step, the
effective dynamics of the coarse-grained systems is much faster
than the all-atom MD system as the coarse-grained model is
supposed to reproduce the energetics but with much faster
kinetics. Since TorchMD can easily handle parallel dynamics,
we concurrently run ten simulations, of which five start from
the folded state and five start from unfolded conformations.

The free energy surfaces obtained with a time-lagged
independent component analysis (TICA)52 for the all-atom
baseline simulations and the coarse-grained simulations
obtained with TorchMD are presented in Figure 7. The
energy landscapes are obtained from binning the config-
urations over the first two TICA dimensions and computing
the average of the equilibrium probability on each bin,
obtained by Markov state model analysis of the microstate of
each configuration. To support TICA plots, we included plots
with RMSD values for the first 2 ns of representative
trajectories for both models with different starting points
(Figure 8). Plots presenting full trajectories are included in the
Supporting Information (Figures S6−S9). Neither SchNet nor
prior energy terms can enforce chirality in the system, because
they both work purely on the distances between the beads.
Therefore, the RMSD plots were supplemented with RMSD
values of the trajectory’s mirror image.
Results show that the coarse-grained simulations for both

models were able to obtain several folding and unfolding
events for chignolin. The energy landscapes for the CA model
show that it captured the folded state as a global minimum of
energy. The simulations also covers other minima representing
unfolded and misfolded states. However, they do not recreate
the energy barriers connecting these basins (as expected),
which is better seen on the one-dimensional free energy
surfaces (Figure S10). The CACB model also detects the
global minimum correctly but fails at guessing the free energy
of the unfolded region. Overall the simulation is less stable
than for the CA model, and the misfolded state minimum is
incorrectly located.

4. CONCLUSION

In this paper, we demonstrated TorchMD, a PyTorch-based
molecular dynamics engine for biomolecular simulations with
machine learning capabilities. We have shown several possible
applications ranging from Amber all-atom simulations to end-
to-end learning of parameters and finally a coarse-grained
neural network potential for protein folding. In particular,
building an NNP for protein folding requires supplementing it
with asymptotic, analytical potentials for bonds and repulsions
to prevent exploring conformations not visited in the training

Figure 6. An example of a simulation input file.

Figure 7. Two-dimensional free energy surfaces for the reference all-atom MD simulations (left) and the two coarse-grained models, CA (center)
and CACB (right). The free energy surface for each simulation set was obtained by binning over the first two TICA dimensions, dividing them into
a 120 × 120 grid, and averaging the weights of the equilibrium probability in each bin computed by the Markov state model. The reference MD
simulations plot displays the locations of the three energy minima on the surface, corresponding to folded state (red dot), unfolded conformations
(blue dot), and a misfolded state (orange dot). Both reference MD and coarse-grained simulations were performed at 350 K.
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data in which the predictions of NNP are unreliable. We have
shown how to coarse-grain a protein into either α-carbon
atoms or α-carbon and β-carbon atoms. Currently, the CA
model seems to work the best, but future research will indicate
which models are better suited for a more diverse set of targets.
TorchMD end-to-end differentiability of its parameters is a
feature that projects such as the Open Force Field Initiative53

can potentially exploit. Furthermore, for additional speed, we
plan to facilitate the integration of machine learning potentials
in OpenMM54 and ACEMD31 and possibly develop a plug-in
to extend support to more MD engines in the future.
Meanwhile, we believe that TorchMD can play an important
role by facilitating experimentation between ML and MD
fields, speeding up the model-train-evaluate prototyping cycle,
and promoting the adoption of data-based approaches in
molecular simulations. All the code machinery to produce the
models is made available for practitioners at github.com/
torchmd.
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