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Abstract

The prediction of future events is fundamental in a large number of critical neurobehavioral 

contexts including implicit motor learning. This learning process relies on the probabilities with 

which events occur, and is a dynamic phenomenon. The aim of present study was to investigate 

the development of anticipatory processes during implicit learning. A decision making task 

was employed in which the frequency of trial types was manipulated such that one trial type 

was disproportionately prevalent as compared to the remaining three trial types. A 275 channel 

whole-head magnetoencephalography (MEG) system was used to investigate the spatiotemporal 

distribution of event-related desynchronization (ERD) and synchronization (ERS). The results 

revealed that oscillations within the alpha (10–12 Hz) and beta (14–30 Hz) frequencies were 

associated with anticipatory processes in distinct networks in the course of learning. During 

early phases of learning the contralateral motor cortex, the anterior cingulate, the caudate and 

the inferior frontal gyrus showed ERDs within beta and alpha frequencies, putatively reflecting 

preparation of next motor response. As the task progressed, alpha ERSs in occipitotemporal 

regions and putamen likely reflect perceptual anticipation of the forthcoming stimuli.
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1. Introduction

The ability to extract regularities embedded in a random sequence of events plays a central 

role in human cognition. Behavioral evidence suggest that the process through which people 

become sensitive to regularities in the environment is automatic and occurs implicitly in the 

absence of awareness that one is learning [5]. In everyday situations many events follow 

one another on a probabilistic way rather than according to a fully predictable pattern. 

Studies of statistical learning processes have employed probabilistic sequential paradigms 

in which certain sequences of trials occur more frequently than others but do not follow 

a fixed sequence of events. In those studies the improvement of performance for stimuli 

that are highly frequent as compared to less frequent indicated that people implicitly learn 

statistical regularities [15,20]. The mechanisms underlying implicit learning are not fully 

understood, but most evidence suggests that an important process is the development of 

an automatic prediction of upcoming events based on the extracted regularities [10,12,17]. 

This has been especially true during implicit statistical learning [9,21]. However, though 

the ability to predict future events during implicit learning is well established, little is 

known about the brain circuits underling the development of such predictive processes. It 

has been suggested that implicit learning involves anticipation and preparation of the next 

motor response [6,10]. A recent neuroimaging study demonstrated that the medial temporal 

lobe and perceptual anticipation in visual areas play a critical role during implicit statistical 

learning [21]. However, the relatively poor temporal resolution of neuroimaging methods 

makes it difficult to track the subsecond time course of activation in different brain areas 

as people anticipate an upcoming stimulus. It has been suggested that implicit learning 

relies on the dynamic involvement of different brain areas over time suggesting that with 

experience people are increasingly able to make predictions about future events during 

the course of learning [3,13,19]. Therefore, it is conceivable that different sets of cortical 

regions are dynamically involved in implicit anticipation triggered by statistical learning. 

In the current study, we employed a neuroimaging technique with superior spatiotemporal 

resolution – magnetoencephalography (MEG). Event-related oscillatory responses can be 

quantified using the event-related desynchronization/synchronization method in which a 

relative decrease in the power in specific frequency bands during information processing is 

called event related desynchronization (ERD) and a relative increase in the power is called 

event-related synchronization (ERS). We adapted a Stroop-like task that we have previously 

employed [7]. Unbeknownst to the participants the frequency with which various trial 

types occurred was manipulated, such that one trial type was disproportionately prevalent 

in comparison to the other trial types. The aim of the current study was to evaluate the 

spatio-temporal proprieties of anticipatory oscillatory activity with regard to frequency of 

stimulus exposure, the progressive modulation of anticipatory oscillatory activity over time 

for the different exposure conditions, and to study whether possible anticipatory activity 

in specific brain regions was related to a change in behaviors. Based on previous results 

we expected that participants would exploit past experience with the statistical structure of 

stimulus sequences for successful anticipation of upcoming events. We predicted that motor 

as well visual regions might contribute to the formation of anticipatory behavior and the 

adjustment of participants’ predictions and anticipation over the course of the experiment. 

Previous studies have repeatedly demonstrated that activity changes within the alpha band 
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(8–12 Hz) can be used as an indicator of localized brain activation in motor and visual 

regions in a variety of cognitive tasks including implicit learning [2,24]. We predicted that 

power changes in alpha may reflect anticipation of forthcoming stimuli to the extent to 

which participants had learned the predictability of the highly frequent stimuli. To test 

the specificity of the effects of anticipatory behavior on alpha band oscillations, additional 

frequency ranges were also included in our analysis.

Participants:

Eight healthy volunteers (4 women, 4 men; mean age 29.76; SD = 5.82) participated in this 

study. All participants were right handed native English speakers. None of the participants 

had a history of neurological or psychiatric disease. Informed written consent was obtained 

from all participants. The study was in accordance with the Helsinki Declaration and it was 

approved by the National Institute of Mental Health Institutional Review Board.

Behavioral procedures:

Participants were presented with a series of trials, each of which consisted of images of 

two animals of different sizes that were presented side by side on a computer monitor. In 

all trials, one image appeared larger than the other. The size of the animal images was 

either congruent or incongruent with the relative size in the real world. For example, a 

congruent stimulus was an image of a large elephant next to an image of a small ant, while 

an incongruent stimulus was an image of a large ant next to an image of a small elephant. 

Participants were instructed to press one of two buttons with their right hand to indicate 

which animal was larger in the real world, either the one on the left or the one on the 

right. The animal pairs were presented for 1 s, followed by an inter-trial interval in which 

a crosshair was presented for 1 s. Therefore, each trial lasted for 2 s. There were 300 trials 

in total, thus the entire experiment lasted for 10 min. We presented a disproportionately 

large number of trials (60%) with the larger, congruently sized animal appearing on the 

left side of space (congruent left). The other three trial types (congruent right, incongruent 

left, incongruent right) equally comprised the remaining 40% of the trial types. The trials 

were pseudo-randomized so that the probability rules (60% of the congruent left trial type 

and 40% of the other trial types) held in each successive quarter set of 75 trials each. No 

more than three of the similar type were consecutively presented. Participants were given 

no information about the rules by which the series of trials was constructed. They saw the 

series of trials presented one after the other without interruptions. To test the implicitness of 

learning participants were debriefed after the experiment.

Image acquisition procedures:

MEG signals were recorded in a magnetically shielded room using a helmet-shaped CTF 

275-channel whole head system (CTF Systems Inc.) at a sampling rate of 600 Hz. Stimuli 

were presented to subjects via Presentation® software (www.neurobs.com). The computer 

image was projected onto a screen 60 cm in front of the subject’s eyes. For each person, a 

series of volumetric MRI scans was co-registered with their MEG head coordinate system. 

Anatomical MRI scans were obtained using a 1.5 Tesla GE scanner.
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Data analysis:

The raw data were filtered in 3rd gradient mode for noise reduction along with DC offset 

removal and high-pass filtering at 0.61 Hz. The presence of an adequate MEG signal was 

determined by visual inspection of the raw signal and trials that contain artifacts were 

rejected. The data were divided into four frequency bands: theta (5–8 Hz), lower alpha (8–10 

Hz), upper alpha (8–12 Hz), beta (14–30 Hz), and gamma (30–50 Hz). As the principal 

interest in the present study was the prediction that the time course of the activation in the 

brain regions would differ at the beginning of the experiment as compared to the end, the 

most frequent trial type of congruent left were split into quarters of 75 trials each so as 

to index change across time. To achieve equality of frequencies of occurrence of the most 

frequent trials in each of successive quarter and the less frequent trials we compared each 

quarter of the most frequent trial type (congruent left) to all the trials of the less frequent 

trial type (congruent right). We chose the congruent right stimulus type because congruency 

was held constant; the only difference being the prevalence with which it was presented and 

which button was the correct response.

Synthetic aperture magnetometry (SAM):

SAM was used to reconstruct topographical maps of brain source power from band-limited 

MEG data [23]. A calculation of source power was performed for 7.5 mm3 voxels 

throughout the brain volume. For each participant, the SAM image was normalized to 

Z-scores by the pooled variance across the volume. For analysis of brain activity, only trials 

on which responses were correct were included. To define the spatiotemporal sequence of 

those cerebral regions active during different phases of the experiment SAM analysis were 

performed on the active epoch from −500 ms before the onset of the imperative stimulus 

to +1000 ms after stimulus onset. Trials were segmented using a sliding 300 ms time 

window moved with 100 ms increments. The reference interval of 300 ms was epoched from 

the inter-trial interval starting −800 to −500 ms before stimulus onset. The amplitude was 

obtained by computing a pseudo-F ratio between the power in the active and the reference 

interval. Band power changes were expressed as the percentage of a decrease (ERD) or 

increase (ERS) in band power. The averaged ERD/ERS were calculated for frequent and 

infrequent stimuli at each time window over the course of experiment, in each active 

epoch. Statistical analyses (t-tests) determined which voxels were significantly active at each 

time window with a permutation test used to take care of the problem that the voxels are 

not computed independently. The locations of peaks in the mean image were determined 

from AFNI’s Talairach atlas. Statistical analyses (ANOVA) determined which voxels were 

significantly active during the anticipation and the presentation of the most frequent trials 

relative to the infrequent trials. The random permutation analyses were performed to correct 

for multiple comparisons. The voxels with a p value < 0.05 were considered significant. CTF 

converted images were aligned into Talairach view using AFNI [8].

Correlations between brain activity and behavioral performance:

To examine the relationship between RTs and the anticipatory activation changes that 

were occurring during the course of sequence learning we used a region of interest (ROI) 

approach [1,21]. First, separate region of interest (ROIs) were created for each participant. 
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The MRI scans were used to draw individualized ROI templates corresponding to a 

standardized coordinate frame from Talairach atlas. The regions of interest were set to 

include the whole brain, bilaterally, with 7.5 voxel mm resolution. These individualized 

ROI templates were used to interrogate the mean images series (corrected for multiple 

comparisons). The MEG signals for each time window preceding onset of the most frequent 

stimuli were extracted and then averaged for each participant and each ROI. We examined 

the relationship between these anticipatory activities (from −500 ms to 0) from each ROI 

and participants’ RTs difference between the most frequent and the infrequent trials for 

each frequency band. These brain behavior correlations helped to assess which anticipatory 

signals were related to facilitated response times on the most frequent trials over the course 

of experiment. These correlations were evaluated for significance using a threshold of p < 

0.05

2. Results

Behavioral data:

The mean percent correct were 97.1% (SD = 1.4) and did not differ across the quarters 

(F(3,21) = 1.52, p = 0.2) nor between the most frequent and the infrequent trials (p = 0.1). 

Reaction time estimates were based only on correct trial response. A decrease in response 

times across the four quarters was observed for both the most frequent trials (F(3,21) = 

4.36, p = 0.01) and infrequent trial types (F(3,21) = 3.73, p = 0.02. There was a significant 

difference in RT between trials that occurs more frequently and the less frequent trials 

(F(1,7) = 46.2, p = 0.0002). We confirmed this by using separate comparisons between the 

most frequent trials and each of the three types of the less frequent trials. There was a 

significant difference in RT between the most frequent trials and the congruent right trials (p 
= 0.05) as there were RT differences between the most frequent trials and the incongruent 

left (p = 0.005) and the incongruent right trials (p = 0.001), respectively. While the RT for 

the frequent trials was greater than that for the infrequent trials, this difference was more 

apparent during the initial learning (first quarter of the trials sequence) than during the late 

learning phase. As an exploratory analysis we examined the improvement in RT within 

the first quarter of the trials sequence. There was a significant difference (in all but three 

participants) between the first and second half of the first quarter for the frequent trials (p 
< 0.05). Conversely, none of the participants showed significant difference between these 

two blocks for the infrequent trials (p > 0.05). There was no significant interaction between 

frequency of stimuli presentation and the quarters (F(3,21) = 1.18, p = 0.3). There were 

considerable differences between the most frequent trial type and the less frequent trial type 

within the first (p = 0.07) and second quarter (p = 0.01) and fourth quarter (p = 0.04). There 

was no significant change in the mean RT between the most and less frequent trials in the 

third quarter (p = 0.1).

MEG data:

The main results of the experiment are presented in Fig. 1. Preceding the presentation of the 

most frequent visual stimuli we found two distinct ERD/ERS responses. First, in the first 

quarter of the trials sequence ERDs in the alpha 10–12 Hz frequency were observed at −500 

ms before stimulus onset mainly in the right caudate and anterior cingulate. Additionally, 
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ERDs in the alpha 8–10 Hz frequency were observed in the left inferior frontal gyrus 

and the left anterior cingulate. Beta rhythm ERDs were found (from −200 ms to +100 

ms) in the left motor area and right premotor regions. Second, in the third and fourth 

quarters ERSs response were found in the alpha range 10–12 Hz (from −500 ms to 0) 

mainly in temporalparietaloccipital areas including the left middle temporal areas, the right 

middle occipital gyrus and the right inferior parietal areas. After the stimulus onset the 

presentation of the most frequent stimuli elicited alpha ERDs (10–12 Hz) response in the 

first quarter of trial sequence, in the left inferior frontal gyrus and caudate. In addition 

alpha ERSs response (10–12 Hz) were observed in the right and left sensorymotor areas 

and temporoparietaloccipital regions bilaterally. In the third and fourth quarters alpha ERDs 

were observed in the putamen, right and left inferior frontal gyrus and left superior temporal 

gyrus. The presentation of the infrequent stimuli elicited alpha ERD/ERS responses in a 

similar spatiotemporal profile. The overall ANOVA on the ERD/ERS data of the most 

frequent trials versus the infrequent trials revealed difference in the first quarter of trials 

sequence with a significant higher alpha ERDs preceding the presentation of the most 

frequent trials (from −500 ms to 0) in the right caudate and right cingulate in the alpha 

frequency 10–12 Hz and in the left inferior frontal gyrus in the alpha frequency 8–10 Hz. 

In the third and fourth quarters alpha ERSs responses (10–12 Hz) (from −400 ms to 0) 

were more pronounced in right parietaloccipital regions, left middle and temporal regions 

preceding the most frequent trials (p < 0.01).

Correlations:

The right middle occipital area exhibited activation (ERD/ERS) in the alpha frequency (10–

12 Hz) that correlated (negative correlation) with RTs (RT differences between the most 

frequent trials and the less frequent trials) (p < 0.05).

3. Discussion

We sought to examine the development of neural anticipatory processes in the context 

of an implicit learning paradigm. For the most frequent trials, responses became quicker 

(compared to with infrequent trials) as the task progressed, indicating a rapid increase in 

task performance learning and efficiency. The main finding of this study is that anticipatory 

related changes in oscillatory activity occurred over time in anatomically separate brain 

areas. During the initial learning phase (first quarter of the trials sequence) a prominent 

activity within beta and alpha frequencies was found in a network of temporal and motor 

related areas. This activation decayed across the subsequent three quarters of the trial 

sequence. Subsequently, during the late learning phase (third and fourth quarters) alpha 

band responses were more pronounced in temporal and occipital regions. Participants were 

not instructed to consider stimulus sequence, nor did they report awareness of stimulus 

sequences after the imaging session. These activations must therefore reflect the automatic 

neural anticipation of events. Moreover, it should be noted that the cortical activations 

associated with the most frequent trials should be distinct from those associated with 

general expectancy aspects of the task, which have been subtracted by the sequence of 

infrequent trials. These findings correspond with a recent neuroimaging study of implicit 

learning that reported activation changes in cortical motor areas during early encoding 
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whereas during late learning encoding activation changes were localized in occipitotemporal 

regions suggesting that two distinct networks, with different time courses, contribute to 

implicit learning processes, even in the absence of significant performance changes [19]. 

It should be noted that our results are consistent with those of other studies and suggest 

a dissociation between electrophysiological and behavioral indicators of implicit learning. 

Participants who reported that were unaware of the statistical structure of series and who 

showed no RT benefits for the most frequent trials as compared with the less frequent 

trials in the first and third quarters nevertheless showed considerable differences of brain 

activity. It is conceivable that behavioral and electrophysiological measures differ in their 

sensitivity. In our study, during the initial learning phase preceding the presentation of the 

most frequent trials, relative to the infrequent trials, higher alpha ERD values in the anterior 

cingulate, caudate, middle temporal gyrus (10–12 Hz) and left inferior frontal gyrus (8–10 

Hz) were observed. These findings are compatible with the results of earlier studies that 

reported that alpha desynchronization responses were associated with anticipation of motor 

events [2] and implicit learning [24]. Additionally, beta ERD, which is usually considered 

a correlate of motor activation during motor preparation [2], was found in the contralateral 

motor cortex and the right premotor cortex. ERD/ERS in the alpha and beta frequencies 

can both represent a state of anticipatory processing capacity. Recently, Reber [18], drawing 

on numerous neuroimaging and neuropsychological studies, described implicit learning as 

a form of general plasticity within processing networks that adaptively improve function 

via experience. We expanded these findings suggesting that with experience processing 

networks develop automatic predictions about stimuli. As far as localization was concerned, 

these findings are in agreement with previous studies of implicit learning which reported 

that primary motor cortices play a significant role in the preparation of movements during 

procedural learning [10]. Several studies reported activation changes in the caudate and 

cingulate associated with the ability to extract predictability in a series of stimuli during 

implicit learning of spatial sequences [3,19]. The caudate is also engaged when participants 

are exposed to stimuli that violate a previously repeating pattern suggesting a role of this 

structure in the formation of implicit predictive models [15]. The present results suggest that 

the motor cortices and the motor related regions are engaged even prior to the presentation 

of the next stimulus and are in agreement with the hypothesis that learning might be based 

on the preparation of the next motor response [6]. The evidence that neural anticipation 

in cortical and sub-cortical motor areas emerged early during the initial learning phase 

suggest that motor anticipation can operate very quickly with little exposure to statistical 

regularities. Finally, the demonstration of changes in the left inferior frontal gyrus suggest 

that in the present experimental context this area, may not be specific to language aspects 

per se, but is also responsive to probabilistic features in time and engaged in predictive 

behavior. During the third and fourth task’s quarters we found a prominent anticipatory 

alpha ERS in the occipitaltemporal regions and in the putamen. Pre-stimulus alpha ERS in 

occipitotemporal regions have been reported preceding target detection probably reflecting 

expectancy processes [11]. These findings are in agreement with the results of previous 

electrophysiological [4] and neuroimaging studies [14,19,21] that reported that the striatum 

and the occipitotemporal regions are engaged during perceptual anticipation triggered by 

implicit statistical learning. It is attractive to speculate that activity in associative visual 

regions may reflect priming mechanisms, after repeated processing of the most frequent 
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stimuli, which may be involved in implicit perceptual anticipation [4]. Indeed, the notable 

feature of the associative visual areas activation was the correlation between anticipatory 

activation and subsequent behavioral measures of learning. Although the present results 

provide convincing evidence for anticipatory processes, they do not allow us to decide 

whether these anticipations are based on the learning of stimulus sequence including 

stimulus–stimulus associations, memories of higher order chunks or by-products of the 

stimulus response relations [16,22]. It should be noted that in the present experiment 

participants would need to learn the probability of occurrence of one of four possible stimuli 

presented in a pseudo-random order and in a continuous stream. This random order makes 

it difficult to form predictions. Moreover, participants reported that they had not used any 

particular strategies to predict the next stimulus. We cannot rule out the possibility that they 

responded on each trial based on some sub-sequences of previous events occurring in the 

series including the previous predictions and the correctness of these predictions and/or to 

whole series of trials. We are aware of several limitations of the current study. First, our 

study is limited by the small sample, therefore the development of implicit anticipatory 

behavior remains to be rigorously tested with larger sample sizes. Second, ERD/ERS 

responses are calculated in reference to a prestimulus baseline, thus they might be influenced 

by the absolute frequency power in the prestimulus interval. Third, MEG is generally less 

sensitive to deeper sources. Therefore, although results yielded a confined topography of 

spectral amplitude enhancements in the basal ganglia, which corresponds well with the 

topography reported in various neuroimaging studies of implicit learning, conclusions about 

activity increases in those subcortical structures have to be drawn with caution. Fourth, we 

did not use off-line measures of statistical learning such as the familiarity test. However, 

anticipation may be a qualitatively distinct learning effect and the off-line familiarity test 

may be not well-suited for studying implicit learning [21]. In contrast, electrophysiological 

measures may serve as an on-line measure of the development of implicit learning that can 

be obtained continuously while participants perform implicit learning tasks.

4. Conclusions

We conclude that, based on the set of areas activated, motor and perceptual anticipation 

are both important during implicit statistical learning. The results of this study have 

potentially important implications for the role of implicit predictive processes in implicit 

motor learning. The data show that anticipatory behavior is a dynamic process implemented 

in the brain by a distributed network that involves anatomically dissociable components at 

different time points.
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HIGHLIGHTS

• Development of the prediction of future events during implicit statistical 

learning.

• Study is conducted using a neuroimaging technique with high temporal 

resolution: MEG.

• The spatiotemporal distribution of ERD/ERS is identified.

• Anticipatory behavior involves motor and perceptual anticipation at different 

time points.

Altamura et al. Page 11

Neurosci Lett. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(a) Group map corresponding to 300 ms interval (from −200 ms to +100 ms) preceding 

the most frequent trials during the initial phase of learning at beta frequency (Hz 14–30) 

(p < 0.01). PCG: precentral gyrus; PM: premotor area. b) Group map corresponding to 500 

ms interval (from −500 ms to 0) preceding the most frequent trials during later phases 

of learning at alpha frequency (Hz 10–12) (p < 0.01). MTG: middle temporal gyrus; 

PL: parietal Lobe; MOG: middle occipital gyrus. The figures show data projected onto a 

Talairach space template.
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