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Abstract

Adding haptic feedback has been reported to improve the outcome of minimally invasive robotic 

surgery. In this study, we seek to determine whether an algorithm based on simulating responses 

of a cutaneous afferent population can be implemented to improve the performance of presenting 

haptic feedback for robot-assisted surgery. We propose a bio-inspired controlling model to present 

vibration and force feedback to help surgeons localize underlying structures in phantom tissue. A 

single pair of actuators was controlled by outputs of a model of a population of cutaneous afferents 

based on the pressure signal from a single sensor embedded in surgical forceps. We recruited 25 

subjects including 10 expert surgeons to evaluate the performance of the bio-inspired controlling 

model in an artificial palpation task using the da Vinci surgical robot. Among the control methods 

tested, the bio-inspired system was unique in allowing both novices and experts to easily identify 
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the locations of all classes of tumors and did so with reduced contact force and tumor contact 

time. This work demonstrates the utility of our bio-inspired multi-modal feedback system, which 

resulted in superior performance for both novice and professional users, in comparison to a 

traditional linear and the existing piecewise discrete algorithms of haptic feedback.
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haptic feedback; minimally invasive robotic surgery; cutaneous afferent population response; 
artificial palpation

I. INTRODUCTION

The original aims of Robotic Minimally Invasive Surgery were to address some of 

the shortcomings of traditional Minimally Invasive Surgery tools with improved depth 

perception, dexterity, and a reduction of hand tremors [1]. In comparison to endoscopic 

or laparoscopic techniques, however, robotic surgical systems suffered from a complete 

loss of haptic feedback to the user [2]. Consequently, surgeons relied on visual cues 

and their experience in order to perform the accurate motor movements required for 

operations [3]. In inexperienced hands, the absence of haptic feedback has resulted in 

prolonged procedural times and a greater risk for surgical error [4]. Furthermore, studies 

have found that even considering professional robotic-surgeons, a partial presentation of 

haptic feedback decreased the number of errors during blunt dissection tasks [5] and reduced 

the frequency of intraoperative tissue damage. During open surgery, abnormal tissue (e.g., 

tumor or inflamed soft tissue) is detected by its different mechanical properties compared 

to the surrounding normal tissue [6]. Some of these differences (e.g., texture, stiffness, 

and compliance) are not easily detectable through vision and require a surgeon’s touch 

[7]. Appropriate tactile and kinesthetic feedback, which enables the rapid and precise 

localization of anatomical structures buried under tissue (e.g., a mesentery vessel or the 

ureter), thus serves a critical role in reducing injury to delicate neighboring structures [8]. 

One approach to identify abnormal tissue has been to use a sophisticated sensor system with 

a graphic output, that allows the user to visually identify properties of the tissue [9]. We aim, 

instead, to provide haptic feedback to the user, with an ultimate goal of having the surgeon 

feel the tissue.

Haptic feedback systems for robotic surgery consist of two key components: sensors and 

actuators. Sensors detect forces applied to tissue by surgical instruments while actuators 

relay signal detected by sensors to the surgeon’s fingertips. Current actuators can only 

provide simple feedback such as vibration and static pressure, which is often different from 

the signal detected by sensor. How to convert the sensor data to best control the actuator 

is an important design factor that has not been adequately considered. The most basic 

approach is a simple linear function. Such linear control algorithms are easily implemented 

and provide surgeons with a sense of artificial force feedback [10], [11]. In our previous 

work, we have utilized piecewise discrete control systems, which quantize pressure output 

and make jumps in force more noticeable to the user [12], [13]. However, the perception 

produced by an actuator using a linear control method or our piecewise discrete method may 
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not be consistent with the perception corresponding to the stimulus signal detected by the 

sensor. That is, the sample feedback method does not replicate the natural sense of touch. On 

the other hand, if we can build an accurate model replicating the perception of the stimulus 

as detected by the sensor, then we can better reproduce the natural haptic perception.

A natural haptic feedback system should be designed to encode tactile information in 

a similar fashion to the nervous system. Findings from neurophysiological experiments 

suggest that mechanosensory information regarding edge orientation [14], shape [15], [16], 

roughness [17], and texture [18], are encoded in the firing patterns of cutaneous afferent 

population responses (CAPR) in the peripheral nervous system. In humans, there are 3 types 

of cutaneous afferent neurons involved in encoding these stimuli: slowly adapting type 1 

(SA1), rapidly adapting type 1 (RA1), and Pacinian corpuscles (PC) and each of these 

plays a different role in tactile perception [19]. Here, we take advantage of the fact that 

SA1 afferents uniquely respond to static pressure, such as that provided by our pneumatic 

actuator, and RA1 and PC afferents preferentially respond to dynamic changes, which 

can be mimicked by our vibration actuator. We hypothesized that if we can convert the 

information from a sensor to the two classes of actuators in a way consistent with the way 

the information is parsed in the skin, then performance should be superior to that when 

utilizing previous control functions. Indeed, implementing a CAPR model in a prosthesis has 

achieved a better outcome than traditional controlling methods [20].

In this paper, we designed a bio-inspired controlling algorithm using a CAPR model to 

present haptic feedback for robotic surgery. In this bio-inspired haptic feedback algorithm, 

the actuators are not controlled linearly by the detected signal but by the perceived intensity 

of the afferent populations, as predicted by the CAPR model. We utilized a single sensor 

and a single pair of actuators to test our hypothesis and compared the performance of our 

bio-inspired control algorithm to performance with no haptic feedback (i.e., visual feedback 

alone), piecewise discrete haptic feedback and linear haptic feedback control methods. We 

recruited novice subjects and expert surgeons to perform a psychophysical experiment to 

evaluate the efficacy of this feedback in improving the ability to quickly localize underlying 

structures in a tissue phantom. The experiment was aimed to test whether the bio-inspired 

controlling method would allow subjects to have better localizing accuracy and applied force 

than the other two haptic feedback algorithms and when no haptic feedback was provided.

II. METHODS

We will first describe the current haptic feedback system and two previous haptic feedback 

algorithms. Then we will describe our controlling method using a CAPR model. We will 

finish by describing the psychophysical experiment we used to test subjects’ performance 

using the different controlling methods.

The current haptic feedback system, which was designed by CASIT at UCLA, consists of 

a haptic sensor, haptic controller, haptic driver, and haptic actuators as illustrated in Fig. 

1a [7]. A single haptic sensor is used to encode the overall contact force. The sensor was 

calibrated before installation on the surgical instrument. The fitted curve of pressure changes 

as a function of AD value is shown in Fig 1b. [21]. The sensor data in the controller was 
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updated at a rate near 50 Hz. The controller sent commands through Wi-Fi to the haptic 

driver in order to activate the haptic actuators (a pneumatic balloon and vibration motor).

The pneumatic ballon actuator was made at UCLA, using a well established method [22]. 

The maximum pressure of the pneumatic ballon was set to 20 PSI using the regulator 

installed on the air tank. The pressure produced by the pneumatic ballon as a function of the 

control amount (as controlled by a solenoid valve array) is shown in Fig. 1c left [21]. For 

the vibration actuator, we used an 8 mm Uxcell coin vibration motor, as used in reference 

[23]. For this particular actuator, the vibration amplitude and frequency cannot be modulated 

independently: both increase as function of the driving voltage (PWM duty) as shown in Fig 

1c right. The control amounts for the pneumatic balloon and vibration motor (cp, cv) are 

the proportion of opening solenoid valve and the duty of PWM respectively, thus they can 

represented as variables ranging from 0 to 100.

In order to recreate a natural sense of touch through the current hardware, we aimed to 

control the pneumatic balloon and vibration motor in a way that was the equivalent to the 

human tactile signals coming from the sorts of afferents that encode the sensory stimuli. 

Importantly, we wanted to compare this to controlling algorithms currently used in the 

literature: a piecewise discrete algorithm and a linear algorithm. An algorithm previously 

designed by CASIT at UCLA for the haptic feedback system adopted a piecewise discrete 

control strategy in which the sensor value was classified into several ranges for activating 

different actuators as shown in ref. [7], [21]. This algorithm was implemented because 

jumps in feedback pressure were more noticeable than a continuous gradient. The linear 

controlling algorithm we used converted the sensor signal linearly to the control amount of 

the actuator in its dynamic range, as illustrated in equation (1):

c = s − smin
smax − smin

cmax − cmin + cmin (1)

Where s, c is the sensor value and control amount of each actuator respectively. Similar 

algorithms have been used in previous studies, including one in which non-linear data were 

intentionally linearized [10], [11].

A. Bio-inspired control model

The bio-inspired control model is illustrated in Fig 2. The aim of the CAPR model is to 

simulate the responses evoked in a population of cutaneous afferents to a given stimulus 

and to use the output of this model to activate the appropriate actuators. In this system, the 

pneumatic balloon mostly indicates the magnitude of the applied force, which is typically 

encoded by SAI afferents [12], while the vibration motor can be thought of as indicating the 

dynamic aspect of touch, which is encoded in the SA1, RA1 and PC afferents [15]. While it 

is possible that this could be modeled by simply sending the static component of the input to 

the balloon actuator and the dynamic component to the vibration motor, the model allows us 

to present output signals to the user’s skin optimized for the afferent population. It also gives 

us the potential to scale up to handle more sensors and actuators. The control model works 

as follows: we first run the CAPR model to generate the population activity of three afferent 
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classes by inputting the pressure data from the sensing area, we then compute the perceived 

intensities from the population response activity and then substitute the intensities to the 

inverse function of the psychophysical data (as in Fig. 3) to control the two actuators. The 

code of the Bio-inspired feedback control model is available at the link: https://github.com/

ouyangqq/Bioinspired_Haptic_Feedback_sys.

1) Description of our previous CAPR model—The CAPR model adopted in the 

current work was presented previously [24] and is described only briefly here. The CAPR 

model was designed based on a resistance network, to mimic the distribution of pressure 

across the skin, and two-channel filters to separate out the static and dynamic components 

of skin indentation. These then describe the responses of populations of SA1, RA1 and PC 

afferents on fingertip [25].

The input to the CAPR model was pressure data detected by the sensor as illustrated in Fig 

2. The output of the CAPR model is the firing rates of the 3 afferent types. The relationship 

between the firing rate of each afferent type and pressure is determined by following transfer 

function.

H(s) = fr(S)
P(S) =

Kb1 ⋅ 2π ⋅ fb
Q ⋅ S + Kb2 ⋅ S2

S2 + 2π ⋅ fb
Q ⋅ S + 4π2 ⋅ fb2

⋅ 2π ⋅ fb
S + 2π ⋅ fb

BPF

+ Ku ⋅ 2π ⋅ f1
S + 2π ⋅ f1

LPF
(2)

Where P and fr is the pressure the output firing rate, S is the complex operator, fb (Hz), Q 
and f1 (Hz) are the center frequency of the band-pass filter (BPF), which carries the dynamic 

information, the quality factor of the BPF (band-passing filter) and the cutoff frequency 

of the low-pass filter (LPF), which carries the static pressure information. The full code 

of the CAPR model is available online at the following link: https://github.com/ouyangqq/

model_tactile_pop_response/.

2) Modelling perception from firing rates outputted by CAPR model—Previous 

studies indicate that the perceived force is almost linearly related to the average firing rate of 

activated SA1 response [26]. The estimated magnitude of perceived intensity of static force 

(Ipf) is illustrated by equation (3):

Ipf = Kpf ⋅ fsa
10 (3)

where Kpf is a proportion coefficient for normalizing perceived intensity of static force and 

fsa is the average firing rate of the activated SA1 afferents.

Previous studies also indicate that the perceived vibration intensity is 97% accounted for 

by the average firing rate of activated afferent neurons located under or near the locus of 

stimulation, weighted by afferent type [27]. The estimated magnitude of perceived vibration 

intensity (Ipv) can be obtained via equation (3).
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Ipv = Kpv ⋅ Csafsa + Crafra + Cpcfpc
10 (4)

where Kpv is a proportion coefficient for normalizing perceived intensity of vibration. 

Csa1, Cra, Cpc are the weights for each afferent type, which were set to 0.29, 0.36, 0.46 

referring to study [27]. In equations (3) and (4), fsa, fra, fpc are the average firing rates 

of the activated SA1, RA1, PC afferents respectively. We used psychophysical data about 

perceived intensities as shown in the black curve in Figs. 3a and 3b to optimize Kpf, Kpv 

respectively. In Fig. 3, the data of perceived intensities captured from the previous references 

was normalized to 0-10.

3) Inverse function of perception—The inverse function of perception for each 

actuator is a function that relates the control amount to perceived intensity changes. To 

obtain the inverse functions, we used psychophysical data about the perceived intensities of 

vibration and static force. For vibration, ref. [24] provided the psychophysical data about 

the perceived intensity, as shown in Fig. 3b. Whereas for the pneumatic actuator, we used 

the psychophysical data from ref [28]. We used the following equation to calculate the 

controlling amount of pressure (Cp) for the pneumatic balloon for a given force (Fp).

Cp = 5Fp
Kpsi ⋅ π ⋅ rp2 + Cp0 (5)

where Cp0 is the minimal control amount that the balloon pressure can be discerned. Kpsi 

(6.896e-3) is the coefficient for converting PSI to N/mm2.

Since the magnitude of the perceived intensities, as shown in the blue curves in Fig. 3, fits 

the human data well, we used the following exponential function to obtain control amount 

changing as a function of the magnitude of perceived intensity for each actuator.

C = C0 ⋅ (1 + w)I (6)

where C is the control amount, w is the Weber fraction defined as the ratio of the perceptual 

threshold to the intensity of the original stimulus. C0 is the control amount threshold to make 

the stimulus discernible.

B. Analyzing performance of the Bio-inspired control model in predicting haptic 
perception.

After determining the two coefficients (Kpf, Kpv) for normalizing perceived intensity, we 

further analyzed the performance of the current model in predicting haptic perception as 

shown in the blue curve in Figs. 3a and 3b. We computed the relevance coefficient (R2) 

between the blue and black curves to show how much of the variance of the psychophysical 

data can be explained by the current model. We found that the predicted intensities 

from the current model for the vibration and pneumatic actuators were well correlated 

with the psychophysical data (R2=0.99 and 0.98, respectively). In accordance with the 
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psychophysical data in Fig. 3a, the perceived intensity predicted by the CAPR model 

for vibration motor changed approximately logarithmically with control, which indicates 

that the predicted results are fit well by the human Weber function, which describes the 

relationship between the change in a stimulus and the perceived change. As shown in Fig. 

3b, the perceived intensity predicted by the CAPR model for pnumatic balloon changed 

approximately linearly with the pressure. It also matched the psychophysical data, since the 

static pressure produced by the pneumatic balloon is below the force level that causes SA1 

afferent responses to saturate.

Although the coefficients were optimizated using psychophyscial data ranging from 0 to 10, 

the model uses the same coefficients when inputting the full mage of signals detected by the 

sensor.

C. Comparison between different control algorithms

As illustated in Fig. 2, the bio-inspired control model was established by combining the 

CAPR model with the haptic perception model from the afferent population response. 

To compare the current bio-inspired control model with the two previous control models, 

we presented the output characteristics of different control models for various fabricated 

trapezoidal pressure waves, as shown in Fig. 4. The linear control algorithm is simple, in 

which a control amount for 2 actuators changes linearly with input pressure signal. In the 

piecewise discrete controlling model, the control amount for the 2 actuators changed as a 

step function with pressure. The steps used in this study were based on optimization of this 

algorithm in a previous study [29]. In the bio-inspired system, as illustrated in Fig. 2, the 

balloon actuator was controlled according to the responses of SA1 afferents, which respond 

to the onset and hold phase (but typically not its offset of a rampand-hold stimulation wave 

[30]). The output control amount for the balloon actuator in response to trapezoidal pressure 

waves changes in almost same way as SA1 afferent responses. Whereas the vibration motor 

was controlled by following the responses of all 3 afferents [31] [32]. RA1 and PC afferent 

neurons respond strongly to onset and offset of simulation do not respond during static 

simulation. The output control amount for vibration has also similar response properties with 

RA1 and PC afferents. Overall, the output characteristics of this model match cutaneous 

afferent response properties as measured in neurophysiological experiments.

D. Experimental evaluation of the control algorithms

The aim of the experiment was to evaluate the performance of different feedback methods 

in aiding users to identify tumors (of varied stiffness) embedded in phantom tissue made of 

a sponge. A repeated measures study design was used whereby study subjects were asked 

to palpate soft tissue phantoms with the artificial palpation probe mounted on a da Vinci 

surgical forceps (Intuitive Surgical, Sunnyvale, CA) in attempt to localize the tumor hidden 

in the phantom.

Each subject was asked to perform the same task in 4 trials: once with no haptic feedback 

(i.e., visual feedback alone), once with the feedback controlled by the piecewise discrete 

algorithm, once with linear haptic feedback, and once with the bio-inspired haptic feedback 
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algorithm. Work with human subjects was approved by the Institutional Review Board under 

protocol #11-000077.

1) Participants—The first group of subjects was comprised of 15 novice subjects (male: 

7, female: 8) with little or no experience with robotic surgery. The second group of subjects 

was comprised of 10 expert robotic surgeons (male: 7, female: 3) recruited from the Ronald 

Reagan Hospital at UCLA. Of the 25 participants, 24 were right-handed and 1 was left­

handed.

2) Phantom of tumor—A tumor phantom was fabricated using a sponge (QEP 

70005Q-6D 14x14x4.8 cm) on the basis of the actual dimensions and stiffness of tissue. 

There were 7 holes distributed in different sites of the phantom base as shown in Fig. 5 (right 

panel). Different materials were used to simulate different types of tumors: foam, Silica gel, 

and rubber to fabricate soft (S), medium (M) and hard (H) tumors, respectively. The elastic 

modulus of the sponge, S tumor, N tumor, and H tumor is approximately 50, 58, 70, and 

120 kPa respectively. In general, softer tumors were more difficult for subjects to localize. 

The fabricated tumors (approximately 1 cm in diameter, 3 cm in height) could be inserted in 

different holes on the phantom base and could easily be palpated without visualization from 

the sponge surface. In order to facilitate the recording of subjects’ reported tumor locations, 

a coordinate map was drawn on top of the tissue phantom.

3) Experimental precautions and procedure—Before each trial, the subjects were 

given up to 5 minutes to get used to the feedback mechanism being tested using the example 

phantom tissue, on which the locations of 3 different types of tumors were marked. This 

allowed the subjects to become familiar with the sensor manipulation and localization tasks. 

Subjects were also instructed to keep their fingers closed to hold the pressure sensor, and try 

to position the forceps orthogonal to the surface of the sponge as illustrated in the middle 

panel of Fig. 5. Subjects were told to try to apply the least amount of pressure and find the 

tumors as quickly as possible when probing, since large applied force for a long period may 

cause damage to the tissue in real surgery [33]. In each trial, we placed one soft, medium 

and hard tumor pseudo randomly among the 7 holes. The subjects were not told how many 

tumors they would need to find and were only required to indicate whether there was a 

tumor present. The subjects were instructed to follow the grid, checking each location one 

by one. In each session, subjects performed four trials, one with each of the four haptic 

feedback mechanisms. The order of these trials was counterbalanced across subjects. Once 

the trial began, the subjects were asked to find tumors in the experimental phantom tissue 

within the operating area marked as black rectangle on the sponge (see Fig. 5, middle). Once 

they found a tumor, subjects were required to report its position by its column and row 

number. In each trial, the locations of the 3 tumors and were pseudo-randomly moved to be 

different from the previous trial. Between each trial, the subjects had a 30-second break, but 

were asked to stay seated while not operating the robot.

4) Statistical Analyses—Statistical analyses were performed on four recorded metrics: 

localizing accuracy, mean force, time to completion and time spent in contact with the 

tumor (tumor contact time). We defined a reported tumor location that was not more 
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than 1 grid of distance away from the actual tumor site as being correctly localized. The 

localizing accuracy was calculated as the proportion of correct judgments to total reports. 

The completion time was the time from when subjects start probing to when they finished 

checking on the phantom and were sure they had found all the tumors. The time spent in 

tumor contact was defined as time when pressing force exceed a preset level (horizontal 

black dotted line in Fig. 6). And the mean force was the average of the pressure data during 

tumor contact.

Because most of the recorded parameters were not normally distributed, non-parametric tests 

were used to analyze the data. To test for differences between novice subjects and surgeons, 

we used a Wilcoxon Rank Sum test to compare performance from each metric (n=4) for 

each control algorithm (n=4). Despite performing 16 tests, we found no evidence that the 

subject groups performed differently (p-values all greater than 0.14; median p-value 0.55), 

so the remaining analyses were performed on all subjects combined. However, we plot the 

data separately to show the similarities between subject groups. For each tested metric, we 

performed a Kruskal-Wallis test, with the metric as the dependent variable and the control 

algorithm as the independent variable. If we found a main effect of control algorithm, 

we used the post-hoc analyses of the Kruskal-Wallis test to identify individual significant 

differences.

III. RESULTS

A. Test of different control methods

An example of the different feedback methods when a subject palpated different site of the 

tissue phantom is presented in Fig. 6. The piecewise discrete controlling method missed 

the soft and medium tumor, and only responded to the hard tumor. In the linear and 

bio-inspired controlling methods, the pneumatic and vibration actuators were activated with 

different intensities for the three different tumor types. Critically, the linear and bio-inspired 

controlling methods differ in their temporal profiles. The bio-inspired method activated 

stronger intensities for the two actuators, thus increasing the difference in response between 

the different tumor types.

B. Performance of different control methods

In order to further identify which of the three controlling methods was best suited for users 

to find tumors, we calculated the localizing accuracy, mean force, completion time and time 

in which the user was in contact with a tumor (tumor contact time)

As noted above and shown in Fig. 7a, we found no evidence that novice subjects performed 

differently than surgeon subjects (p>0.41, Wilcoxon Rank Sum tests). When using the 

bio-inspired haptic feedback system subjects achieved median localizing accuracy of 0.83. 

Although this was not statistically distinguishable from the median localizing accuracy when 

using the linear method (0.75; p=0.23), it was significantly greater than the accuracies 

when using the piecewise discrete method (0.67; p=0.0032), or when there was no feedback 

(0.33; p=1.4x10−13). Likewise, accuracies using the linear and piecewise methods were both 

significantly better than with no feedback (p=2.2x10−4 and p=0.049, respectively).
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In order to evaluate the performance of each feedback method for each tumor type, we 

calculated the detection probability. Because each subject performed each condition once, 

the detection probability was calculated across subjects. As such, the detection probability 

for a particular tumor in a particular condition was the number of times it was correctly 

located across all the subjects in that condition divided by the number of subjects. As seen 

in Fig. 7b, subjects using the bio-inspired haptic feedback system detected each tumor class 

equally well. To test this, we used a Kruskal-Wallis test with detection as the dependent 

variable and tumor class as the independent variable. We found no evidence that the subject 

pools performed differently with the three tumor types (p=0.58). Using the linear method, 

subjects’ performance was affected by tumor class (p=0.048), but not as strongly as subjects 

using the piecewise discrete method (p=5.0x10−6) or without feedback (p=4.0x10−4). In 

these cases, subjects were significantly worse at detecting the soft tumor compared to the 

hard tumor (post-hoc test p-values <0.001).

Analyses of the remaining metrics are shown in Fig. 8, which show boxplots for mean force 

(Fig. 8a), completion time (Fig. 8b) and tumor contact time (Fig. 8c) as a function of subject 

group and control algorithm. As noted above, we found no significant differences between 

novices and expert surgeons (p>0.14, Wilcoxon Rank Sum tests) for any of the metrics, so 

the following Kruskal-Wallis tests were performed on the pooled data. We plot the subject 

groups separately for illustration purposes only.

We found a main effect of mean force (p=1.73x10−7), no main effect of completion time 

(p=0.684) and a main effect of tumor contact time (p=1.23x10−5). Given that median force 

and tumor contact time both showed a main effect of control algorithm, we further analyzed 

the data to see where there were significant differences among the feedback methods.

Using the bio-inspired haptic feedback method, subjects used significantly less mean force 

(Fig. 8a) than when using the linear feedback method (p=4.32x10−5, post-hoc test), the 

piecewise discrete method (p=2.38x10−7) or when there was no feedback (p=0.0099). We 

found no evidence of differences in mean force among the remaining 3 conditions (all 

p-values >0.08).

We also found that subjects spent considerably less time in contact with the tumors (Fig. 

8c) when using the bio-inspired feedback method (median 1.9s) than when using the linear 

method (2.7s; p=0.0048), the piecewise discrete method (2.5s; p=0.014) or when there was 

no feedback (3.1s; p=4.7x10−6). Again, we found no differences in contact time among the 

remaining 3 feedback methods (all p-values >0.21).

IV. DISCUSSION

We implemented an innovative control model based on the responses of touch receptors 

and presented feedback to users of a surgical robot. For this algorithm, the actuators were 

controlled according to the perceived intensity as predicted by our CAPR model, which 

simulated the response of three different cutaneous afferent populations. Even when using 

only a single sensor and pair of actuators, this feedback system helped subjects more 

effectively localize tumors than other control methods, leading to less contact force, shorter 
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time in contact with the tumor and better localization accuracy. While each of the feedback 

systems allows users to localize tumors better than with no feedback, only the bio-inspired 

control method allowed users to find the soft and medium tumors as easily as the hard 

tumors.

For the linear control algorithm, the pneumatic and vibration actuators were always activated 

simultaneously when interacting with soft tissue. Tins feature does not correspond to natural 

tactile sensation since one does not feel vibrations when pressing down on an object 

statically. The piecewise-discrete control algorithm was originally designed to be highly 

flexible to fit the needs of the task at hand. This was accomplished by changing the 

feedback activation rule set to convey meaningful information to the user (e.g., vibrate 

upon contacting a tumor for palpation, or when a suture is about to break for knot tying). 

While this strategy allows for an easily adaptable setup, it has drawbacks that can affect its 

performance. Primarily, it is highly dependent on prior knowledge of the forces involved in 

the task. Specifically, the ruleset must be established to activate in ranges that a user would 

experience during the task. If the minimum and maximum force ranges are not set optimally 

there will be a decrease in the amount of useful information conveyed to the user. In this 

study it is possible that a different ruleset for the piecewise algorithm may have provided 

more favorable results for that algorithm, particularly if it was tuned for a specific tumor. 

However, the fact that the bio-inspired feedback system did so well without any adjustments 

highlights its benefit over other algorithms that rely on being customized properly.

To the best of our knowledge, this study represents the first time that a bio-inspired haptic 

feedback system has been used for haptic feedback. However, a similar model to our CAPR 

(Touchsim) has been implemented for biomimetic sensory feedback [16]. In that study, the 

Touchsim model was used to convert the pressure sensor signal to action potentials of the 

three classes of afferents, which were then provided to the residual nerve using an electrode 

array.

The bio-inspired feedback method was more sensitive than any of the traditional control 

methods, especially for recognizing the soft tumor as illustrated in Fig. 6 and Fig. 7b. 

This is due, in part, because the vibration actuator is primarily driven by the RA and PC 

components of the response, so it only vibrates during the dynamic phase of contact. As 

the subjects probe the tumor, they feel the higher intensity of the vibration. Therefore, the 

biofeedback method is more beneficial for surgeons to find soft structures under the tissue 

more quickly and with less applied force, thus translating to a decreased amount of potential 

tissue damage.

In this experiment, the actuators were continuously controlled in order to present haptic 

feedback to the user. It may not be necessary to control the actuators continuously since 

a human’s perception levels of stimulus intensity are limited and the difference between 

two stimuli must exceed a threshold to permit discrimination. In future designs it may be 

beneficial to set several stimulus levels for each actuator, and record the population spike 

trains for each level. Then, each actuator may be controlled with the stimulus level and 

spike train most approximate to the output action potentials evoked by the sensor signals. 

Using this discrete method, the complexity of the current control model may be simplified. 
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In the current work, we simulated the responses of 167 SA1, 329 RA1, and 52 PC afferents 

which distribute evenly over the fingertip according the real afferent densities in the fingertip 

[34]. However, it may not be necessary to simulate as many tactile afferents for a pressure 

sensor of a single point. As such, we may be able to further improve the computation 

efficiency by decreasing the afferent density of the simulated tactile units. In this work, 

a single sensor was used to detect the pressure signals, so only temporal information was 

captured; the spatial characteristics of the soft tissue were lost. The current control model 

can easily be expanded with distributed pressure sensors by changing the input to the model 

with the spatial parameters of the sensor distribution. Likewise, the output of the model can 

be configured to any array of actuators, from the coarse pneumatic-only array we have used 

previously [13] to more advanced arrays of the future. Other than the sort of haptic system 

for artificial palpation presented in current work, it is possible that we could implement our 

bio-inspired haptic feedback method in other haptic systems for other surgical simulations 

like the haptic warning system designed by CASIT for suture breakage [35].

V. CONCLUSION

Our bio-inspired haptic feedback system aimed to parse dynamic tactile information to 

afferents via a vibration actuator and static tactile information to SA1 afferents via a 

pneumatic balloon actuator based on the responses of these afferents in our model. Using a 

single sensor and single pair of actuators, the system allowed novices and expert surgeons 

alike to identify the locations of all classes of tumors more easily and did so with reduced 

contact force and tumor contact time compared to previous control functions and when no 

haptic feedback was provided. These results show the benefit of utilizing a bio-inspired 

algorithm, particularly one which can be easily scaled up for use with more advanced sensor 

and actuator arrays.
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Fig. 1. 
Block diagram of the hardware of haptic feedback system for the surgical robot. (b) Output 

characteristics of haptic sensor (FlexiForce A201 force) detected by 10-bit AD converter. (c) 

Output characteristics of pneumatic balloon (left) and vibration motor (right) under different 

controlling amounts.
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Fig. 2. 
Schematic diagram of Bioinpired contrlling haptic feedback. A red dot and gray dot in 

the fingertip represents a activated and inactived afferent neuron respectively, the green, 

blue and purple tick trace represents the firing spiking trian of a SA1, RA1 and neuron 

respectively. fsa, fra and fpc is firing rate of a SA1, RA1 and PC neuron respectively, 

which is calculated as spike number per second in a spiking train. The orange symbol ”∑” 

respresents weightted summation. The orange symbol ”−” respresents operator of calculating 

the average firing rate over all afferent neurons of one type in the fingertip.
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Fig. 3. 
Perceived intensity predicted by our CAPR model and it estimated magnitude obtained 

in psychophysical experiment. (a) Predicted perceived intensity for motor. (b) Predicted 

perceived intensity for pneumatic ballon. In (a) and (b), black circles respresent 

psychophysical data about perceived intensities (adapted from ref. [24] and [23]).
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Fig. 4. 
The outputs of the 3 control models to simulated trapezoidal pressure waves with (a) 

different changing rate but same peak value, (b) different peak value but same changing rate. 

PDHF: piecewise discrete haptic feedback; LHF: linear haptic feedback; BHF: bio-inspired 

haptic feedback.
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Fig. 5. 
Phantom composed of soft sponge material. The distribution of 7 tumor holes on the 

phantom base.
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Fig. 6. 
Output characteristics of linear, piecewise discrete and Bio-inspired control to detected 

signal of pressing normal tissue and tumor site. T0, T1, T2 and T3 indicates starting time 

of pressing normal tissue, soft tumor, medium tumor and hard tumor, respectively. PDHF: 

piecewise discrete haptic feedback; LHF: linear haptic feedback; BHF: bio-inspired haptic 

feedback.

Ouyang et al. Page 20

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
(a) box-plot of localizing accuracy for the 4 feedback control methods. (b) Detection 

probabilities for the different tumor classes for the 4 feedback control algorithms. * indicates 

p<0.05; ** indicates p<0.01; *** indicates p<0.001 from post-hoc tests following Kruskal­

Wallis tests. BHF: bio-inspired haptic feedback; LHF: linear haptic feedback; PDHF: 

piecewise discrete haptic feedback; NHF: no feedback.
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Fig. 8. 
Boxplots showing the effects of the four control methods in the two subject pools on mean 

force (a), completion time (b) and tumor contact time (c). * indicates p<0.05; ** indicated 

p<0.01 and *** indicates p<0.001 from post-hoc tests following Kruskal-Wallis tests. BHF: 

bio-inspired haptic feedback; LHF: linear haptic feedback; PDHF: piecewise discrete haptic 

feedback; NHF: no feedback.
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