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A B S T R A C T   

The COVID-19 pandemic has likely affected natural systems around the world; the curtailment of human activity 
has also affected the collection of data needed to identify the indirect effects of this pandemic on natural systems. 
We describe how the outbreak of COVID-19 disease, and associated stay-at-home orders in four political regions, 
have affected the quantity and quality of data collected by participants in one volunteer-based bird monitoring 
project, eBird. The four regions were selected both for their early and prolonged periods of mandated changes to 
human activity, and because of the high densities of observations collected. We compared the months of April 
2020 with April in previous years. The most notable change was in the landscapes in which observations were 
made: in all but one region human-dominated landscapes were proportionally more common in the data in April 
2020, and observations made near the rarer wetland habitat were less prevalent. We also found subtler changes 
in quantity of data collected, as well as in observer effort within observation periods. Finally, we found that these 
effects of COVID-19 disease varied across the political units, and thus we conclude that any analyses of eBird data 
will require region-specific examination of whether there have been any changes to the data collection process 
during the COVID-19 pandemic that would need to be taken into account.   

1. Introduction 

Citizen science data have long been important for ecological and 
conservation research (e.g., Greenwood et al., 1995), and the diversity 
of uses has only increased through time (e.g., Fink et al., 2020; La Sorte 
et al., 2018; Reynolds et al., 2017; Robinson et al., 2018); however, 
changes in human behaviour can cause variation in how these data are 
collected. The sampling processes of citizen science projects with rela
tively unstructured data-collection protocols — with observers choosing 
when, where and for how long to make observations — have the po
tential to systematically change through time, both within and among 
years, with changes in observers’ motivation and life circumstances. It is 
important to identify the sources of temporal variation in the sampling 
process that must be controlled during data analysis, particularly when 
describing changes through time in distribution and abundance. The 
emergence of COVID-19 disease starting in late 2019 has disrupted 
human activity around the world, including disruptions to highly 
structured monitoring of bird populations. For example, in 2020 data 

collection for the North American Breeding Bird Survey was cancelled 
(BBS National Offices, 2020), and the British Breeding Bird Survey ac
tivity was highly curtained (The BTO Team, 2020). Although less 
structured citizen science projects have not ceased activity, the volume 
and type of observations submitted may have been significantly altered 
due to restrictions imposed on human movement. If we want to use data 
from relatively unstructured projects in order to understand the effects 
of this pandemic on natural systems (Rutz et al., 2020), or to use such 
data in lieu of those from more structured monitoring programs in 2020, 
it will be necessary to understand whether and how observer behaviour 
has changed in response to the COVID-19 pandemic. 

Changes in the quantity of data that are collected are the most basic 
of the potential impacts of changes in observer behaviour. We do not 
have a clear expectation of whether the quantity of data will have 
increased or decreased as a consequence of the COVID-19 pandemic. 
Stay-at-home orders may have curtailed the activities of observers 
because of restrictions preventing observers from travelling to their 
preferred locations for bird watching. However, anecdotally there are 
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also suggestions that these same restrictions may have increased the 
desire of people to connect with the natural world (e.g., Flaccus, 2020), 
and in some regions bird watchers have been actively encouraged to 
report birds that they see from their homes (anonymous, 2020; Bird 
Count India, 2020; Domingues, 2020). Thus, new data may have entered 
the database at a higher, and not lower rate. 

Not just the quantity but the quality (i.e. the relative information 
content of each observation) may have changed. One aspect of quality of 
the entire dataset is the evenness with which observations are distrib
uted across a region; evenly spaced observations contain greater inde
pendent information than the same number of observations that are 
clustered together. I.e. spatial autocorrelation are routinely higher, and 
thus each datum provides a lower amount of independent ecological 
information, for locations that are in closer proximity (e.g., Koenig, 
1999). Because of restrictions of human movement, we expect that ob
servations will be more clustered, and that urbanized landscapes will be 
represented more frequently in the data collected during the pandemic, 
exacerbating an existing bias toward the collection of observations near 
to urban centers (e.g., Tulloch and Szabo, 2012; unpubl. data from 
eBird), and the reporting of species that more commonly are found near 
people. We also expect that rare habitat types such as wetland areas, and 
their associated faunas, will be under-sampled because the curtailment 
of long-distance movement has made it less likely that observers will 
travel to these habitats. 

The probabilities of detecting birds that are actually present can also 
be affected by pandemic-related changes in the behaviour of observers. 
Differences in the habitats visited by observers can impact data not just 
because species have different habitat associations, but also because 
detection rates can differ between habitat types (Ruiz-Gutiérrez et al., 
2010). Detection rates will also vary with multiple aspects of observer 
behaviour such as the durations of observation periods and distances 
travelled during observation periods (Johnston et al., 2020). Both of 
these may have changed during the pandemic. We do not have a clear 
expectation for whether pandemic-related restrictions to observers’ 
movements will have decreased durations of observation periods (i.e. 
less motivation because of low avian diversity in urban areas), or in
crease the durations of observation periods because of additional time 
being available. We expect that a greater proportion of counts will be 
made by people who are stationary (e.g., counting birds from within 
their homes), and that those observers who are moving during obser
vation periods will travel shorter distances. Impacts of the COVID-19 
pandemic on the factors that affect probabilities of detection need to 
be identified and taken into account so that differences in probabilities 
of detection are not erroneously interpreted as changes in abundances. 

The eBird project (Sullivan et al., 2014) is a useful candidate for 
examining the effects of the COVID-19 pandemic on the quantity and 
quality of citizen science data being collected, given its prominence as a 
source of information about bird distribution and abundance in many 
parts of the world (Amano et al., 2016). eBird has been described as a 
“semi-structured” citizen science project (Kelling et al., 2019); obser
vation location, time and effort are all determined by project partici
pants, but ancillary information is collected in order to enable the 
filtering of raw data and modelling of the effects of this sampling 
variation. 

In this paper, we test our expectations that several facets of the 
quantity and quality (i.e. information content) of data submitted to the 
eBird project have changed as a consequence of the COVID-19 
pandemic. We have looked for evidence of effects in four political re
gions that we will use as examples of the potential impacts of the 
pandemic on the data being collected by the eBird project. These regions 
are the U.S. states of California and New York, and the countries of 
Portugal and Spain. Spain underwent a longer and stricter curtailment of 
human activity in the spring of 2020 than in the other regions, and our 
expectation is that Spain may have some of the largest differences in 
data being collected during the pandemic. For each of these political 
units we assess whether the quantities of data were affected by 

comparing data submissions from April 2020 — when all four political 
units were under stay-at-home decrees — to the data collected in April of 
previous years. We also assessed changes in various facets of data 
quality. We looked for greater representation of urban landscapes within 
the data from April 2020 across the four political units; additionally, we 
looked for evidence of a decline in representation of wetland habitat. 
Also, we carried out analyses to look for evidence of other potential 
changes in the behaviour of observers that might have led to deviation in 
the detection rates of birds in April 2020 compared to the same month in 
previous years. 

2. Methods 

Rather than attempting to describe this globally, our purpose is to 
conduct a detailed case studies of the potential impacts over a one- 
month period in four geographically contiguous political units. For 
this, we selected the states of California and New York, and the countries 
of Spain and Portugal (excluding their overseas territories: the Spanish 
autonomous communities of the Canary Islands, Cueta and Melilla; the 
Portuguese autonomous regions of the Azores and Madeira Islands). We 
chose California and New York both because of the large quantities of 
data available in these two states, and also because the restrictions 
imposed on citizens of these states were among the strongest and earliest 
in the United States. In both of these states, stay-at-home orders came 
into effect in late March 2020, and continued throughout and beyond 
the month of April. The governments of Spain and Portugal, countries 
with partner organizations coordinating nation-specific versions of 
eBird (eBird España, and PortugalAves) and high participation by resi
dent bird watchers, also decreed stay-at-home restrictions that were in 
place throughout April 2020, and in Spain these restrictions placed very 
severe limits on peoples’ ability to leave their places of residence. We are 
restricting our analyses to data from the month of April, and comparing 
the data from April 2020 to those collected in April of preceding, typi
cally 3–4, years. Note that 2020 was the first year of data collection for 
the third New York Breeding Bird Atlas, for which eBird is serving as the 
data-collection and management platform, which independently may 
have affected the quantity and quality of data within eBird. It is not 
possible to separate atlas-specific observations from those made for 
other purposes; however, April is prior to nesting of most bird species in 
New York state, and thus prior to the greatest focus of data collection for 
the breeding bird atlas. 

We extracted the data from the eBird Sampling Event Data (eBird 
SED), a data product in which each row of data contains only informa
tion about each observation event’s sampling process (e.g., date, time, 
location, effort), but no information about the bird species observed. The 
version of the SED that we used was released in May 2020, and contains 
all observations submitted to the database prior to mid-May 2020. 
Because data entry for eBird is entirely done through a web data-entry 
page or increasingly from smartphones, there was no need to wait 
multiple months for the data compliation to contain records of essen
tially all observations made in April 2020. We found that only a small 
proportion (<1%) of observation records from the month of April 2020 
first appeared in the compilations of these data that were created in mid- 
June or mid-July 2020. We used the R package auk (Strimas-Mackey 
et al., 2018) to extract only the records from the month of April for the 
four regions described above. We filtered these records to only include 
data from those observation events that are routinely used in analyses at 
the Cornell Lab of Ornithology, which is the lead organization main
taining the eBird enterprise; these practices and the reason for their use 
are summarized in Johnston et al. (2020). We retained data only from 
“complete checklists” (i.e. observation events for which the non- 
detections could be inferred for all species not reported). For most of 
our analyses, except when counting the number of observers, we used 
auk to reduce “shared checklists”, which are multiple versions of the 
same observation event, to one record for each shared group. We only 
retained records for which observation effort was within these criteria: 
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durations of observation periods were between 3 and 300 min, and 
travel distances were no more than 5 km (for rationale see Johnston 
et al., 2020). 

In order to describe the environments around all of the sampling 
locations, we calculated the proportions of land cover classes based on 
the University of Maryland (UMD) classification of MODIS MCD12Q1 
Version 6 remote sensing data (Friedl and Sulla-Menashe, 2019; Sulla- 
Menashe and Friedl, 2018). These data classify land cover within pixels 
500 m on a side, and for each location we summarized the proportions of 
pixels classified as belonging to each of the 16 land cover types from a 5- 
by-5 grid of pixels centered on the pixel containing the reported loca
tion. A separate land cover classification is available, and was used, for 
each calendar year up to and including 2018; for eBird observations 
from 2019 and 2020 we assigned land covers based on the 2018 land 
cover classification. We chose this spatial extent for the summary of 
habitat information because this is the standard extent across which 
habitat information is summarized in analyses of eBird data at the 
Cornell Lab of Ornithology, and past studies have demonstrated that this 
spatial extent provides biologically relevant informative on species’ 
habitat preferences (e.g., Fink et al., 2020). 

We divided each political unit into a grid of equal-area hexagonal 
cells whose centers were approximately 95 km apart (each grid cell 
7774.2km2 in area) by specifying the res = 9 argument in the dgconstruct 
() function of dggridR R package (Barnes, 2018). In analyses for which 
multiple data were present within each grid cell in each year, we used 
the grid cell ID as a random intercept, so that the pattern of interest in 
each analysis was modelled as each observation’s deviation from its grid 
cell’s pre-2020 average value across years. There were data in 104 grid 
cells for California, 32 for New York state, 108 for Spain, and 34 for 
Portugal. 

Typical parametric analyses, like generalized linear models, only 
describe variation in the mean value of a response variable. However, 
geographically uneven responses within a country, state or other region 
also could have resulted in a change in the range of variation (i.e. 
variance), or the extremes (i.e. skewness, kurtosis) of the responses 
across the grid cells. Any such changes could affect the species of birds 
observed or their reported numbers; thus we needed to identify all types 
of changes in distribution. Generalized additive models for location, 
scale and shape (GAMLSS) are designed to allow each of these moments 
of distribution to vary independently, with variation in each being 
described using separate sets of predictor variables. For our analyses we 
used the implementation of GAMLSS models in the R package gamlss 
(Mayr et al., 2012). 

2.1. Modelling deviations from expected densities of observation events 

The first potential consequence of the COVID-19 pandemic that we 
described with statistical models was whether the quantity of data 
collected was altered in April 2020. We measured quantities as the 
number of separate observation events within each hexagonal grid cell, 
summed across all days in the month of April separately for each year. 
For the U.S. states we calculated these summaries between 2005 and 
2020 inclusive (eBird began in 2002 in the U.S.). eBird was formally 
adapted substantially later in Portugal and Spain, and we created these 
summaries only for the years from 2015 and 2017 onward, for Portugal 
and Spain respectively. The quantity of data being collected by eBird is 
increasing through time (Sullivan et al., 2014), and thus the potential 
impact of COVID-19 disease for which we looked was a deviation in the 
number of observation events in 2020 relative to the number expected 
based on the trend from prior years. We modelled the distributions of 
these responses using generalized inverse Gaussian (GIG) distributions, 
in which the response could take any value from zero to positive infinity 
with the shape of the distribution controlled by specifying mean, vari
ance, and skewness. Preliminary analyses showed the GIG distribution 
to be the best available choice with which to model the data, based on 
inspection of Q-Q plots created by R’s gamlss package. We found that 

GIG regression models only slightly under-predicted the very largest 
observed values. We created a set of 20 candidate models (the combi
nations of fixed effects are listed in Table A1) in which we allowed each 
of mean, variance, and skewness to vary as a function of some combi
nation of calendar year (continuous variable, hereafter “CalYr”), and 
whether the data were from the COVID-19 year (i.e. 2020 versus all 
other calendar years; “COVIDYr”). In this model set, CalYr was always 
included as a predictor of variation in the mean number of checklists 
because of our expectation that numbers of observation events have 
increased through time. The predictor variable COVIDYr was present as 
a main effect in some models of variation in the mean, and presence or 
absence of COVIDYr in otherwise identical models allowed us to 
determine whether there was a statistically important deviation in 2020 
from the numbers of observation events expected based on the trend in 
prior years that was described by CalYr. We modelled changes in vari
ance and skewness similarly, except that we also included models in 
which variance and skewness remained constant through time (i.e. 
intercept-only models of variance or skewness). We identified well- 
supported models based on their AIC scores, considering the well- 
supported models to be those within ΔAIC ≤8 of the best-supported 
model (Burnham and Anderson, 2002). 

2.2. Modelling deviations from expected habitat representation in 
observations 

Our approach to testing for effects of COVID-19 on the other 
response variables (proportion of urban habitat, probability of any 
nearby wetlands, duration of observation period, probability of observer 
movement during the observation period, distance travelled by moving 
observers) was different from the method outlined above for examining 
variation in the number of observation events. Based on prior work with 
eBird data (D. Fink, pers. comm.), at least in North America we expected 
that in recent years the typical values of the responses of interest — 
habitats surveyed, and observer effort — should be approximately 
constant through time, unless the COVID-19 pandemic had an impact on 
observers’ behaviour in 2020. Thus, our tests for effects of COVID-19 did 
not model a systematic trend across years, but instead we treated CalYr 
as a categorical variable and compared observer behaviour in April 2020 
to behaviour in the month of April of the preceding 4 years: 2016–2019, 
inclusive (or the 3 years 2017–2019 for Spain). We again created sets of 
candidate models with which to examine effects of COVID-19 on inter- 
annual variation in each moment of distribution (e.g., mean, variance, 
skewness) of the reponse. The year 2020 was set to be the reference 
category; in other words, the regression coefficient for CalYr = 2020 
describes a baseline value of the response (i.e. it is the intercept), and the 
regression coefficients for each of the other years describe the deviation 
from the 2020 value. By parameterizing the model in this way, we are 
conveniently able to evaluate whether there was a consistent difference 
between 2020 and all earlier years, because differences would be indi
cated by the regression coefficients for the other years being either all 
above zero, or all below zero. In this paper, we will describe 2020 as 
being statistically different if other years’ coefficients were all positive 
(or all negative) and if the 95% confidence limits around all of these 
coefficients did not overlap zero. 

In order to examine whether the proportion of urban habitat around 
observation locations was different in April 2020 than in previous years, 
we fitted separate models to the data from each of the four political 
units. We fitted models using an inflated Beta error distribution (the 
“BEINF” distribution family in the gamlss package). This is a beta dis
tribution (response values of between 0 and 1) modified to allow excess 
or deficit in the presence of response values of 0 or 1. The use of this 
distribution enabled modelling of the effects of predictor variables on 
mean, variance, skewness, and kurtosis. We used only one fixed effect 
predictor variable, CalYr (categorical predictor). For each political unit, 
we fitted a set of models in which each moment of the distribution could 
be either constant or a function of CalYr. In all models, the grid cell in 
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which each observation was made was used as a random intercept for 
the mean proportion of urban habitat. All possible combinations of fixed 
effects were modelled, producing a model set of 16 models (Table A2). 
The best-supported model(s) were identified based on ΔAIC values of 
the models within each set. 

We also examined whether one rare habitat, wetlands, differed in 
representation in April 2020 compared to this same month in prior years 
(2016–2019; 2017–2019 for Spain). The presence of any amount of 
wetland habitat was uncommon (only between 20% and 40% of ob
servations had any landcover classified as wetland within 2.5 km of the 
sampling location, in any year and political unit). As a consequence, we 
chose to treat the presence of wetland habitat as a binary response: 
either there was, or there was not any nearby wetland habitat. We fitted 
these binary-response data using a single model for the data from each 
political unit. This model contained CalYr as a categorical fixed effect 
(2020 was the reference/intercept year). The grid cell in which an 
observation was made was treated as a random intercept, which 
controlled for variation in the prevalence of wetlands across each po
litical unit. Given the small number of predictor variables and our ability 
to test for the predicted effect based on the regression coefficients for the 
only fixed effect, we do not believe that there is need to examine mul
tiple statistical models. 

2.3. Modelling deviations from expected observer effort 

The species of birds detected, and the numbers of individuals coun
ted are affected by the amount of effort expended by observers during an 
observation period. We know that the duration of an observation period 
is an important determinant of the number of birds detected (e.g., Kel
ling et al., 2015). In our analyses of variation in the lengths of obser
vation periods, we needed to account for the fact that ranges of effort 
were truncated in the process of filtering the raw records in order to 
create the set of data that we used. For our analyses of variation in the 
duration of the observation period, the data were filtered to leave only 
observation periods of between 3 and 300 min, inclusive; we modelled 
these data using a truncated version of the gamlss generalized inverse 
Gaussian family that allowed only response values of between 3 and 300 
min. The fixed effects of the models that we used are shown in Table A3. 

The distance travelled will also affect the number of birds detected, 
with longer distances leading to the detection of more birds, and we 
expect that the distances that observers travelled during observation 
periods will have been decreased by the restrictions on human move
ment. We have divided our examination of variation in these travel 
distances into two components, asking whether in April 2020: (1) a 
greater proportion of observation periods were made by non-moving 
observers (i.e. whether the observation was an eBird “stationary 
count”), and (2) whether the distances travelled by non-stationary ob
servers were different than in prior years. We have separated our ana
lyses into these two components because our prior experience with these 
data has shown that a “stationary count” is not simply a travelling count 
of zero distance. Our analyses for component (1) were logistic regression 
models in which a single model was fitted to the data from each political 
unit. This model has a single fixed effect predictor, CalYr (categorical 
variable; 2020 is the reference/intercept year) and the grid cell of each 
observation as a random intercept. For our analyses of component (2) we 
fitted the same set of models that we used to examine variation in the 
duration of observation periods (Table A3). The distribution of the 
response variable was truncated, and we fitted data using a truncated 
generalized inverse Gaussian distribution, this time allowing values to 
range between 0.01 km and 5 km, the range produced by our filtering of 
the total set of data and removing all data from stationary counts. 

GAMLSS models did not always converge to solutions using the 
default settings within R’s gamlss package. In most, but not all, cases we 
were able to produce model convergence by altering two aspects of the 
model fitting process that we describe in a footnote to Table A3. In spite 
of this some of the models of variation in observer effort failed to 

converge (duration of observation period and distance travelled; models 
listed in footnotes to Tables A8 and A9). Based on inspection of the data, 
our experimentation with adjusting model fitting, and conversations 
with colleagues, we suggest that the lack of model convergence was the 
result of intrinsic difficulties in fitting GAMLSS models. The large 
number of parameters estimated in GAMLSS models is particularly 
challenging with truncated response distributions, for which we suspect 
that truncation removed exactly the information required in order to 
identify distribution variance and skewness. 

3. Results 

Across the political units that we have considered, the restrictions 
imposed on the populations had markedly different effects on the abil
ities and motivations of people to make observations, as evidenced by 
changes to the numbers of people collecting observations (Fig. 1). All 
year-to-year changes in numbers of observers were increases, except in 
Portugal where there was a decline in the number of people partici
pating in data collection in April 2020 compared to April 2019. 
Exploring the causes of these differences (e.g., how much of the decline 
in Portugal was because of the absence of tourist bird watchers?) is out 
of scope for this paper, because we were investigating of the COVID-19 
pandemic for data quantity and quality, and not the causes of changes in 
human behaviour. 

3.1. Deviation from expected densities of observation events in 2020 

The distribution, and not just the number, of observation events 
determines the information content of eBird’s data within a larger re
gion. We described variation in the distribution of observations within 
each of our four political units based on the number of observation 
events recorded within each of the hexagonal equal-area grid cells 
within that political unit. The majority of grid cells had relatively few 
observation events, but a small number of grid cells contained a very 
large number of observations (Fig. 2). 

We found no statistical evidence that the numbers of observations 
per grid cell in April 2020 differed from the expected trend of increasing 
average numbers seen in prior years, with AIC-based support spread 
across most of the models in all four political units. Because different 
aspects of the shapes of these distributions could vary among years, we 
statistically tested whether any of three moments of distribution — 
mean, variance or skewness — were consistently different in 2020 
relative to the prior years. With the data from Spain, model support was 
spread across the models, which were all within ΔAIC <5.3 of the best- 
supported model. With the data from Portugal, model support was 
spread across the converging 17 models (see footnote to Table A1) that 
were all within ΔAIC <7.1 of the best-supported model. For California 
data, there were 13 models within ΔAIC ≤8 of the best-supported model. 
From our analyses of data from New York state, there were 14 models 
within ΔAIC ≤8 of the best-supported model. For the model sets from 
each of the four of the political units, all regression parameters 
describing deviations of 2020 from prior years were estimated with 95% 
confidence limits that overlapped with zero. In other words, there is no 
statistical support for the existence of differences in the number of ob
servations per grid cell between April 2020 and April of prior years. 

3.2. Changes in the habitats surveyed 

In all four political units, we detected statistical differences in the 
amounts of urbanized landscape surrounding locations of observation in 
April 2020 compared to previous years (Fig. 3). The mean proportion of 
urban habitat was higher in 2020 in all four of the political units 
examined (Fig. 3, Tables A4–A7). Not only were the mean proportions of 
urban habitat different in 2020, but the overall shapes of the distribu
tions changed. The variance in amounts of urban landscape was higher 
in Portugal for data from 2020. The skewness was lower in 2020 in 
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Spain, Portugal, and California. Kurtosis was higher in 2020 in the data 
from Portugal and California. For our purposes in this paper, the 
implication of a change in each moment of distribution is not relevant; 
instead, the relevant information is that multiple aspects of distribution 
have changed. On a related topic, note that while the mean is typically 
the only moment of a distribution that is statistically evaluated for 
change, only in New York state was the mean the only moment of dis
tribution to vary. 

Observers in Spain, Portugal and California made fewer observations 
near wetland habitat in April 2020 than in the preceding years; we found 
no consistent pattern of inter-annual variation in the data from New 
York (Table 1). 

3.3. Changes in observer effort 

We found statistical evidence that count durations varied between 
2020 and prior years in both Spain and California. For the data from 
Spain both the mean and variance of observation durations were lower 
in 2020 than in any of the prior years (Table A8). The best-supported 
model for data from California modelled only the mean count dura
tion as varying among years, and mean count duration was lower in 
April 2020 than in the four prior years (Table A8). For Portugal the best- 
supported model describes inter-annual variation only in mean duration 
of the observation period, but in the years prior to 2020 the mean du
rations of observation periods were both higher and lower than in 2020 
(Table A8). The best-supported model for data from New York state only 
modelled skewness of count durations to vary among years, with mean 
and variance being constant. However, while there were year-to-year 
differences in skewness, the observations in April 2020 did not differ 

consistently from those in all other years, and the skewness of count 
durations was most similar between 2019 and 2020 (Table A8). Given 
that several of the models did not converge to solutions (see Table A8), 
this emphasizes the challenges of identifying whether or how count 
durations varied among years given the presence of the trunctated 
response variable. 

Our prediction that stationary counts would be more common in 
2020 was confirmed, except in New York state (Table 2). In Spain, 
Portugal, and California a greater proportion of observation periods 
were stationary counts in April 2020 compared to April of prior years. 
This change was most dramatic in Spain, where the proportion of sta
tionary counts was over 80% in 2020, more than doubling the per
centage of any of the prior three years. In all three of the aforementioned 
political units, the 95% confidence intervals around these estimates did 
not overlap zero, meaning that these differences were statistically 
robust. New York state was the exception, with only one of the four prior 
years having a lower proportion of stationary counts; only 2 of these 4 
differences from the 2020 proportion of stationary counts were statis
tically robust, and both of these coefficients were for larger, and not 
smaller, proportions of stationary counts in prior years. 

Only for the two U.S. states did we find statistical evidence that the 
distribution of travel distances was consistently different in 2020 
compared to prior years. We fitted a set of 7 models (Table A3) to the 
travel-distance data from each country or state. For Portugal’s data, the 
single converging model describes inter-annual differences in mean 
travel distance, but there was no consistent direction to this variation in 
the years prior to 2020 (Table A9). The best-supported model from 
California’s data described both higher mean and skewness of travel 
distances in 2020, relative to prior years, and for data from New York the 

Fig. 1. The number of volunteer observers contributing data 
into the eBird database in April of each calendar year. Plotted 
is the number of unique observer ID values, regardless of 
whether these observers were associated with a unique 
observation event or with groups of observers collectively 
making observations (i.e. eBird “shared checklists”). Note that 
the ranges of years plotted on the x-axes differ between the 
graphs, because the active promotion of eBird to local bird 
watchers began later on the Iberian Peninsula than in North 
America. Also note that left and right y-axis scales on each 
graph are not identical.   
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best supported model was of higher variance in travel distances in 2020 
compared to prior years (Table A9). Note that many models, including 
all models of data from Spain, did not converge to solutions (Table A9). 
Regarding non-convergence of the models of travel distance in Spain, 
there were relatively fewer data on travel distance in 2020, given that 
roughly 80% of all observations were made by stationary observers in 
April 2020; in contrast, the majority of observations were made by 
people who were moving during their observation periods in all other 
political units. 

4. Discussion 

The effects of the stay-at-home decrees in April 2020 are visible in 
the way that eBird data were gathered. However, these effects varied 
among the four political units whose data we examined. We found a 
reduction in the proportion of travelling observation events, and in the 
two U.S. states we also found subtle changes in the distances travelled 
for those observation events that were “travelling counts” (Fig. 4). We 
also found shifts toward making observations in more human- 

dominated landscapes and away from landscapes containing wetlands, 
with the exception of New York state for which urban-dominated 
landscapes were statistically less likely to be sampled in 2020 (Fig. 3; 
Table 1). Of note, we found that not all of these changes were shifts in 
averages. We fitted models that simultaneously described changes in 
mean, variance, skewness, and (for the proportion of urban habitat) 
kurtosis, and each of these moments of distribution was significantly 
different in 2020 in one or more analyses. We have not attempted to 
provide separate interpretations for variance, skewness and kurtosis, but 
instead for the purpose of our paper we emphasize that changes in any 
and all of these moments of distribution are associated with changes in 
the shapes of distributions of observer activity. These changes in dis
tribution of data are best interpreted by examination of graphs that 
visualize the changes in shapes of distributions, as this encompasses 
changes in all of the parameters. Our most important conclusion is that 
any use of eBird data to infer changes in the abundance or distribution of 
birds in 2020 must account for changes in the checklists that were 
contributed during periods of altered daily patterns of human activity. 
This applies to studies designed to infer impacts of the COVID-19 
pandemic or those that include data from this year for other purposes. 
Important aspects of change to data contributions to consider are: the 
spatial distribution of observers’ activity, the specific habitats visited by 
observers, and the amount and type of effort expended during the 
collection of these data. If assessments do not account for changes to 
observer behaviour and data submissions, misleading conclusions will 
often be made regarding changes to bird populations and communities 
in 2020. 

Our results indicate that it is impossible to create a universal pre
scription for dealing with the impacts of the changed behaviour of bird 
watchers. Instead, any use of the data from 2020 will require analysts to 
determine how the COVID-19 pandemic has affected their data and 
apply the necessary corrections (e.g., Johnston et al., 2020). Further, 
those analysing data from broad geographic areas will need to consider 
that the impacts of the pandemic will have varied across their study 
region. This point is illustrated by the differences found between Cali
fornia and New York in the United States, and especially between the 
neighbouring countries of Spain and Portugal. The differences that we 
found in the data from Portugal and Spain are consistent with differ
ences in the severity with which stay-at-home restrictions were imposed 
in these two countries: in Spain the prohibition on leaving one’s place of 
residence was almost absolute, whereas in Portugal people were able to 
walk outside within a few kilometers of their homes. Additionally, the 
restrictions imposed in Portugal were relaxed in the last week of April. 
We suggest that the differences between New York state and the other 
three political units (e.g., Fig. 3) illustrate that responses to the COVID- 
19 pandemic may not have been the only cause of variation in observer 
behaviour in 2020. The shifting of observer activity away from urban 
landscapes in New York is consistent both with observers in New York 
state generally avoiding urban areas, as well as with observers shifting 
their efforts toward searching areas with a greater diversity of nesting 
species for the third New York Breeding Bird Atlas. Our findings have a 
more general implication for the analyses of broad-scale ecological data 
in that analytical approaches proposed for dealing with spatial variation 
assume gradual variation through space (e.g., Fink et al., 2010; Osborne 
et al., 2007; Royle and Young, 2008), but the potential for sharp dif
ferences in observer behaviour across political boundaries cannot be 
ignored. 

The fact that habitats have been visited in different proportions in 
April 2020, compared to the same month in previous years, will result in 
fewer reported observations of species that are most prevalent in the 
habitats under-sampled in 2020, such as wetland-associated species, and 
more observations of species in the over-sampled habitats. Thus, in 
order to appropriately describe how the distribution and abundance of a 
bird species may have changed in 2020 compared to previous years, the 
habitat associations of species and changes in frequency of sampling 
within habitats need to be incorporated into analyses (Johnston et al., 

Fig. 2. The numbers of observation events in April 2020 were largely consis
tent with the patterns of interannual change across prior years. Data points 
were the numbers of observation events within each hexagonal grid cell inside 
each political unit. The width of each vertical bar of these violin plots is a 
smoothed representation of the proportion of grid cells with a given number of 
observation events. White dots within the “violins” are the median number of 
observation events, and thicker black bars denote the inter-quartile ranges. 
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2020). When using datasets that include detection/non-detection, it is 
possible to analytically separate the habitats surveyed from the species 
presence, although care is required to design analyses that will accom
modate changes in habitats sampled. With presence-only data (for 
example iNaturalist or Observation.org) it would be much more chal
lenging to separate these two processes, because at best the sampling of 
habitats can only be inferred indirectly (Isaac and Pocock, 2015; Isaac 
et al., 2014). 

Different rates of species detection also will have resulted from any 
differences in the duration of observation periods and distances trav
elled during non-stationary observation periods. For any specific region 
these changes in detection frequency will vary with the magnitude of 

change in observer effort, and will also differ among species. This un
derlines the importance of including effort variables in models, to 
describe the heterogeneity in detectability between observations (Kel
ling et al., 2019). Including observer effort as a predictor variable can be 
complicated because, for example, 1 h of observation effort or 1 km of 
distance travelled likely will produce different counts of birds or 
different lists of species for observers who are in different habitats. 
Describing such interactions can be a complex task when parametric 
statistical models are being specified, although machine-learning 
models such as random forest or boosted regression trees models 
should automatically detect important interactions among factors that 
affect detection rates (e.g., Elith et al., 2008). 

Fig. 3. The relative frequency with which landscapes 
containing different proportions of urban landcover 
were sampled in 2020 compared to 2019. In red (or 
the darkest shade of grey in greyscale reproduction) 
are the proportions of urbanization that were more 
frequently sampled in 2020, relative to 2019. In the 
data from Portugal, Spain and California, more ur
banized landscapes were sample at higher frequency 
in 2020 than 2019. Qualitatively similar results were 
found when the data from 2020 were compared to 
data from years prior to 2019. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the web version of this article.)   

Table 1 
Estimated regression coefficients describing the differences in the probability of 
an observation event in April being near wetland habitat among years. Co
efficients are from the single logistic regression model fitted to data from each of 
the four political units separately. These models were parameterized so that the 
April 2020 proportion of observations near any wetlands is the intercept/ 
reference value, and the coefficients for all earlier years represent deviations 
from the 2020 proportions. Thus, positive values for regression coefficients for 
the years prior to 2020 indicate that the proportion near wetlands were higher in 
these years than in 2020. Coefficients and standard errors in bold font indicate 
coefficients for which the 95% confidence intervals did not overlap with zero, 
indicating statistically reliable estimates. The final column, presenting the 
estimated proportions of observation events made near wetlands, were calcu
lated based only on the fixed effect in the model (i.e. setting the random effect 
coefficient to zero).  

Region Predictor Coefficient SE Proportion near wetlands 

Spain Intercept (2020)  ¡3.74  0.31  0.0232 
Year (2017)  1.29  0.06  0.0796 
Year (2018)  1.09  0.05  0.0660 
Year (2019)  1.04  0.05  0.0627 

Portugal Intercept (2020)  ¡3.57  0.43  0.0274 
Year (2016)  0.43  0.09  0.0414 
Year (2017)  0.62  0.09  0.0497 
Year (2018)  0.44  0.08  0.0418 
Year (2019)  0.83  0.08  0.0610 

California Intercept (2020)  ¡3.46  0.31  0.0305 
Year (2016)  0.38  0.03  0.0440 
Year (2017)  0.44  0.03  0.0468 
Year (2018)  0.27  0.03  0.0396 
Year (2019)  0.21  0.02  0.0374 

New York Intercept (2020)  ¡1.97  0.37  0.123 
Year (2016)  − 0.005  0.02  0.122 
Year (2017)  0.07  0.02  0.131 
Year (2018)  0.04  0.02  0.127 
Year (2019)  0.07  0.02  0.130  

Table 2 
Estimated regression coefficients describing the differences in the probability of 
an observation event being a stationary (i.e. point) count among years, in April. 
Coefficients are from the single logistic regression model fitted to data from each 
of the four political units separately. These models were parameterized so that 
the April 2020 proportion of stationary counts is the intercept/reference value, 
and the coefficients for all earlier years represent deviations from the 2020 
proportions. Thus, negative values for regression coefficients for the years prior 
to 2020 indicate that the proportion of stationary counts was lower in these 
years than in 2020. Coefficients and standard errors in bold font indicate co
efficients for which the 95% confidence intervals did not overlap with zero, 
indicating statistically reliable estimates. The final column, presenting the 
estimated proportions of observation events that were from stationary counts, 
was calculated calculating based only on the fixed effect in the model (i.e. setting 
the random effect coefficient to zero).  

Region Predictor Coefficient SE Proportion stationary 

Spain Intercept (2020)  1.59  0.06  0.831 
Year (2017)  ¡1.97  0.04  0.408 
Year (2018)  ¡2.13  0.03  0.368 
Year (2019)  ¡2.34  0.03  0.322 

Portugal Intercept (2020)  0.12  0.08  0.529 
Year (2016)  ¡1.13  0.07  0.267 
Year (2017)  ¡0.89  0.06  0.316 
Year (2018)  ¡0.32  0.05  0.450 
Year (2019)  ¡0.58  0.05  0.386 

California Intercept (2020)  ¡0.39  0.05  0.404 
Year (2016)  ¡0.40  0.02  0.313 
Year (2017)  ¡0.36  0.02  0.322 
Year (2018)  ¡0.45  0.02  0.303 
Year (2019)  ¡0.44  0.02  0.303 

New York Intercept (2020)  ¡0.19  0.07  0.453 
Year (2016)  0.13  0.02  0.486 
Year (2017)  0.10  0.02  0.478 
Year (2018)  0.0002  0.02  0.453 
Year (2019)  − 0.001  0.02  0.453  
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In conclusion, we found that bird watchers participating in data 
collection for eBird did alter their behaviours in April 2020 in response 
to the restrictions on human movement that resulted from the COVID-19 
pandemic. Given the magnitude of the change to daily life, it is perhaps 
notable that the changes observed in eBird data are not more substantial. 
Nevertheless, the behaviour of observers did change in ways that will 
require analyses of eBird’s data to account for differences in the pro
portional representation of habitats in observations, and differences in 
observer effort. While we have only looked for changes in observer ac
tivity in four political units, we have found different effects on the ac
tivities of project participants among these political units. We expect 
such differences have occurred globally, given the substantial differ
ences in political and policy responses to the pandemic around the globe 
and the different environments in which observers live. These regional 
differences in effects on participants’ behaviour will need to be taken 
into account for most any use of these data. This applies to examining 
whether behaviour and local distribution of wild animals was altered by 
pandemic-related changes in human behaviour. This conclusion also 
applies more broadly to the use of data from eBird collected during the 
pandemic for other purposes including montoring of longer term 
changes in distribution and abundance. We have only looked at changes 
in the behaviour of participants in one project, eBird. However, we 
expect that similar changes in observer behaviour in 2020 have occurred 
for other projects for which volunteer participants choose how much 
effort to expend, where to expend their effort, and when to expend their 
effort. Thus, similar analytical challenges await anyone using data 
collected by these other projects during the COVID-19 pandemic. 
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Oliveira, Guillaume Rethoré, Hélder Vieira, Hugo Lousa, João Tiago 
Tavares, Jorge Araújo, Jorge Safara, Mário Estevens, Matthias Tissot, 
Paulo Alves, Paulo Belo, Pedro Cardia, Pedro Fernandes, Pedro Moreira, 
Pedro Nicolau, Pedro Ramalho, Ricardo Brandão, Ricardo Melo, Rui 
Machado, Rúben Coelho, Thijs valkenburg, Vasco Flores Cruz and Xurxo 
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Table A1 
Fixed effect predictor variables for each model in the set of twenty models fitted 
separately to data from each of the four political units, in order to identify the 
best-supported model(s) describing inter-annual variation in numbers of 
observation events across the equal-area hexagonal grid cells into which each 
political unit was divided. An “X” within a column indicates that this predictor 
variable was included in the model described by a row within this table. The 
fixed effect predictor “CalYr” is a continuous variable that describes monotonic 
changes across the calendar years in each moment of the distribution (i.e. mean, 
variance, and skewness) “COVIDYr” is a 2-value categorical variable that in
dicates whether the calendar year was 2020; this predictor functions to allow the 
moment of distribution to deviate in 2020 from the longer-term trend described 
by “CalYr”. All models converged, except for fitting of models for Portugal; here, 
3 models failed to convergea.  

Model number Mean Variance Skewness 

CalYr COVIDYr CalYr COVIDYr CalYr COVIDYr  

1 X       
2 X X      
3 X  X     
4 X X X     
5 X  X X    
6 X X X X    
7 X    X   
8 X X   X   
9 X    X X  
10 X X   X X  
11 X  X  X   
12 X X X  X   
13 X  X  X X  
14 X X X  X X  
15 X  X X X   
16 X X X X X   
17 X  X  X X  
18 X X X  X X  
19 X  X X X X  
20 X X X X X X  

a Models # 13, 17 and 20 did not converge when fitted to the data from 
Portugal.  

Table A3 
Fixed effect predictor variables for each model in the set of seven models 
fitted separately to data from each of the four political units, in order to 
identify the best-supported model(s) describing inter-annual variation in 
observer effort (separately duration of count periods, and distances 
travelled for non-stationary counts). In these models each of three mo
ments of distribution — mean, variance and skewness — could vary 
independently as a function of their own set of predictor variables. An 
“X” within a column indicates that this predictor variable was included 
in the model described by a row within this table. The fixed effect pre
dictor “intercept” indicates that the moment of variation was constant 
across years. “Year” was a categorical predictor variable that describes 
variation among years that is arbitrary and potentially non-systematic in 
pattern; note that when “Year” was included as a predictor of a moment 
of distribution the year 2020 was treated as the intercept. Note that 
several models failed to converge, both for modelling of variation in 
count durations and travel distances, in spite of our efforts to adapt the 
model-fitting processa. See footnotes for Tables A8 and A9 for lists of the 
models that did not converge for each political unit.  

Model number Mean Variance Skewness 

Intercept Year Intercept Year Intercept Year  

1  X X  X   
2 X   X X   
3 X  X   X  
4  X  X X   
5  X X   X  
6 X   X  X  
7  X  X  X  

a We adapted the default model-fitting process in two ways. First, we 
increased the number of iterations allowed for model fitting from the default 
20 to 100, and halved the “step.length” value with which the algorithm would 
adjust parameter values in each iteration of the model-fitting algorithm; the 
convergence criterion was never altered. Second, at times model convergence 
failed in fewer than the 20 iterations allowed by default, and in these cases we 
would change the algorithm used from the default “method = RS”, to instead 
use a mixture of the two available algorithms (“method = mixed”) and then 
vary the number of iterations using the first algorithm before starting to use the 
second.   

Table A2 
Fixed effect predictor variables for each model in the set of sixteen models fitted separately to data from each of the four political units, in order to identify the best- 
supported model(s) describing inter-annual variation in proportion of urban landcover within the 2.5 km × 2.5 km areas centered on the locations of observation 
events. In these models each of the four moments of distribution — mean, variance, skewness and kurtosis — could vary independently as a function of their own set of 
predictor variables. An “X” within a column indicates that this predictor variable was included in the model described by a row within this table. The fixed effect 
predictor “intercept” indicates that the moment of variation was constant across years. “Year” was a categorical predictor variable that describes variation among years 
that is arbitrary and potentially non-systematic in pattern; note that when “Year” was included as a predictor of a moment of distribution the year 2020 was treated as 
the intercept.  

Model number Mean Variance Skewness Kurtosis 

Intercept Year Intercept Year Intercept Year Intercept Year  

1 X  X  X  X   
2 X   X X  X   
3 X  X   X X   
4 X  X  X   X  
5 X   X  X X   
6 X   X X   X  
7 X  X   X  X  
8 X   X  X  X  
9  X X  X  X   
10  X  X X  X   
11  X X   X X   
12  X X  X   X  
13  X  X  X X   
14  X  X X   X  
15  X X   X  X  
16  X  X  X  X  

W.M. Hochachka et al.                                                                                                                                                                                                                        



Biological Conservation 254 (2021) 108974

10

Table A4 
In Portugal, the proportion of urban landscape in the area around 
observation locations differed in April 2020 compared to the prior four 
years. For each of the four moments of the distributions — mean, vari
ance, skewness, and kurtosis — the coefficient describing the 2020 value 
is the reference category, and the coefficients for all other years describe 
deviations from the 2020 reference value. Coefficient and standard error 
values printed in bold font denote coefficients that were estimated with 
high statistical precision: the 95% confidence intervals around these 
coefficients did not overlap zero. Thus, if the coefficients for effects in 
the years 2016–2019 either all positive or all negative, and all are dis
played in bold font, then in 2020 a moment of distribution is consistently 
different than in all prior years examined. The coefficients for describing 
mean and variance are presented on the logit scale, while skewness and 
kurtosis are presented on the ln-link scale.  

Moment Predictor Coefficient SE 

Mean Intercept (2020)  ¡0.53  0.03 
Year (2016)  ¡0.14  0.05 
Year (2017)  ¡0.20  0.05 
Year (2018)  ¡0.29  0.04 
Year (2019)  ¡0.31  0.04 

Variance Intercept (2020)  0.34  0.03 
Year (2016)  ¡0.20  0.05 
Year (2017)  ¡0.21  0.04 
Year (2018)  ¡0.44  0.03 
Year (2019)  ¡0.31  0.04 

Skewness Intercept (2020)  0.09  0.04 
Year (2016)  1.03  0.06 
Year (2017)  0.88  0.05 
Year (2018)  0.24  0.05 
Year (2019)  0.68  0.05 

Kurtosis Intercept (2020)  ¡1.70  0.07 
Year (2016)  ¡0.90  0.17 
Year (2017)  ¡0.67  0.12 
Year (2018)  ¡0.79  0.11 
Year (2019)  ¡0.48  0.11  

Table A5 
In Spain, the mean proportion of urban landscape in the area around 
observation locations was higher in April 2020 compared to the prior 
four years. For each of the four moments of the distributions — mean, 
variance, skewness, and kurtosis — the coefficient describing the 2020 
value is the reference category, and the coefficients for all other years 
describe deviations from the 2020 reference value. Coefficient and 
standard error values printed in bold font denote coefficients that were 
estimated with high statistical precision: the 95% confidence intervals 
around these coefficients did not overlap zero. Thus, if the coefficients 
for effects in the years 2017–2019 either all positive or all negative, and 
all are displayed in bold font, then in 2020 a moment of distribution is 
consistently different than in all prior years examined. The coefficients 
for describing mean and variance are presented on the logit scale, while 
skewness and kurtosis are presented on the ln-link scale.  

Moment Predictor Coefficient SE 

Mean Intercept (2020)  ¡0.06  0.01 
Year (2017)  ¡0.57  0.03 
Year (2018)  ¡0.28  0.02 
Year (2019)  ¡0.34  0.02 

Variance Intercept  0.02  0.01 
Year (2017)  − 0.01  0.03 
Year (2018)  0.09  0.02 
Year (2019)  0.003  0.02 

Skewness Intercept  ¡0.25  0.02 
Year (2017)  1.22  0.04 
Year (2018)  0.98  0.03 
Year (2019)  0.86  0.03 

Kurtosis Intercept  ¡2.45  0.03    

Table A6 
In California, the mean, variance and kurtosis of the proportion of urban 
landscape in the area around observation locations differed in April 
2020 compared to the prior four years. For each of the four moments of 
the distributions — mean, variance, skewness, and kurtosis — the co
efficient describing the 2020 value is the reference category, and the 
coefficients for all other years describe deviations from the 2020 refer
ence value. Coefficient and standard error values printed in bold font 
denote coefficients that were estimated with high statistical precision: 
the 95% confidence intervals around these coefficients did not overlap 
zero. Thus, if the coefficients for effects in the years 2016–2019 either all 
positive or all negative, and all are displayed in bold font, then in 2020 a 
moment of distribution is consistently different than in all prior years 
examined. The coefficients for describing mean and variance are pre
sented on the logit scale, while skewness and kurtosis are presented on 
the ln-link scale.  

Moment Predictor Coefficient SE 

Mean Intercept  ¡0.03  0.01 
Year (2016)  ¡0.29  0.01 
Year (2017)  ¡0.27  0.01 
Year (2018)  ¡0.20  0.01 
Year (2019)  ¡0.19  0.01 

Variance Intercept  0.07  0.01 
Year (2016)  − 0.01  0.01 
Year (2017)  0.01  0.01 
Year (2018)  0.04  0.01 
Year (2019)  0.01  0.01 

Skewness Intercept  ¡1.07  0.01 
Year (2016)  0.48  0.02 
Year (2017)  0.53  0.02 
Year (2018)  0.34  0.02 
Year (2019)  0.42  0.02 

Kurtosis Intercept  ¡1.67  0.02 
Year (2016)  ¡0.57  0.03 
Year (2017)  ¡0.43  0.03 
Year (2018)  ¡0.33  0.03 
Year (2019)  ¡0.25  0.03  

Table A7 
In New York, the mean proportion of urban landscape in the area around 
observation locations was lower in April 2020 compared to the prior 
four years. For each of the four moments of the distributions — mean, 
variance, skewness, and kurtosis — the coefficient describing the 2020 
value is the reference category, and the coefficients for all other years 
describe deviations from the 2020 reference value. Coefficient and 
standard error values printed in bold font denote coefficients that were 
estimated with high statistical precision: the 95% confidence intervals 
around these coefficients did not overlap zero. Thus, if the coefficients 
for effects in the years 2016–2019 either all positive or all negative, and 
all are displayed in bold font, then in 2020 a moment of distribution is 
consistently different than in all prior years examined. The coefficients 
for describing mean and variance are presented on the logit scale, while 
skewness and kurtosis are presented on the ln-link scale.  

Moment Predictor Coefficient SE 

Mean Intercept  ¡0.56  0.01 
Year (2016)  ¡0.10  0.01 
Year (2017)  ¡0.09  0.01 
Year (2018)  ¡0.07  0.01 
Year (2019)  ¡0.04  0.01 

Variance Intercept  0.07  0.01 
Year (2016)  − 0.01  0.01 
Year (2017)  ¡0.02  0.01 
Year (2018)  0.01  0.01 
Year (2019)  0.03  0.01 

Skewness Intercept  ¡0.43  0.01 
Year (2016)  0.06  0.02 
Year (2017)  ¡0.05  0.02 
Year (2018)  ¡0.15  0.02 

(continued on next page) 
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Table A7 (continued ) 

Moment Predictor Coefficient SE 

Year (2019)  ¡0.23  0.02 
Kurtosis Intercept  ¡2.91  0.03 

Year (2016)  − 0.02  0.05 
Year (2017)  0.07  0.05 
Year (2018)  0.15  0.05 
Year (2019)  0.07  0.05  

Table A8 
Estimated regression coefficients describing the differences in duration 
of observation periods among years. Results are presented only for an
alyses of data from Portugal, California and New York state, because no 
models converged to solutions for data from Spain. Coefficients are from 
the single successfully fitteda model of a set of 7 that was best supported 
by the data based on ranking models by AIC values. We fitted the data to 
models (Table A3) in which mean, variance, and skewness (i.e. moments 
of the distribution) could be modelled as being independently affected 
by predictor variables. All “Year (201*)” coefficients describe differ
ences between the specified year and 2020. The coefficients for 
describing mean and variance are presented on the ln-link scale, while 
skewness was calculated on the scale of measurement (“identity link” in 
the parlance of gamlss). Coefficients and standard errors in bold font 
indicate coefficients for which the 95% confidence intervals did not 
overlap with zero, indicating statistically reliable estimates.  

State Moment Predictor Coefficient SE 

Portugal Mean Intercept  3.98  0.02  
Year (2016)  0.28  0.01  
Year (2017)  0.33  0.03  
Year (2018)  ¡0.15  0.03  
Year (2019)  ¡0.06  0.03 

Variance Intercept  0.34  0.01 
Skewness Intercept  ¡0.07  0.02 

Spain Mean Intercept  4.22  0.01  
Year (2017)  0.38  0.02  
Year (2018)  0.08  0.01  
Year (2019)  0.07  0.01 

Variance Intercept  0.31  0.01  
Year (2017)  0.10  0.02  
Year (2018)  0.05  0.01  
Year (2019)  0.04  0.01 

Skewness Intercept  0.31  0.02 
New York Mean Intercept  3.87  0.003 

Variance Intercept  0.61  0.01 
Skewness Intercept  0.68  0.01  

Year (2016)  ¡0.06  0.02  
Year (2017)  ¡0.04  0.01  
Year (2018)  ¡0.08  0.01  
Year (2019)  0.003  0.02 

California Mean Intercept  4.06  0.005  
Year (2016)  0.08  0.01  
Year (2017)  0.07  0.01  
Year (2018)  0.04  0.01  
Year (2019)  0.03  0.01 

Variance Intercept  0.6524  0.01 
Skewness Intercept  0.91  0.06  

a For modelling of count duration the following models did not converge in 
each political unit: Portugal Models 3, 5, 6 and 7; Spain 3, 5, 6 and 7; California 
2, 4, 6 and 7; New York state 7.   

Table A9 
Estimated regression coefficients describing the differences among years 
in distances travelled during of observation periods in April, for non- 
stationary counts. Coefficients are from the best-supported statistical 
model of a 7-model set, although not all models in this set were able to fit 
the dataa. We fitted the data to models in which mean, variance, and 
skewness (i.e. moments of the distribution) could be modelled as being 
independently affected by the predictor calendar year. All “Year (201*)” 
coefficients describe differences between the specified year and 2020. 
The coefficients for describing mean and variance are presented on the 

ln-link scale, while skewness was calculated on the scale of measure
ment (“identity link” in the parlance of gamlss). Coefficients and stan
dard errors in bold font indicate coefficients for which the 95% 
confidence intervals did not overlap with zero, indicating statistically 
reliable estimates.  

Region Moment Predictor Coefficient SE 

Portugal Mean Intercept (2020)  0.74  0.02  
Year (2016)  0.04  0.03  
Year (2017)  0.16  0.03  
Year (2018)  0.05  0.03  
Year (2019)  − 0.03  0.03 

Variance Intercept  0.36  0.02 
Skewness Intercept  1.21  0.03 

California Mean Intercept (2020)  0.70  0.01  
Year (2016)  ¡0.04  0.01  
Year (2017)  ¡0.05  0.01  
Year (2018)  ¡0.07  0.01  
Year (2019)  ¡0.07  0.01 

Variance Intercept  0.59  0.005 
Skewness Intercept (2020)  1.34  0.02  

Year (2016)  ¡0.25  0.03  
Year (2017)  ¡0.25  0.02  
Year (2018)  ¡0.15  0.02  
Year (2019)  ¡0.08  0.02 

New York Mean Intercept  0.55  0.003 
Variance Intercept (2020)  1.00  0.04  

Year (2016)  ¡0.28  0.05  
Year (2017)  ¡0.19  0.07  
Year (2018)  ¡0.23  0.05  
Year (2019)  ¡0.29  0.05 

Skewness Intercept  1.37  0.01  

a For modelling of travel distance the following models did not converge in 
each political unit: Portugal Models 2–7; Spain 1–7; California 2, 4, 6 and 7; New 
York state 7.  

References 

Amano, T., Lamming, J.D.L., Sutherland, W.J., 2016. Spatial gaps in global biodiversity 
information and the role of citizen science. BioScience 66, 393–400. 

anonymous, 2020. Aves desde casa COVID-19. URL https://www.facebook.com/groups/ 
549346675932186/about/ (accessed 08.15.2000). 

Barnes, R., 2018. dggridR: Discrete Global Grids. URL https://CRAN.R-project.org/pac 
kage=dggridR (accessed 09.15.2020). 

BBS National Offices, 2020. Breeding Bird Survey Candelled for 2020. Exchange, 
Ornithological.  

Bird Count India, 2020. Lockdown Birding Challenge. Bird Count India. URL https://bi 
rdcount.in/lockdown-birding-challenge/ (accessed 01.07.2021). 

Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach, second edn. Springer-Verlag New York, 
New York.  

Domingues, J., 2020. Em tempos de isolamento social a SPEA lança o desafio 
#AvesAJanela. PortugalAves eBird. URL https://ebird.org/portugal/news/em-tem 
pos-de-isolamento-social-a-spea-lanca-o-desafio-avesajanela (accessed 01.07.2021). 

Elith, J., Leathwick, J.R., Hastie, T., 2008. A working guide to boosted regression trees. 
J. Anim. Ecol. 77, 802–813. 

Fink, D., Hochachka, W.M., Zuckerberg, B., Winkler, D.W., Shaby, B., Munson, M.A., 
Hooker, G., Sheldon, D., Riedewald, M., Sheldon, D., Kelling, S., 2010. 
Spatiotemporal exploratory models for broad-scale survey data. Ecol. Appl. 20, 
2131–2147. 

Fink, D., Auer, T., Johnston, A., Ruiz Gutierrez, V., Hochachka, W.M., Kelling, S., 2020. 
Modeling avian full annual cycle distribution and population trends with citizen 
science data. Ecol. Appl. 30, e02056. 

Flaccus, G., 2020. Bird-watching Soars Amid COVID-19 as Americans Head Outdoors. 
Associated Press. URL https://apnews.com/article/94a1ea5938943d8a70fe794 
e9f629b13 (accessed 01.07.2021). 

Friedl, M.A., Sulla-Menashe, D., 2019. MCD12Q1 MODIS/Terra+Aqua Land Cover Type 
Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. URL 
https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed 01.07.2021). 

Greenwood, J.J.D., Baillie, S.R., Gregory, R.D., Peach, W.J., Fuller, R.J., 1995. Some new 
approaches to conservation monitoring of British breeding birds. Ibis 137, S16–S28. 

Isaac, N.J.B., Pocock, M.J.O., 2015. Bias and information in biological records. Biol. J. 
Linn. Soc. 115, 522–531. 

Isaac, N.J.B., van Strien, A.J., August, T.A., de Zeeuw, M.P., Roy, D.B., 2014. Statistics for 
citizen science: extracting signals of change from noisy ecological data. Methods 
Ecol. Evol. 5, 1052–1060. 

Johnston, A., Hochachka, W.M., Strimas-Mackey, M.E., Ruiz-Gutierrez, V., Robinson, O. 
J., Miller, E.T., Auer, T., Kelling, S.T., Fink, D., 2020. Analytical guidelines to 

W.M. Hochachka et al.                                                                                                                                                                                                                        

http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0005
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0005
https://www.facebook.com/groups/549346675932186/about/
https://www.facebook.com/groups/549346675932186/about/
https://CRAN.R-project.org/package=dggridR
https://CRAN.R-project.org/package=dggridR
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0010
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0010
https://birdcount.in/lockdown-birding-challenge/
https://birdcount.in/lockdown-birding-challenge/
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0015
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0015
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0015
https://ebird.org/portugal/news/em-tempos-de-isolamento-social-a-spea-lanca-o-desafio-avesajanela
https://ebird.org/portugal/news/em-tempos-de-isolamento-social-a-spea-lanca-o-desafio-avesajanela
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0020
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0020
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0025
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0025
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0025
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0025
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0030
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0030
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0030
https://apnews.com/article/94a1ea5938943d8a70fe794e9f629b13
https://apnews.com/article/94a1ea5938943d8a70fe794e9f629b13
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0035
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0035
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0040
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0040
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0045
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0045
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0045
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0050
http://refhub.elsevier.com/S0006-3207(21)00026-4/rf0050


Biological Conservation 254 (2021) 108974

12

increase the value of citizen science data: using eBird data to estimate species 
occurrence. bioRxiv 574392. 

Kelling, S., Johnston, A., Hochachka, W.M., Iliff, M., Fink, D., Gerbracht, J., Lagoze, C., 
La Sorte, F.A., Moore, T., Wiggins, A., Wong, W.-K., Wood, C., Yu, J., 2015. Can 
observation skills of citizen scientists be estimated using species accumulation 
curves? PLoS One 10, e0139600. 

Kelling, S., Johnston, A., Bonn, A., Fink, D., Ruiz-Gutierrez, V., Bonney, R., 
Fernandez, M., Hochachka, W.M., Julliard, R., Kraemer, R., Guralnick, R., 2019. 
Using semi-structured surveys to improve citizen science data for monitoring 
biodiversity. BioScience 69, 170–179. 

Koenig, W.D., 1999. Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 
14, 22–26. 

La Sorte, F.A., Fink, D., Johnston, A., 2018. Seasonal associations with novel climates for 
North American migratory bird populations. Ecol. Lett. 21, 845–856. 

Mayr, A., Fenske, N., Hofner, B., Kneib, T., Schmid, M., 2012. Generalized additive 
models for location, scale and shape for high dimensional data—a flexible approach 
based on boosting. J. R. Stat. Soc.: Ser. C: Appl. Stat. 61, 403–427. 
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