Skip to main content
. 2020 Oct 22;15(10):2634–2671. doi: 10.1002/1878-0261.12807

Table 1.

Incidence of senescence in cancer and premalignancy. 5‐FU, 5‐fluorouracil; γH2AX, phosphorylation of the Ser‐139 residue of the histone variant H2AX; CCL2, C–C‐motif chemokine ligand 2; CDK1, cyclin‐dependent kinase 1; EGFR, epidermal growth factor receptor; ELISA, enzyme‐linked immunosorbent assay; GRO‐alpha/CXCL1, chemokine (C‐X‐C‐motif) ligand 1; HER, human epidermal growth factor receptor; IGFBP‐2, insulin‐like growth factor binding protein 2; IF, immunofluorescence; IHC, immunohistochemistry; IL, interleukin; IR, ionising radiation; NF1, neurofibromin; NSCLC, non‐smallcell lung carcinoma; p53BP1, p53‐binding protein 1; PAI‐1, plasminogen activator inhibitor‐1; PDX, patient‐derived xenografts; Pten, phosphatase and tensin homolog; Rb1, retinoblastoma protein 1; Rheb, Ras homolog enriched in brain; Stat3, signal transducer and activator of transcription 3; TKI, tyrosine kinase inhibitor; VEFGA, vascular endothelial growth factor A.

Gene Tumour or premalignancy Mechanism Reference
Mouse models of oncogene‐induced senescence
HrasG12V Breast tumour, bladder tumour, skin papilloma and angiosarcoma Oncogene activation [258, 259, 260, 261, 262]
KrasG12V Lung adenoma and pancreatic intraductal neoplasia Oncogene activation [122]
KrasG12D Lung adenoma Oncogene activation [263]
NrasG12D Lymphoproliferative disorder Oncogene activation [85]
BrafV600E Nevi, lung adenoma and melanoma Oncogene activation [121, 126, 264, 265]
Rheb Prostate intraepithelial neoplasia Oncogene activation [266]
E2f3 Pituitary hyperplasia Oncogene activation [123]
Akt1 Prostate intraepithelial neoplasia Oncogene activation [267]
Myc Lymphoma, osteosarcoma, liver and lung carcinoma Oncogene inactivation [142, 268]
Trp53 Sarcoma and liver carcinoma Tumour suppressor activation [141, 269]
Pten Prostate intraepithelial neoplasia Tumour suppressor inactivation [87, 270]
Rb1 Thyroid C cell adenoma Tumour suppressor inactivation [271]
Stat3 Breast tumour Tumour suppressor inactivation [272]
Human tissues with oncogene‐induced senescence
BRAFV600E Papillary thyroid carcinomas and nevi Oncogene activation [125, 126]
NF1 Dermal neurofibromas Tumour suppressor inactivation [127]
Therapeutic agent Tumour or malignancy Mechanism Reference
Therapy‐induced senescence with irradiation (IR) or drugs
5‐aza‐2′‐deoxycytidine (Dacogen) Colorectal tumour, renal cell carcinoma, hepatoma and NSCLC Inhibition of DNA methyltransferase [273]
5‐aza‐cytidine (Decitabine) Malignant pleural mesothelioma Inhibition of DNA methyltransferase [274]
Axitinib (Inlyta®) Glioblastoma TKI [275]
BRD4770 Pancreatic adenocarcinoma Inhibition of histone methyltransferase [276]
Doxorubicin MMTV‐Wnt1 mice with mammary tumour DNA damage (DNA intercalator) [140]
Erlotinib and IR

NSCLC

Xenografts of A549 NSCLC

DNA damage and TKI [129]

Imidazoacridinone

C‐1311 (Symadex™)

Colorectal tumour, NSCLC and oesophageal carcinoma DNA damage (inhibition of topoisomerase II) [277]
IR

Lung adenoma, breast tumour, colorectal tumour, glioblastoma and neuroblastoma

Xenografts of H460 lung carcinoma

DNA damage [130, 278, 279, 280]
Lapatinib Breast tumour HER2‐targeted TKI [135]
LBH589 (Panobinostat)

Osteosarcoma

Xenografts of osteosarcoma

Inhibition of histone deacetylase [281]
MLN4924

Colorectal tumour, NSCLC, glioblastoma, lymphoma, gastric tumour and osteosarcoma

Xenografts of SJSA‐1 osteosarcoma

DNA damage (inhibition of NEDD8 activating enzyme) [282, 283, 284, 285]
MLN8054

Colorectal tumour and NSCLC

Xenografts of HCT116 colorectal tumour

Inhibition of Aurora A kinase [286]
Neratinib and afatinib Breast tumour panHER TKI [135]
Palbociclib

Patient‐derived sarcoma cells

PDX of sarcoma

Inhibition of CDK4/6 [287]
Palbociclib

Melanoma

Xenografts of 983B/983BR melanoma

Inhibition of CDK4/6 [288]
Palbociclib and chloroquine or hydroxychloroquine

Breast tumour

Xenografts of MCF7‐T breast tumour

Inhibition of CDK4/6 and autophagy [289]
Ribociclib

Neuroblastoma

Xenografts of BE2C, 1643 and EBC1 neuroblastoma

Inhibition of CDK4/6 [290]
Sunitinib (SU11248)

Renal cell carcinoma

Xenografts of OS‐RC‐2 renal cell carcinoma

TKI [137]
Vemurafenib (PLX4032)

Melanoma

Xenografts of SK‐MEL‐28 melanoma

Inhibition of BRAF [291]
VO‐OHpic

MEF and prostate cancer

Xenografts of MDA PCa‐2b prostate cancer

Inhibition of PTEN [292]
WM‐1119

MEF

Xenografts of EMRK1184 lymphoma

Inhibition of histone acetyltransferases [136]
WM‐8014

MEF

Zebrafish model of hepatocarcinoma

Inhibition of histone acetyltransferases [136]
Therapeutic regimens Malignancy Evidence of senescence Reference
Human tissues with therapy‐induced senescence
Neoadjuvant chemotherapy containing cyclophosphamide, doxorubicin, and 5‐FU Breast cancer SAβG and IHC of p53 and p21WAF1/CIP1 [293]
Neoadjuvant chemotherapy containing carboplatin and docetaxel NSCLC SAβG and IHC of CDK1 [185]
Neoadjuvant chemotherapy containing cisplatin and gemcitabine or pemetrexed Malignant pleural mesothelioma SAβG and IHC of PAI‐1 and p21WAF1/CIP1 [294]
Neoadjuvant chemotherapy containing mitoxantrone Prostate cancer qPCR of p16INK4a , p21WAF1/CIP1 and SASP factors including IL‐6, IL‐8, GRO‐alpha/CXCL1, IGFBP‐2, and IL‐1beta [167]
Neoadjuvant chemotherapy containing sunitinib (SU11248) Renal cell carcinoma SAβG and IHC of p53, Dec1, and Ki67 [137]
Neoadjuvant or adjuvant chemotherapy containing anthracycline Breast cancer qPCR of p16INK4a and ARF; ELISA of SASP factor VEGFA and CCL2 (assessed using peripheral blood T lymphocytes and patient sera) [139]
Radiotherapy Head and neck cancer IF of γH2AX and p53BP1; IHC of p21WAF1/CIP1 (assessed using patient salivary gland) [177]
Neoadjuvant chemoradiotherapy containing 5‐FU Rectal cancer qPCR of p21WAF1/CIP1 , p16INK4a and IL‐8 [138]