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Abstract

The chromatin-based DNA damage response pathway is tightly orchestrated by histone post-

translational modifications, including histone H2A ubiquitination. Ubiquitination plays an integral 

role in regulating cellular processes including DNA damage signaling and repair. The ubiquitin 

E3 ligase RNF168 is essential in assembling a cohort of DNA repair proteins at the damaged 

chromatin via its enzymatic activity. RNF168 ubiquitinates histone H2A(X) at the N-terminus 

and generates a specific docking scaffold for ubiquitin binding motif-containing proteins. The 

regulation of RNF168 at damaged chromatin and the mechanistic implication in the recruitment 

of DNA repair proteins to the damaged sites remains an area of active investigation. Here, 

we review the function and regulation of RNF168 in the context of ubiquitin-mediated DNA 

damage signaling and repair. We will also discuss the unanswered questions that require further 

investigation and how understanding RNF168 targeting specificity could benefit the therapeutic 

development for cancer treatment.

Keywords

RIDDLIN; RIDDLE syndrome; DNA repair; DNA double strand break; ubiquitin

Introduction

Our genome is constantly challenged by exogenous genotoxins and endogenous reactive 

metabolites which result in DNA damage. Unrepaired DNA damage ultimately leads to 

DNA double strand breaks (DSBs), the most deleterious form of DNA damage in cells, 

which can lead to genomic instability and cell death if not repaired. Cells have evolved 

a surveillance system, the DNA damage response (DDR) pathway, to sense, signal, and 

repair DNA breaks [1, 2]. In particular, DSBs occur in the context of chromatin, which is 
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a bona fide DDR substrate [3]. DSBs are repaired primarily by homologous recombination 

(HR), non-homologous end joining (NHEJ), alternative end joining (alt-EJ), or single strand 

annealing (SSA) pathways. Mechanisms regulating DSB repair pathway choice has been 

extensively discussed by several reviews [4–6].

DSBs elicit an array of post-translational modifications on histones, and DNA repair 

proteins which promote or regulate DNA damage signaling, recruitment of DNA repair 

proteins to the DSBs, and DNA repair metabolism [7–11]. The interwoven relationship 

of these processes dictates the repair choice outcome spatiotemporally via the DDR 

pathway [9]. In particular, histone ubiquitination participates in the complex interplay of 

modifications on chromatin to regulate biological processes, including the DDR pathway by 

amplification of damage signals and downstream recruitment and retention of repair proteins 

at damaged chromatin [12, 13]. In this review, we will focus primarily on the RING finger 

protein 168 (RNF168, also known as RIDDLIN), an E3 ligase that plays an essential role in 

regulating DDR signaling and repair by catalyzing the ubiquitination of histones and other 

DDR proteins.

Ubiquitination (ubiquitylation or ubiquitinylation) is a process by which an E1 (ubiquitin 

activating enzyme), E2 (ubiquitin conjugating enzyme) and E3 (ubiquitin ligase) covalently 

conjugate ubiquitin to the amino group of a protein’s N-terminus or to lysine residues 

within the substrates [14]. Ubiquitination of proteins serves as a signal regulating protein 

degradation, cellular localization of proteins, activation and inactivation of enzymes, signal 

transduction and protein-protein interaction. Ubiquitin can be conjugated singularly onto the 

lysine residue (monoubiquitination) or as a polyubiquitin chain. [14, 15]. Polyubiquitination 

chains are formed by linking the glycine residue of a ubiquitin moiety to a lysine residue 

(K6, K11, K27, K29, K33, K48 and K63) or the N-terminal methionine residue (M1) of a 

ubiquitin that is conjugated to the lysine residue of the substrate [15, 16].

RNF168, a 571-amino acid nuclear protein, is a central player in the DDR pathway [17–

19]. RNF168 was discovered with its association with RIDDLE (acronym of the major 

features; Radiosensitivity, immunodeficiency, dysmorphic features, and learning difficulties) 

syndrome in 2009 [18] and understanding of RNF168 regulation and its biological functions 

has advanced rapidly in the last decade. Herein, we review the current literature on 

RNF168’s molecular functions and cellular biology with particular focus on its recently 

characterized substrate recognition mechanism and its potential implications in orchestrating 

DNA DSB repair.

1. RNF168/RIDDLIN and RIDDLE syndrome

RIDDLE syndrome was first reported in 2007 as a rare genetic disease [20]. RIDDLE 

syndrome patients exhibit differential clinical phenotypic spectrum including reduced 

immunoglobulin, ataxia, microcephaly, learning difficulties, and respiratory failure. Cells 

isolated from RIDDLE syndrome patients display impairment of tumor suppressor 

p53 binding protein 1 (53BP1) recruitment to DSBs, resulting in ionizing radiation 

hypersensitivity and cell cycle checkpoint defects [20]. Patients with RIDDLE syndrome 

show pathological similarities to the ataxia-telangiectasia (AT) syndrome. This clinical 
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observation led to the search for the molecular player implicated in RIDDLE syndrome. 

In 2009, several independent studies demonstrated that inactivation of RNF168 leads to 

defective 53BP1 repair foci formation, which also links to the RIDDLE syndrome pathology 

[17–19]. Four cases of RIDDLE syndrome have been reported to have frameshift mutations 

within RNF168 resulting in loss-of-function truncations (illustrated in Fig.1): c.397dupG/

c.1323_1326delACCA, c.391C>T homozygous which result in A133G/N441R frameshift 

mutations; R131X [18, 21]; and two cases of homozygous c295delG which leads to 

E99K frameshift mutation [22]. These observations identified RNF168 as the key player 

in RIDDLE syndrome pathology.

2. Structural architecture and functional domains of RNF168

The structural and functional domains of RNF168 have been well defined and extensively 

characterized. RNF168 contains a RING domain at the N-terminus, a ubiquitin-dependent 

DSB recruitment module (UDM)1 in the middle and a UDM2 in the C-terminus. Human 

RNF168 protein sequence analysis across 107 vertebrates that share 35%−95% homology 

showed that the functional domains of RNF168 are highly evolutionarily conserved (Fig. 1) 

[23].

The catalytic RING domain at the N-terminus (a.a. 15–58) confers ubiquitin E3 ligase 

activity as well as substrate specificity for downstream functions [24, 25]. The C-terminus 

of the RING domain includes an arginine-rich region, which serves as an anchor for the 

nucleosome acidic patch, facilitating H2A ubiquitination. Mutations of the arginine anchor 

in RNF168 or the acidic patch in the nucleosome largely abolish the H2A(X) K13/K15 

ubiquitination [26, 27]. The crystal structure of the RNF168 RING finger has been solved 

[24, 28]. The catalytic cysteine residues and arginine anchors are highly conserved, which is 

demonstrated by the analysis of the RING domain structure (PDB: 4gb0) by comparing 107 

vertebrates that share 35–95% homology (Fig. 2A).

The UDM1 is comprised of three motives: LRM (LR motif) 1, UMI (UIM: ubiquitin 

interacting motif- and MIU: motif interacting with ubiquitin-related ubiquitin-binding motif) 

domain, and MIU (motif interacting with ubiquitin) 1. The LRM1 (a.a. 110–128) is essential 

for directing the UMI and MIU1 to ubiquitinated ring finger protein 8 (RNF8) [29]. The 

UMI (a.a. 141–156) preferentially binds to K63-linked ubiquitin chains. Inactivation of K63 

binding partially impairs the subcellular localization of RNF168 upon DNA damage [30]. 

The essential residues and ubiquitin binding amino acids are highly conserved within this 

region (Fig. 2B). The MIU1 (a.a.171–188) juxtaposes with the UMI domain. Mutation of 

the MIU1 motif drastically reduces RNF168 binding to K48 ubiquitin chains [30]. However, 

a recent study showed that the MIU1 domain alone exhibits a similar binding affinity to 

mono-ubiquitin, K48, and K63 ubiquitin chain [31]. Interestingly, MIU1 deletion exhibits 

modest impairment of RNF168 ionizing radiation-induced foci (IRIF) that are generated by 

the sequential assembly of DNA repair proteins at DSBs but does not inhibit the recruitment 

of downstream repair proteins to damaged chromatin [18]. The UMI/MIU1 is responsible 

for the localization of RNF168 to promyelocytic leukemia (PML) nuclear bodies, which 

promotes ubiquitination and sumoylation of PML bodies. Together, the UDM1 preferentially 
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binds to K63-linked ubiquitin chain. It functionally acts downstream of RNF8 by interacting 

with RNF8 substrates, which triggers the initial localization of RNF168 at DNA breaks [29].

The UDM2 contains a UAD (ubiquitin-associated domain), an MIU2 and a LR motif [29, 

31]. The UAD (a.a. 419–439) has been recently identified as an essential entity for the distal 

K63 chain recognition [31]. The biological role of the UAD is yet to be characterized. The 

highly evolutionarily conserved MIU2 (a.a. 443–459) domain is located at the C-terminus of 

RNF168 (Fig. 2C). Deletion of MIU2 motif drastically reduces the RNF168 IRIF formation 

[17, 18]. Recent studies showed that MIU2 has micromolar range binding affinity to 

H2A(X) K15 ubiquitination [32], suggesting that RNF168 generates a positive feedback 

ubiquitination signal to and for its localization at damaged chromatin, thus establishing a 

strong local ubiquitin signal and facilitating the robust recruitment of 53BP1 to damaged 

chromatin [29].

The LRM2 (a.a. 466–478) shares minimal homology with LRM1. These two LRMs carry 

out different functions in regulating RNF168 at damaged chromatin. LRM1 targets the 

upstream protein(s) that are ubiquitinated by RNF8, whereas LRM2 serves as a nucleosome 

binding motif to enhance the MIU2 interaction with the RNF168-mediated H2A(X) K15 

ubiquitination. The LRM2 promotes the MIU2-mediated RNF168-self amplification of 

accrual at damaged chromatin via interaction with the H2A(X) K15 ubiquitination [29]. In 

line with these observations, overexpression of RNF168 lacking UDM2 restores downstream 

DDR protein foci formation in RNF168-depleted cells [25, 33]. Taken together, the UDM2 

serves as a rate-limiting self-amplification machinery to trigger the RNF168-mediated 

ubiquitin signaling pathway in the proximity of DNA breaks.

Moreover, although the RNF168 C-terminus is not a putative structural domain, it interacts 

with Partner and localizer of BRCA2 (PALB2) and promotes RAD51 accrual at DSBs. The 

interaction confers the potential regulatory role of RNF168 in HR repair [34]. The RNF168-

mediated PALB2 loading on damaged DNA supports Breast cancer susceptibility gene 1 

(BRCA1)-independent HR repair. This “backup” HR pathway in BRCA1 haploinsufficiency 

requires chromatin ubiquitination [35]. Thus, the RNF168 domains neatly collaborate at 

DSBs to precisely execute its functions in orchestrating the DDR pathway.

3.1. RNF168 and the DDR pathway

RNF168 has been identified as a key player in manifesting the ubiquitin signaling in the 

DDR pathway. The E3 ligase activity of RNF168 promotes different ubiquitin signaling 

entities: mono-ubiquitination, K48-linked, K63-linked and K27-linked ubiquitin chains [12, 

36] to regulate DNA damage signaling.

DNA DSBs are sensed by MRE11-RAD50-NBS1 (MRN) complex, which activates ataxia 

telangiectasia mutate (ATM) kinase [37, 38]. The initial sensing, recognition and kinase 

activation mechanism is evolutionarily conserved [39]. ATM kinase phosphorylates H2AX 

at serine 139 (γH2AX), which marks the sites of DSBs. γH2AX provides a docking 

platform for mediator of DNA damage and checkpoint 1 (MDC1) binding. Subsequently, 

RNF8 is recruited to DSBs via protein-protein interaction with MDC1 [4, 40]. Initial DSB 
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recruitment of RNF168 depends on its physical interaction with the RNF8 substrates histone 

1.2 and Lethalmalignant brain tumor-like 2 (L3MBTL2) [41, 42] (Fig. 3A).

RNF168 is considered as the rate limiting determinant for the recruitment of key DDR 

proteins, including 53BP1, BRCA1 and the E3 ubiquitin protein ligase RAD18, to damaged 

chromatin. RNF168 level is tightly controlled by TRIP12 and UBR5 to prevent excessive 

amplification of the ubiquitin signal [43].

The initial recruitment of RNF168 to damaged chromatin triggers site-specific H2A(X) 

mono-ubiquitination as well as K63-linked ubiquitin conjugates at K13 (H2A(X)K13ub) 

and K15 (H2A(X)K15ub), a prerequisite for DSB repair [19, 44, 45]. While the role 

of H2AK13ub is largely unclear, the H2A(X)K15ub serves as a recruitment scaffold 

for the localization of ubiquitin binding DNA repair proteins at damaged chromatin, 

which include 53BP1 via its ubiquitin-dependent recruitment (UDR) motif [46]. The DSB 

recruitment of 53BP1 promotes NHEJ by inhibiting DNA end resection, the first step 

of HR [6, 47]. RNF168 catalyzes a K63-linked ubiquitin chain on 53BP1 at K1268 to 

promote its initial DSB recruitment [48] and on TOP2 regulating its chromatin binding 

and decatenation activity [49]. In addition, RNF168 was also found to catalyze K48-linked 

ubiquitin chain specifically on forkhead box M1 (FOXM1) in breast cancer cells, leading 

to FOXM1 proteasomal degradation upon epirubicin treatment [50]. In cooperation with 

RNF8, RNF168 also promotes the K48-linked ubiquitination and subsequent proteasomal 

degradation of KDM4A/JMJD2A, a dimethylated H4K20 reader. The removal of KDM4A/

JMJD2A H4K20me2 occupancy facilitates 53BP1 DSB recruitment [51]. In addition to 

canonical K63- and K48-linked ubiquitin chains, RNF168 also catalyzes the non-canonical 

K27-linked ubiquitin chain at chromatin. Proteomic analysis shows that H2A(X) K13/K15 

are the target substrates of K27 ubiquitin conjugates. K27 ubiquitination is indispensable for 

proper activation of the DDR and repair protein assembly at DSBs [36].

Other DNA repair proteins also show comparably high affinity to H2A(X)K15ub, which 

include RAD18 via its ubiquitin zinc finger (UBZ) domain; RNF169 via its UDM2 domain 

[32]; and BRCA1 associated RING domain 1 (BARD1) via its tandem BRCA1 C-terminal 

(BRCT) domain [52]. The H2A(X)K15ub also interacts with the RNF168 ubiquitin binding 

domain 2 (UBD2), positively amplifying RNF168 IRIF at DSBs [29, 32]. Recently, RNF168 

was found to ubiquitinate H2AZ and macroH2A histone variants in vitro and in vivo 
[25]. However, structural and biological implications of their ubiquitination remain to be 

examined.

Overall, current data strongly suggest that RNF168 is the molecular switch for the DDR 

(Fig. 3B). Emerging evidence further supports the notion that the DNA repair proteins 

directly interact with the H2A(X)K15ub mark. The choice of DSB repair pathway is likely 

executed by co-operating with a secondary histone mark orchestrating the assembly of 

distinct repair protein complexes at DSB sites throughout the cell cycle.

In addition to site-specific H2A ubiquitination, the RNF168-catalyzed K63-linked ubiquitin 

chain is responsible for recruiting the BRCA1-A complex [53]. The BRCA1-A complex 

is composed of seven proteins, including BRCA1-BARD1, RAP80, ABRA1, MERIT40, 
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BRCC36, and BRE. RAP80 acts most upstream of this complex, promoting recruitment 

of BRCA1-A to DSB sites. It contains a UIM which interacts with the K63-linked 

ubiquitin chains potentially generated by RNF168. BRCC36 is a deubiquitinase (DUB) 

that cleaves K63-linked ubiquitin chains, while ABRA1, MERIT40 and BRE play a role in 

BRCA1-A complex stabilization (see reviews [54, 55]). The BRCA1-A complex prevents 

hyperactive HR by suppressing DNA end resection [56, 57]. One model suggests that 

the BRCA1-A complex sequestrates the BRCA1-HR function from DNA end processing 

[58]. Nevertheless, BRCA1/BARD1 catalytic function is not well-characterized within this 

complex.

In general, RNF168-mediated H2A(X) K13/K15 ubiquitination promotes NHEJ and 

suppresses HR function [6, 59, 60], potentially through recruiting 53BP1 to DSBs to 

suppress DNA end resection. It also can sequester BRCA1 HR function or HR function 

of BRCA1 via RAP80 binding to an unidentified K63 conjugated substrate. RNF168 was 

also shown to be involved in single-strand annealing defects caused by BRCA1-depletion 

[60].

The mechanism by which RNF168 regulates NHEJ is well-studied. Paradoxically, RNF168 

is also involved in in promoting homology-directed repair, which is demonstrated by its 

indispensable role of recruiting PALB2 and RAD18 to DNA damage [34, 61]. Recent 

studies show that RNF168 supports HR independent of BRCA1 via PALB2 and RAD51 

loading at damaged chromatin. Interestingly, a subset of BRCA1-mutant cells display 

reduction in RNF168 protein levels and genetic ablation of RNF168 reveals BRCA1 

haploinsufficiency [35, 62]. Together, these data support the role of RNF168-mediated 

ubiquitination as a backup mechanism for HR in the absence of BRCA1. Collectively, 

RNF168 is a multifaceted regulator of the intricately orchestrated DDR pathway at damaged 

chromatin.

3.2. RNF168 and the replication fork

RNF168 is localized at the replication fork and is required for efficient DNA replication 

and fork progression via H2A ubiquitination [63]. RNF168 depletion leads to repetitive 

sequence replication defects and chromosomal abnormalities. Interestingly, ectopic RNF168 

expression recruits RAD18-SLF1 via γH2AX K15 ubiquitination and subsequently leads to 

break-induced replication in the absence of homologous recombination at stalled replication 

forks [64]. RNF168-driven break-induced replication may contribute to the mutational 

signatures in BRCA1-mutated genomes. Together, these observations suggest that tight 

regulation of RNF168 expression and localization are essential for replication fork stability 

in physiological and pathological conditions.

3.3. Viral interaction with RNF168

The DDR pathway has been shown to be involved in the cellular response to viral infection 

[65]. In particular, the ubiquitin pathway is one of the major targets for viral proteins to 

block immune response and to enhance viral fitness by promoting virus replication, relief of 

transcriptional repression, and activation of latent viral genomes [66]. For instance, herpes 
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simplex virus E3 ubiquitin ligase ICP0 targets and degrades RNF8 and RNF168 to suppress 

H2A(X) ubiquitination and inhibit the DDR pathway [67].

Interestingly, human papillomaviruses (HPV) hijack the DDR pathway to promote the viral 

replication cycle. A subset of human HPV-positive tumors displays increased RNF168 

protein levels [43, 68]. The HPV early protein E7 interacts with RNF168 at the region 

between MIU1 and MIU2. The interaction does not affect the enzymatic activity for 

RNF168. However, the interaction of HPV E7 sequestrates RNF168 and interferes with 

DNA repair pathway choice by impairing ubiquitin signaling and 53BP1 damage-induced 

foci formation. Consequently, HPV E7 promotes genome instability and drives the 

progression of cervical and head and neck cancers [68]. Overall, oncogenic viruses could 

potentially target RNF168 and subvert the DDR pathway to expand the lifespan of host cells. 

Thus, inhibition of the interaction between RNF168 and virus could be used as a therapeutic 

target to suppress virus replication and maintain genome stability,

4. RNF168 substrate specificity

The upstream genetic pathway and regulatory mechanism for RNF168 has been well 

characterized over the last decade. However, the mechanistic underpinnings of RNF168 

substrate recognition and interaction are still an active area of research [26, 27, 31].

The RNF168 RING domain is functionally non-transferrable. Domain swapping shows 

that replacement of the RNF168 RING domain with the RNF8 RING domain does not 

restore IRIF formation of FK2 (ubiquitin) [69] or the DDR proteins 53BP1 and BRCA1 

in RNF168-depleted cells or RIDDLE cells [24, 25]. Similarly, replacing the RNF8 RING 

domain with the RNF168 RING domain does not restore FK2 foci or DDR repair protein 

foci in RNF8-depleted or RNF168-depleted cells, despite its ability to localize at damaged 

chromatin [25]. These observations suggest that the RNF168 RING domain confers E3 

ligase activity and determines substrate specificity.

RNF168 RING-arginine anchor fragment (a.a. 1–113) is sufficient for H2A(X) 

ubiquitination in vitro (Fig. 1) [26]. However, RNF168 RING-arginine anchor 

overexpression or tethering this fragment at DNA breaks by substitution of the RNF8 RING 

domain with RNF168 RING-arginine anchor does not rescue the DDR foci in RNF168-

depleted cells regardless of its ability to form IRIF [25].

Moreover, the RNF168 fragment consisting of RING-UMI-MIU1 (a.a. 1–189) shows a 

noticeably higher activity to H2A(X) in vitro [26]. Reconstitution of an RNF168 fragment 

harboring the RING-UMI-MIU1 (a.a. 1–190 or a.a. 1–220) restores the recruitment of DDR 

proteins to IRIF in RNF168 knockout (KO) cells despite its inability to form IRIF (Fig. 1) 

[25, 33]. Together, these data further support the possibility that other sequence determinants 

within a.a. 113–190 beside the RING domain mediate RNF168-substrate recognition [14].

RNF168 ubiquitinates H2A, H2AX, H2AZ, and macroH2A1/2 at their N-terminus 

(H2A(X): K13 and K15, H2AX K15, macroH2A1/2 K11). The target recognition is 

restricted within three amino acids at the N-terminus of the alpha1-extension helix [25]. 

Ectopic RNF168 expression does not show non-specific ubiquitination to any other lysine 
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residues on the nucleosome, which contains more than a hundred lysine residues. Overall, 

the targeting specificity is extremely constrained suggesting that the RNF168-mediated 

DDR pathway is highly regulated.

The detailed molecular mechanism by which RNF168 achieves its target specificity toward 

H2A variants N-terminus in the context of the nucleosome has been progressively unveiled. 

It utilizes the arginine stretch at the C-terminus of the RING domain to anchor the 

nucleosome at its acidic patch. This molecular interaction is established via the electrostatic 

potential difference. The arginine anchor (R57, R63, and R67) of RNF168 forms hydrogen 

bonds with the nucleosome acidic patch (E60, E63, D89, and E91) [27].

Additionally, the evolutionarily and structurally conserved H2A N-terminal alpha1-

extension helix is required for RNF168-mediated site-specific ubiquitination without 

perturbing the RNF2-mediated ubiquitination at the H2A C-terminus. The nucleosome 

shows an opposing discrepancy in electrostatic potential between the H2A N-terminal and 

C-terminal tails, which potentially contributes to the precise orientation of RNF168 on the 

nucleosome for target residues specificity [25]. The alpha1-extension helix may partially 

interact with nucleosomal DNA. However, RNF168 can catalyze H2A ubiquitination in the 

context of H2A/H2B dimer, which rules out the possibility that the abrogation of RNF168-

mediated H2A ubiquitination after alpha1-extension helix mutation is due to nucleosome 

destabilization

Interestingly, the region between the RING domain and MIU1 is evolutionarily acidic [25, 

41]. Comprehensive mapping demonstrated that the UMI E143/E144 is potentially required 

for targeting the positively charged H2A N-terminal nucleosome surface [25]. In conjunction 

with the RNF168 arginine anchor and nucleosome acidic patch binding, the potential 

interaction between the RNF168 E143/E144 and H2A alpha1-extension helix creates a 

unidirectional orientation for RNF168 to execute the site-specific ubiquitination. It is 

unlikely the UMI E143/E144 residues affect the ubiquitin binding affinity as it is not located 

on the ubiquitin-binding interface of the UMI domain [30]. Together, current evidence 

suggests RNF168 requires more than one substrate-recognition entity to accomplish its 

molecular target selectivity. Structural studies will provide further insight into the molecular 

mechanism.

Overall, understanding the molecular regulation of RNF168 substrate recognition will 

provide important insights into identifying novel RNF168 substrates and delineating the 

downstream regulatory mechanisms of DDR-ubiquitin signaling.

5. Counteracting mechanisms for RNF168-mediated DDR pathway

Deubiquitinases (DUBs) turn off the RNF168 E3 ligase-mediated signals to strike a balance 

during DNA damage signaling. Multiple H2A DUBs, including ubiquitin-specific proteases 

USP3, USP16, USP26, USP37, USP44, and USP51 have been identified as negative 

regulators for RNF168-mediated H2A(X) K15 ubiquitination.

USP3 depletion in both human cells and mouse models show global elevation of H2A 

ubiquitination, 53BP1 foci, checkpoint dysregulation, genome instability, and spontaneous 
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tumor development [70, 71]. Conversely, overexpression of USP3 reduces H2A(X) 

ubiquitination, as well as RNF168, 53BP1, RAP80, and BRCA1 IRIF formation [17, 72, 

73]. Overall, despite the non-specificity towards H2A ubiquitination [74], current data 

support the notion that USP3, at least in part, counteracts the RNF168-mediated pathway in 

regulating the DDR.

USP16 specifically deubiquitinates H2A on both DNA damage-induced N-terminal 

K13/K15 and C-terminal K118/K119 in vivo and in vitro. Depletion of USP16 increases 

FK2 foci. Although USP16 overexpression is largely localized in the cytoplasm, it impairs 

FK2 and 53BP1 IRIF without affecting the RNF8 and RNF168 IRIF upon DNA damage [75, 

76].

USP44 was found to counteract RNF8/RNF168-dependent histone ubiquitination at DSBs 

and is localized at DSBs in an RNF168-dependent manner. Ectopic USP44 overexpression 

suppresses 53BP1 recruitment to damaged chromatin [73].

Overexpression of either USP26 or USP37 inhibits 53BP1 IRIF formation [73, 77]. 

They also suppress the excessive spreading of RAP80-BRCA1 from DSBs by removing 

RNF168-induced distal ubiquitin conjugates from DSBs [77]. USP26 and USP37 limit 

the ubiquitin-dependent sequestration of BRCA1 and facilitate BRCA1-PALB2-BRCA2-

RAD51 association at damaged chromatin to promote HR repair [77]. However, it is unclear 

whether they target H2A(X)K15ub directly.

USP51 is a site-specific deubiquitinase for H2A K13/K15 in vitro [78]. Overexpression of 

USP51 suppresses H2A ubiquitination as well as 53BP1 and BRCA1, but not RNF168 IRIF 

formation. USP51 depletion leads to ionizing radiation hypersensitivity and dysregulated 

DNA repair [78].

Several studies report potential DUBs, including USP10, USP11, USP29, OTUB1, and 

BRCC36, negatively regulate the RNF168-associated ubiquitin signaling [49, 73, 79, 80]. 

Nevertheless, detailed mechanisms, substrate specificity, and genetic regulation have not 

been established. Further investigation is needed to understand their roles in the RNF168-

mediated ubiquitin signaling DNA repair pathway.

The collaboration of the DUBs plays an important role in preventing excessive spreading of 

ubiquitin signals at damaged chromatin that are mediated by RNF8 and RNF168. Some 

DUBs enable modulation of specific downstream complexes of RNF168. Overall, this 

mechanism strikes a balance to properly repair the DNA break in a timely manner.

6. The RNF168-dependent crosstalk between phosphorylation and 

ubiquitination

The interplay between ubiquitination and phosphorylation has been an exciting area of 

research. It has been suggested that ubiquitin can be phosphorylated at almost every 

serine, threonine, and tyrosine residue [81, 82]. However, the functional consequences 

and the regulation of ubiquitin phosphorylation remain largely unexplored. A recent study 

showed that the ubiquitin molecule conjugated on H2A(X)K15 can be phosphorylated at 
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the threonine (T) 12 residue (pUbT12) in DNA damage in an RNF168-dependent manner 

[83]. pUbT12 localizes at DNA damage and inhibits 53BP1 accessibility to H2A K15ub 

but not HR promoting factors such as RNF169 and BARD1/BRCA1. This phosphorylation-

ubiquitination crosstalk enables an additional layer of regulation to direct the cells to HR 

repair.

7. Unsolved RIDDLES

RNF168 is a central regulator at the crossroads of the DDR pathway. Present evidence 

strongly supports that this ubiquitin signaling step is essential for bringing many of the 

major DNA repair factors, including 53BP1, BRCA1, and RAD18, to the DNA breaks.

Remarkable progress has been made over the last decade in understanding the mechanistic 

regulation on how RNF168 recruits 53BP1 to damaged chromatin via its substrate H2A(X). 

53BP1 UDR domain has a high specificity for the ubiquitinated K15 of H2A(X) and 

its surrounding sequence. It is also largely selective to the sequence flanking the target 

ubiquitinated lysine [46]. Interestingly, the H2A(X) K15 ubiquitination mark shows a high 

affinity to the RNF168 MIU2 motif, RAD18 UBZ domain, RNF169 MIU2 domain, and 

BARD1 tandem BRCT domain. These proteins function differentially in the context of the 

DDR, which prompted a peculiar paradox of how exactly they come into place to refine 

the DNA repair pathway choice throughout the cell cycle. One possibility is that there may 

be additional histone marks or regulatory proteins involved in stabilizing and destabilizing 

their interactions with damaged chromatin in cells. Moreover, the biological function of 

H2A(X)K13ub is uncharacterized.

RNF168 utilizes the MIU2-H2A(X) K15 ubiquitination interaction to self-amplify at DNA 

breaks to open additional ubiquitin docking platforms for downstream repair proteins at 

damaged chromatin [29, 32]. However, it is currently unclear why RAD18 and RNF168 

compete for the same docking platform with 53BP1 in vivo.

Additionally, RAP80 is the upstream regulator of BRCA1 IRIF formation. Although 

BARD1 promotes BRCA1 DSB recruitment, the genetic and mechanistic regulation of 

the RNF168-RAP80-BRCA1 axis is not fully delineated. There is a possibility that an 

unidentified RNF168 substrate mediates RAP80 DSB recruitment.

Based on sequence analysis, it is unlikely that the 53BP1 UDR binds RNF168-mediated 

ubiquitinated H2AZ and macroH2A1/2, which raises the question of what are the functions 

of specific histone marks in the context of DNA repair? One of the current predicting 

models is that H2A variants occupy and concentrate at different genomic loci and their 

ubiquitination provides a specific docking platform for different repair proteins to repair the 

damaged DNA in different chromatin states. Overall, given the currently established roles 

of H2AZ and macroH2A in maintaining genome stability and the DDR regulation [84–88], 

dissecting the biological implication of H2AZ K15 and macroH2A1/2 K11 ubiquitination 

is important for understanding the regulation of DNA damage signaling in the context of 

damaged chromatin modification.
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Interestingly, RNF168 MIU2 has high affinity for its target substrate. It is not completely 

elucidated how the MIU2-H2AX K15 ubiquitination interaction self-amplifies RNF168 at 

damaged chromatin. One possibility is that the binding facilitates an allosteric change of 

the RNF168 RING domain and repositions the RNF168 N-terminus to the next nucleosome, 

which allows for a rapid spread of ubiquitin signal at the DNA break by retaining RNF168 

in the proximity of the DNA breaks.

The recent discovery of the RNF168 substrate recognition entities [25, 26, 89], will help 

identify additional RNF168 substrates in the context of the DDR pathway. Specifically, 

proteomic or bioinformatic approaches on identification of the nucleosome acidic patch-

RNF168 arginine anchor and H2A alpha1-extension helix-RNF168 UIM may shed light on 

revealing the RNF168-downstream network.

Studies show that the chromatin-based DDR pathway is not evolutionarily conserved. The 

functional H2AX-MDC1-RNF8-RNF168 axis is not present in yeast or prokaryotes. In 

particular, mdb1 (the fission yeast homolog of human MDC1) and Dma (the budding yeast 

homolog of RNF8) do not recapitulate the human homolog’s phenotype [90, 91]. Budding 

and fission yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe) have an 

hH2AX homolog, yeast HTA (yHTA), but lack an RNF168 homolog. Interestingly, 53BP1 

homologs in yeast: rad9 in Saccharomyces cerevisiae and crb2 in Schizosaccharomyces 
pombe, do not seem to have a UDR domain, suggesting that rad9 and crb2 are regulated by 

a different mechanism at damaged chromatin independent of the ubiquitin signaling. There 

are two distinctive evolutionarily differences between H2AX and yHTA at their histone tails. 

First, H2AX C-terminus harbors the -SQEY motif which is required for MDC1 binding, 

whereas the yHTA C-terminal -SQEL has been shown to be defective in binding MDC1 

[92]. Although it is unclear if the mdb1-yHTA interaction requires the leucine residue at 

the very C-terminus, the recruitment of rad9 or crb2 to DNA breaks is unlikely to be mdb1-

dependent. Second, RNF168 does not ubiquitinate yHTA despite the presence of lysine 

residues at the N-terminus. It is due to the RNF168-mediated H2A(X) ubiquitination that it 

is restricted by the distance between the target lysine residue(s) and the alpha1-extension 

helix. The most proximal yHTA N-terminal lysine from the alpha1-extension helix is 

four amino acids apart. These observations suggest that the H2A histone tails might have 

co-evolved with MDC1, RNF168 and 53BP1 to achieve an additional layer of ubiquitin 

signaling regulation to cope with the increased complexity of DNA repair in eukaryotes. 

Further analysis will provide more insights into the evolution of the chromatin-based DDR 

pathway.

8. Concluding remarks

Defective DNA repair-manifested genomic instability is a common driving force of 

multiple types of cancers. The DDR pathway provides attractive targets for therapeutic 

interventions based on the synthetic lethality paradigm. One of the best-exploited examples 

is the use of PARP inhibitors (PARPi) to inactivate base excision repair for treating 

homologous recombination repair defective cancers, particularly those with BRAC1 or 

BRCA2 mutations. Although there are only four RIDDLE syndrome cases reported 

with RNF168 mutations, dysregulation of RNF168 is implicated in tumorigenesis. More 
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specifically, several lines of evidence show that RNF168 is intimately linked to cancer 

subtypes [33, 62, 93]. Cells with elevated RNF168 are more resistant to chemotherapy 

and radiotherapy. The aberrant RNF168 signaling pathway may lead to genotoxic stress 

adaptation [93]. Thus, RNF168 protein level in cancer patients can be used to predict 

therapeutic response. Given that RNF168 plays an essential role in BRCA1 haploinsufficient 

cells, targeting RNF168 or chromatin ubiquitination could be a therapeutic strategy to 

kill cancer cells, particularly in BRCA1-deficient cells that are resistant to PARPi [35]. 

Identification of RNF168-substrates regulatory elements, such as the nucleosome acidic 

patch and the H2A alpha1-extension helix, provides additional targets for therapeutic 

development [25, 26, 89].

The DDR pathway contains druggable targets for cancer therapy. Ubiquitination is one of 

the most important epigenetic switches in cellular functions, including the DDR pathway. 

Hence, it is imperative to understand the regulation of this essential biological process. With 

multiple regulatory domains, RNF168 is an attractive candidate for therapeutic intervention 

that remains to be explored.
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RNF168 RING finger protein 168

E1 ubiquitin activating enzyme

E2 ubiquitin conjugating enzyme

E3 ubiquitin ligase

IRIF Ionizing radiation-induced foci

DDR DNA damage response
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BRCA1 Breast Cancer susceptibility gene 1

UDM ubiquitin-dependent DSB recruitment module

Kelliher et al. Page 12

FEBS J. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UDR Ubiquitin-dependent recruitment

DUB Deubiquitinase

UIM ubiquitin interacting motif

MIU motif interacting with ubiquitin

UMI UIM and MIU related ubiquitin-binding motif

UAD ubiquitin associated domain
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Figure 1. Human RNF168 (RIDDLIN), an evolutionarily conserved ubiquitin E3 ligase
RNF168 is composed of a catalytic RING domain and two ubiquitin-dependent DSB 

recruitment modules (UDM). UDM1 is composed by LRM, UMI and MIU1 and UDM2 is 

composed by UAD, MIU2 and LRM. RNF168 also contains an arginine anchor for substrate 

recognition. Corresponding conservation score was analyzed using the ConSurf Server: 

https://consurf.tau.ac.il. Conservation score is calculated using an empirical Bayesian 

methodology by comparing 107 vertebrates that share 35–95% homology. The scores are 

normalized and grouped into nine conservation grades [23]. Mutations found in patients 

with RIDDLE syndrome are marked on the schematic illustration of RNF168 as E99Kfs*, 

R131X, A133Gfs* and N441Rfs*. LRM (LR motif); UMI (UIM: ubiquitin interacting 

motif- and MIU: motif interacting with ubiquitin-related ubiquitin-binding motif) and 

MIU (Motif interacting with ubiquitin); UAD (ubiquitin associated domain); PID (PALB2 

interacting domain).
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Figure 2. Conservation of the RNF168 functional domains
Evolutionary conservation scores were analyzed by the ConSurf Server and pseudo-colored 

to indicate amino acid conservation. A) Ribbon (left) and space-filling (right) models of the 

RNF168 RING domain crystal structure (PDB ID:4GB0). B) Ribbon (Top) and space-filling 

(bottom) of the RNF168 UBD1 (PDB ID:5XIS) crystal structure. C) Ribbon (Top) and 

space-filling (bottom) of the RNF168 UDM2 (PDB ID: 5XIU) crystal structure. Labeled 

sticks indicate the characterized functional residues.
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Figure 3. RNF168 as a key DNA repair molecular switch on damaged chromatin
A) A simplified overview of the genetic regulation of RNF168 accrual at damaged 

chromatin. B) The RNF168-mediated H2A(X) K15 ubiquitination and the characterized 

potential readers that are involved in DNA repair. C) The unsolved riddle of RNF168. 

Schematic representation of the uncharacterized RNF168 substrates H2AZ and macroH2A 

and the unidentified RNF168 substrate that regulates RAP80 and BRCA1 IRIF.

Kelliher et al. Page 21

FEBS J. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	RNF168/RIDDLIN and RIDDLE syndrome
	Structural architecture and functional domains of RNF168
	RNF168 and the DDR pathway
	RNF168 and the replication fork
	Viral interaction with RNF168

	RNF168 substrate specificity
	Counteracting mechanisms for RNF168-mediated DDR pathway
	The RNF168-dependent crosstalk between phosphorylation and ubiquitination
	Unsolved RIDDLES
	Concluding remarks
	References
	Figure 1.
	Figure 2.
	Figure 3.

