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Abstract 

Background:  Development of dental tissue is regulated by extensive cell crosstalk based on various signaling mol-
ecules, such as bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) pathways. However, an intact 
network of the intercellular regulation is still lacking.

Result:  To gain an unbiased and comprehensive view of this dental cell interactome, we applied single-cell RNA-seq 
on immature human tooth germ of the growing third molar, discovered refined cell subtypes, and applied multiple 
network analysis to identify the central signaling pathways. We found that immune cells made up over 80% of all 
tooth germ cells, which exhibited profound regulation on dental cells via Transforming growth factor-β, Tumor necro-
sis factor (TNF) and Interleukin-1. During osteoblast differentiation, expression of genes related to extracellular matrix 
and mineralization was continuously elevated by signals from BMP and FGF family. As for the self-renewal of apical 
papilla stem cell, BMP-FGFR1-MSX1 pathway directly regulated the G0-to-S cell cycle transition. We also confirmed that 
Colony Stimulating Factor 1 secreted from pericyte and TNF Superfamily Member 11 secreted from osteoblast regu-
lated a large proportion of genes related to osteoclast transformation from macrophage and monocyte.

Conclusions:  We constructed the intercellular signaling networks that regulated the essential developmental pro-
cess of human tooth, which served as a foundation for future dental regeneration engineering and the understanding 
of oral pathology.
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Background
The human tooth and periodontal tissue emerge from 
the neural crest-derived ectomesenchyme of frontonasal, 
maxillary, and mandibular protrusions [1]. Tooth devel-
opment is a long-term and complex biological process 
involving cell–cell and epithelial–mesenchymal inter-
action, cell differentiation, morphogenesis, tissue min-
eralization, and tooth eruption [2]. At the initial stage, 
cell proliferation activates in specific areas of the dental 
lamina. The proliferative epithelium then extends to the 
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deep connective tissue, and the terminal cells proliferate 
and further develop into the enamel organ. At the same 
time, the ectomesenchyme cells under the proliferative 
epithelium also proliferate rapidly and gather around the 
epithelium. These locally proliferated epithelia and mes-
enchyme together form the tooth germ [3]. The tooth 
germ consists of three parts: (1) enamel organ originated 
from oral ectoderm and forms enamel; (2) dental papilla 
originated from ectomesenchyme, forms pulp and den-
tin; (3) dental follicle originated from ectomesenchyme, 
forms cementum, periodontal ligament and alveolar 
bone [4]. Undoubtedly, a comprehensive understanding 
of tooth development requires dissection of these tooth 
germ substructures.

Like all developmental processes, tooth development 
is regulated by a series of complex gene cascades, which 
drive the cells to enter a predetermined location and dif-
ferentiate in a specific direction [2]. The formation of 
dental arch depends on the coordinated regulation of a 
variety of signaling molecules and location signals, which 
jointly regulate the development process of cell division 
rate, trend and direction of cell migration, cell differentia-
tion and apoptosis. In the above process, a series of genes 
and signaling pathways play an important role in regula-
tion, including Sonic hedgehog (Shh) pathway [5], Wing-
less-related integration (Wnt) pathway [6], fibroblast 
growth factors (FGF) pathway [7], Transforming growth 
factor-beta (TGF-β) [8] pathway and bone morphogen-
esis proteins (BMPs) family [9–11]. These signaling mol-
ecules bind to corresponding receptors and regulate the 
expression of specific genes. Specific functions elicited 
by activation of these pathways are noted during distinct 
phases of dental tissue differentiation, some of which are 
beneficial for cell stemness and proliferation (FGF, Shh) 
while others such as Wnt, TGF-β, and BMPs act in post-
natal differentiation phases and promote polarization, 
migration, and calcification [1, 2].

Understanding the intact signaling network in tooth 
development is essential to dental regeneration engi-
neering and clinical dentistry. So far, many functional 
studies have elucidated the components and processes 
of specific pathways [1, 2, 11–15], and the application of 
these insights has promoted translational medicine and 
the understanding of oral disease. The rapid advance-
ment of single-cell RNA sequencing (scRNA-seq) and 
corresponding data analysis algorithms has provided 
a chance to draw this entire cell interactome. Scientists 
have applied scRNA-seq to draw the cell atlas of mouth 

dental development at various stages [16–18] and human 
periodontal tissue [19]. However, the comprehensive cell 
interactome of human tooth is still lacking.

To achieve this goal, we applied scRNA-seq to tooth 
germs isolated from developing third molar of healthy 
volunteers who planned to have orthodontic treat-
ment (Fig. 1A). In human, the third molar has the latest 
development time scale of all teeth, and properly retains 
immature tooth germ structure before one’s twen-
ties, making it an ideal object for dental development 
research. In this study, we first identified refined dental 
cell subtypes in human tooth germ, discovered essential 
genes involved in dental cell differentiation and transfor-
mation, then constructed ligand-receptor-transcription 
factor networks that regulate these essential genes.

Result
Single‑cell composition of human tooth germ
We isolated tooth germ tissue from two patients with dif-
ferent developmental statuses of left mandibular third 
molars (Fig.  1A and Additional file  1: Figure S1). One 
patient’s left mandibular third molar was at develop-
mental stage A (calcification of cusp tips without coa-
lescence of other calcifications). The other patient was 
at stage D (complete crown formation up to cementoe-
namel junction). The developmental status of the third 
molars was assessed using eight-stage developmental 
scoring (from A to H) proposed by Demirjian et al. [20]. 
Accordingly, cells from stage A expressed higher value 
of immature osteoblast markers like SCUBE3, whereas 
stage D cells expressed mature osteoblast markers like 
SPARC​ (Additional file 2: Table S1). We applied BD-seq 
on the dissected tooth germ and obtained transcrip-
tome data for 9855 cells, which on average contained 
about 28,000 mapped reads per cell, after RNA quan-
tification and quality control. Using Louvain method 
embedded in Seurat 3.0 R package [21], we partitioned 
all cells into 11 clusters (Fig. 1B). Various immune cells, 
including T cell (CD3E+), neutrophil (S100A9+), mac-
rophage (CCL3+), monocytes (FCN1+) and dendritic cell 
(CD1C+) (Fig. 1B–D and Additional file 2: Table S1), con-
sisted of nearly 83% of all cells. This large proportion of 
immune cell supported the notion that molar eruption 
involves immune activation of tooth sac which absorb the 
bone tissue covering the immature molar which obstruct 
the eruption. In the remaining cells, we identified SPARC​
+RUNX2+ osteoblast [22], ACP5+ osteoclast [23], RGS5+ 
pericytes and VWF+ endothelium. Lastly, we identified a 

(See figure on next page.)
Fig. 1   Cell type landscape of human tooth germ. A Oral panorama of two tooth germ samples at stage A and D used for scRNA-sEq. Schematics 
indicated the detail structure of tooth germ. Boxes indicated location of immunofluorescence (F, G). B UMAP projection of cell clustering results. C 
Proportion of each cell cluster in stage A and D tooth germ. D Expression patterns of selected cell markers. E Refined subtypes and their markers for 
SOX9+ cells and osteoblast. F, G Immunofluorescence result for SPARC and GJA1 expression in tooth germ
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Fig. 1  (See legend on previous page.)
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population of SOX9+ cells that exhibited heterogeneous 
transcriptome characteristics (Additional file 2: Table S1).

To resolve this heterogeneity, we carried out further 
clustering analysis on the SOX9+ cells. As shown in 
Fig.  1E, SOX9+ cells consisted of two subpopulations: 
one expressed apical papilla stem cell (APSC) marker 
CD24  [24], and another expressed ameloblast marker 
AMBN and epithelium-associated gene CLU  [25]. We 
therefore separated SOX9+ cells into APSC and amelo-
blast. Similarly, osteoblast (Fig. 1F) also consisted of two 
subpopulations, namely, immature and differentiated 
osteoblast (iOsteoblast and dOsteoblast, respectively). 
iOsteoblast expressed higher level of VIM that inhib-
ited osteoblast differentiation [26], whereas dOsteoblast 
highly expressed SPARC​ that took part in osteogenesis 
[22] and GJA1 that took part in osteoblast differentiation 
[27].

Since SPARC​ and GJA1 expression is not limited to 
osteoblast in dental tissue, we further applied immuno-
fluorescence to elucidate their spatial and cellular distri-
bution in tooth germ. On the tip of dental sac (Fig.  1F 
and Additional file  1: Figure S2), which is proximal to 
the bone interface, SPARC​ and GJA1 showed co-locali-
zation in the osteoblast. On the outer surface of dental 
papilla (Fig. 1G and Additional file 1: Figure S2), SPARC​ 
expressed in the odontoblast at the root end while GJA1 
expressed in the odontoblast at the crown end, with lit-
tle co-localization at the middle. This result supported 
our classification of SPARC​+GJA1+ cells as the mature 
osteoblast.

T cell subpopulations and their intercellular interaction 
patterns
Our single-cell data revealed that more than 42% of tooth 
germ cells were T cell (Fig. 1C), which presumably con-
tained diverse subpopulations with important roles in 
tooth structure [28]. To analyze the role of these subpop-
ulations, we applied Seurat cluster analysis on T cells and 
obtained eight sub-clusters (Fig. 2A–D). We first defined 
the cytotoxic T cells by NKG7 and GNLY expression, 
and separated them into natural killer (NK) T and CD8T 
according to CD8A expression (Fig. 2D). We then defined 
memory T and Th17 by IL7R, CCR6 and CCR7 expres-
sion [29, 30]. Finally, we found small subpopulation of 
CRTAM+ activated CD8T, SELL+ naïve NK, and MKI67+ 
proliferation T cell. Separated by developmental period, 

we found that stage A tooth germ contained more Th17 
(74% of Th17 came from stage A tooth germ) but less 
cytotoxic CD8T (17%, Fig. 2B). The proportion of tooth-
residence memory cells was also higher in stage D tooth 
germ, reflected by higher expression of residence T cell 
marker CD69 [31] (permutation p < 4.1 × 10− 5, Fig. 2C).

We then applied CellPhoneDB [32] analysis to explore 
the subpopulation-specific intercellular signal trans-
duction from T cell to other tooth germ cells. By sum-
marizing the ligand-receptor pairs reaching significant 
threshold (“Method”), all T cell subpopulations showed 
strongest association with ameloblast (number of sig-
nificant pairs = 2 to 9, association strength > 12; Fig. 2E), 
especially by CD74-to-APP and HLADRB1-to-OGN sign-
aling pathways (Fig. 2F). Naïve NK and activated CD8T 
showed the most significant communication with amelo-
blast, and they exhibited subpopulation-specific path-
ways like CXCR6-to-CXCL16 and CRTAM-to-CADM1. 
T cell also exhibited strong communication with osteo-
clast (number of significant pairs = 4 to 11, association 
strength = 2.5 to 6.1; Fig. 2E), especially by signals from 
CCL3/CCL4/CCL5 to CCR1/CCR5 (Fig.  2G). Interest-
ingly, we observed CTLA4-to-CD86 signaling which was 
unique to Th17 cell, where CD86 was known to suppress 
osteoclast differentiation [33]. For other immune cells, T 
cell subpopulations showed divergent association with 
monocyte (number of significant pairs = 2 to 8, asso-
ciation strength = 1.6 to 12.3; Fig. 2E). These results sug-
gested that human tooth germ contained diverse T cell 
subpopulation with distinct cell interaction patterns.

Non‑T immune cell subpopulations and their intercellular 
interaction patterns
Despite T cell subpopulations, other immune cells also 
play an important role in tooth development [34]. Since 
the proportion of neutrophil was profoundly larger than 
remaining immune cells (Fig.  1C), we first applied clus-
tering analysis to dissect neutrophil subpopulation. As 
shown in Fig. 3A–C, we obtained eight subpopulations of 
neutrophil. They were classified by unique expression of 
genes related to neutrophil functions (Fig. 3C). We first 
identified PGLYRP1+ neutrophil with specific roles in 
innate immunity [35], as well as MX1+ antiviral neutro-
phil [36], and SLPI+ inhibitory neutrophil [37]. Another 
three subpopulations were labeled by P2RY13, PRRG4 
and S100P, all of which took part in neutrophil functions. 

Fig. 2   T cell subtypes and their cellular interaction patterns. A UMAP projection of T cell clustering results. B Proportion of each T cell subtype 
in stage A and D tooth germ. C Comparison of CD69 expression, a marker of tissue resident T cell, between two samples. D Expression patterns 
of selected cell markers. E Cellular interaction strength between each T subtype and all other cell types. Width of line indicated the number of 
ligand-receptor pairs reaching p < 0.05 in permutation test. Color of line indicated the maximal interaction strength between the two cell types. 
F Interaction strength of all ligand-receptor pairs reaching p > 0.05 in at least one cell type pairs. We only showed ligands secreted from T cell and 
corresponding receptors on another cell type (ameloblast and osteoclast)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Finally, a subcluster without specific markers but only 
expressed S100A9 was annotated as “unclassified”. Sepa-
rated by developmental period, stage A tooth germ con-
tained more S100P+ neutrophils (71%) and less P2RY13+ 
(17%) and antiviral (9%) neutrophils.

We then applied CellPhoneDB [32] to analyze the sig-
nal transduction from non-T immune cells to dental 
cells. For neutrophil subpopulation (Fig. 3D, E), they were 
overwhelmingly associated with endothelium (number 
of significant pairs = 6 to 10, association strength > 30; 
strength between neutrophil and other cells < 18), espe-
cially via ACKR1 which guided neutrophil migration [38]. 
Antiviral neutrophil showed the strongest association 
with endothelium (number of significant pairs = 10) and 
showed subpopulation-specific signaling of CEACAM1-
to-SELE, which mediated neutrophil activation and 
migration [38]. For other immune cells, we found that B 
cells showed the strongest signaling transduction to den-
tal cells (number of significant pairs = 2 to 7, association 
strength > 25), especially the CD74-to-APP pathway.

Intercellular signaling network regulated osteoblast 
maturation
Having resolved all subpopulation for tooth germ cell 
types, we now had the opportunity to analyze the func-
tional implication of intercellular signaling network. We 
started by delineating the process of osteoblast matura-
tion, then analyzed whether this process was regulated 
by signals from other cells by using ligand-target [39] and 
transcription factor regulation network [40].

As shown in Fig. 4A, we applied monocle3 [41] pseu-
dotime analysis on the osteoblast and observed a clear 
immature-to-differentiated lineage. We found that the 
expression of ALPL, BGN and OGN, genes related to 
mature osteoblast function [42], increased rapidly at the 
beginning of this lineage (Fig.  4A and Additional file  1: 
Figure S3). Other genes related to extracellular matrix 
formation such as MMP2 and COL12A1 also showed 
gradual increment throughout the lineage (Additional 
file  1: Figure S3). On the other hand, genes regulat-
ing the proliferation of osteoblast, such as SCUBE1 and 
PTCH1 (Fig.  4A), gradually decreased during this lin-
eage. Taken all genes showing significant differential 
expression along pseudotime, we found a clear tempo-
ral cascade (Fig.  4B). By Gene Ontology (GO) analysis, 
we found that genes showing decreasing expression in 
the cascade mainly took part in Wnt signaling pathway 

(adjusted p value of GO analysis [GO P] = 4.41 × 10− 11, 
odds ratio [OR] = 5.21), mesenchymal development (GO 
P = 1.91 × 10− 8, OR = 5.08), BMP signaling pathway 
(GO P = 1.16 × 10− 7, OR = 6.12, Fig.  4B and Additional 
file  2: Table  S2). Inversely, ascending genes took part in 
extracellular matrix organization (GO P = 5.24 × 10− 31, 
OR = 8.46), bone growth (GO P = 6.65 × 10− 8, 
OR = 13.49) and biomineralization (GO P = 2.49 × 10− 9, 
OR = 7.07, Fig. 4B and Additional file 2: Table S3). These 
results confirmed that the pseudotime analysis success-
fully reconstruct the process of osteoblast differentia-
tion, and we therefore highlighted all genes significantly 
altered along pseudotime as key osteoblast lineage genes 
(Additional file 2: Table S4).

We hypothesized that these key lineage genes might be 
downstream targets of intercellular signaling networks, 
which regulated the process of osteoblast differentia-
tion. Thus, we applied nichenetr network analysis [39] 
to prioritize the intercellular ligands and pathways that 
might be upstream of these key genes. Nichenetr prior-
itized 20 potential ligands that could regulate the expres-
sion of these key genes (Fig.  4C and Additional file  1: 
Figure S3), such as IL1A and IL1B that mainly secreted 
from macrophage, TNF and APOE that mainly secreted 
from monocyte, as well as IFNG and TFGB1 that mainly 
secreted from T cell. BMP2 and BMP7, top prioritized 
ligands that are known to regulate osteoblast activity 
[43], were mainly expressed in APSC. We then inferred 
the potential receptors on osteoblast that mediated 
these ligand-target associations (Fig. 4C), and found that 
TGFBR1, FGFR3 and TGFBR2 were linked with most 
key genes. Interestingly, ascending key genes were also 
enriched in GO term “response to fibroblast growth fac-
tor” (GO P = 1.82 × 10− 7, OR = 6.53, Fig.  4B). We man-
aged all nichenetr-inferred regulation relations into a 
circus plot, showing the intact network underlying osteo-
blast maturation (Fig. 4C).

Taking one step further, we asked whether this regula-
tion network involved any key transcription factors (TF). 
We applied SCENIC [40] to infer the TF-gene regula-
tion network and found that eight key osteoblast line-
age genes (such as PTCH1, BMP7, EGR2) functioned 
as TF that could regulate other key osteoblast line-
age genes (Fig.  4D). They were downstream to receptor 
such as LTBR, FRFR3, TGFBR2, BMPR1A and RARG​. 
By combination of ligand-receptor-TF-target regulation 
results, we identified several important pathways such as 

(See figure on next page.)
Fig. 3   Non-T immune cell subtypes and their cellular interaction patterns. A UMAP projection of neutrophil clustering results. B Proportion of 
each neutrophil subtype. C Expression patterns of selected cell markers. D Cellular interaction strength between each neutrophil (up), other non-T 
immune cell (down), and all other cell types, similar to Fig. 2E. E Interaction strength of all ligand-receptor pairs reaching p > 0.05 in at least one 
cell type pairs. We only showed ligands secreted from neutrophil and corresponding receptors on endothelium. F Similar to E, but for interaction 
between B cell and other dental cells
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Fig. 3  (See legend on previous page.)
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FGF2-FGFR3-ID1-MMP2/MMP13/ALPL/TNC, TGFB1-
TGFBR2-FOXQ1-HGF/FST/WNT5A. Interestingly, we 
also observed that BMP could serve as both ligand and 
TF in the regulation of osteoblast differentiation, and 
regulated the expression of PTCH1, LTBP1, EDNRA. 
Taken together, our result generated a gene regulation 
network originated from cell type-specific ligands, which 
could regulate the osteoblast differentiation.

BMP‑FGFR1‑MSX1 pathway had central role in APSC 
renewal regulation
Apical papilla stem cell (APSC) resides in human tooth 
germ and retains multipotent and proliferation capacity 
via consistent self-renewal. To identify essential signaling 
pathways that regulate APSC renewal, we first applied 
monocle2 [44] pseudotime analysis to resolve the cell 
cycle alteration of APSC. As shown in Fig.  5A, APSC 
exhibited gradual transmission along cell cycle: on the 
right branch, APSC within G2/M phase gradually left 
cell cycle and transmitted into resting state, whereas in 
the left branch, G0 resting APSC transmitted into G1/S 
phase and entered cell cycle again. We took the left 
branch as the APSC renewal process and applied dif-
ferential expression analysis to identified genes that 
altered along this process, such as SERPING1, DKK3 
and HSPA1B (Additional file 1: Figure S4). As shown in 
Fig. 5B and Additional file 2: Table S5, S6, genes that were 
up-regulated during renewal took part in mesenchymal 
cell proliferation (GO P = 3.67 × 10−4, OR = 30.3), cell 
growth (GO P = 8.82 × 10−5, OR = 6.89). On the other 
hand, genes related to tumor necrosis factor bio-synthe-
sis (GO P = 9.98 × 10−3, OR = 21.4) and glycosaminogly-
can catabolic (GO P = 8.77 × 10−4, OR = 19.9) were down 
regulated during APSC renewal. We took all differential 
expression genes together and defined them as APSC 
renewal genes (Additional file 2: Table S7).

We next applied Nichenetr to identify upstream inter-
cellular signals that regulated the APSC renewal genes. 
As shown in Fig.  5C and Additional file  1: Figure S4, 
ligands released from monocytes (IL1B and IL1A), Oste-
oblast (BMP4, TGFB3, BMP5) and T cells (TGFB1) had 
the strongest regulation potentiality on APSC renewal 
genes. The autocrine of BMP2 and BMP7 on APSC also 
regulated a large number of renewal genes. These ligands 

mostly acted on APSC receptor FGFR1, which regulated 
28 downstream renewal genes (Fig.  5C and Additional 
file  1: Figure S4), including MSX1, PTCH1 and SOX9. 
Similar to the analysis of Osteoblast, we applied SCENIC 
analysis to highlight key TF in this ligand-target network 
(Fig. 5D). We found a transcription factor MSX1, which 
was a downstream target of FGFR1, regulated 47 renewal 
genes (Fig. 5D), especially VCAN, C1S and TIMP2 (regu-
lation score > 1.5). By taking all MSX1 targets as a whole 
(so-called “regulon” [40]), we found that they were gen-
erally elevated during APSC transition to G1/S phase. 
These results highlighted the role of BMP-FGFR1-MSX1 
pathway in APSC renewal. In addition, we also found 
other TF such as KLF4, ID3, JUN and EGR1, that regu-
lated other renewal genes like HSPA1B, CALR, SGK1.

Transformation of osteoclast is regulated by signals 
from osteoblast and macrophage
In tooth and other bone tissues, monocytes and mac-
rophage continuously transform into osteoclasts, 
the dysregulation of which might disrupt the bone 
remodeling balance. To find the signaling pathways 
that regulate this transformation, we first identified 
transformation-related genes by differential expres-
sion analysis (Fig.  6A). At the significance threshold 
of false discovery rate (FDR)-adjusted P < 0.01 and log 
fold change > 1, we found 111 genes that were elevated 
during monocyte-to-osteoblast transformation and 
149 genes that were elevated during macrophage-to-
osteoblast transformation (Additional file 2: Tables S8, 
S9). We merged these two gene lists into 183 unique 
transformation-related genes and applied nichenetr 
[39] to discover the upstream signaling pathways that 
regulated them (Fig.  6B). In accordance with previ-
ous studies, ligands from osteoblasts (BMP4, BMP5, 
TNFSF11) and macrophage (CCL3 and TNF) regulated 
the largest number of transformation-related genes (40 
and 35, respectively, Additional file 1: Figure S5). CSF1 
secreted from pericyte also regulated 23 transforma-
tion-related genes via receptor CSF1R. Interestingly, 
the cellular distribution of receptors of these ligands 
were different: BPMR1A and CSF1R mainly expressed 
on macrophage and osteoclast, whereas TNFRSF1B 
and NOTCH1 mainly expressed on monocytes 

Fig. 4   Intercellular signaling network regulating osteoblast differentiation. A Pseudotime analysis of osteoblast. Lower panel showed the 
expression trajectory along pseudotime for three genes as example. B GO-BP analysis of gene significantly altered along pseudotime. Font size 
showed the fold of enrichment of the pathway, and color showed the log p value of enrichment. C Circus plot of the signaling network. Upper part 
showed the ligands and their average expression in each cell types (red-scale heatmap). Lower part showed the target genes, and a line linking 
one ligand and one target indicated the regulation potentiality between them (predicted by NicheNet). Color of lines corresponded to the cell 
type with the highest ligand expression (color scales same as Fig. 1B). Targets are grouped according to their predicted upstream receptor (receptor 
names showed at the outer layer). Purple color bar indicated the predicted ligand-receptor association weight. D Transcription factors (TF) involved 
in osteoblast differentiation. From top to down: ligands from each cell types; receptors on the surface of osteoblast; transcription factor within 
osteoblast; regulation potentiality of TF on target genes

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5   Intercellular signaling network regulating APSC self-renewal. A Pseudotime analysis of APSC. Lower panel showed the cell cycle score along 
pseudotime. B GO-BP analysis of gene significantly altered along pseudotime. Similar to Fig. 4B. C Circus plot of the signaling network, similar to 
Fig. 4C. D Regulation potentiality of TF on self-renewal related target genes



Page 11 of 17Shi et al. Cell Biosci          (2021) 11:178 	

Fig. 6   Intercellular signaling network regulating Osteoclast. A Differential expression analysis between osteoclast, macrophage and monocyte. 
B Circus plot of the signaling network, similar to Fig. 4 C. C CellphoneDB analysis of neutrophil-to-macrophage signaling pathway, similar to Fig. 2F. 
D Regulation potentiality of LTBR downstream TF on osteoclast transformation related target genes. E, F GO-BP analysis of target genes of EGR1 and 
SMARCA1
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(Fig. 6B). This result indicated that monocyte-to-oste-
oblast and macrophage-to-osteoblast transformation 
was regulated by different signaling pathways. None-
theless, many key genes involved in osteolysis, such 
as ACP5, NFATC1, MMP9, were regulated by multiple 
signaling pathways (Additional file 1: Figure S5).

It has been revealed that neutrophil could activate 
osteoclasts and trigger osteonecrosis during inflam-
mation. Since CellPhoneDB [32] analysis (Fig.  3D) 
found that neutrophil subtypes had dense connection 
with macrophage but few interactions with monocyte, 
we studied the neutrophil-to-macrophage signaling 
that could regulate the transformation-related genes. 
As shown in Fig.  6C, we found five ligand-receptor 
pathways that were significantly activated between 
neutrophil and macrophage. Among them, TNFSF14-
LTBR pathway was shared by all seven neutrophil 
subtypes, whereas CEACAM1-CD209 was specific to 
MX1+ antiviral neutrophils. We further explored the 
downstream TF regulation networks of these path-
ways by nichenetr and SCENIC, and found three TF 
whose target genes significantly enriched in transfor-
mation-related genes: EGR1 (Fisher P = 8.90 × 10−16, 
OR = 5.32), TCF4 (Fisher P = 5.94 × 10− 15, OR = 4.70) 
and SMARCA1 (Fisher P = 0.02, OR = 2.11, Fig.  6D). 
Interestingly, they were all downstream to TNFSF14-
LTBR signaling pathway, supporting its essential role 
in osteoclast transformation. These TFs regulated 
multiple osteoclast maturation markers [45], such 
as CALR, MMP9, NFATC1. We further applied GO 
analysis and found that the target genes of EGR1 sig-
nificantly enriched in functions related to osteolysis, 
such as phagosome acidification (GO P = 3.11 × 10−5, 
OR = 19.7) and receptor-mediated endocytosis (GO 
P = 3.26 × 10−4, OR = 4.10). For SMARCA1, the most 
significant enrichment was found for regulation of 
osteoclast development (GO P = 0.01, OR = 39.5), 
which suggested that SMARCA1 may be one of the 
regulators of osteoclast transformation. For TCF4 
targets, we did not observe significant functional 
enrichment.

Discussion
In the current study, we characterized the single-cell 
transcriptome of human tooth germ from growing third 
molar to decipher the cell subtype-specific signaling 
pathways that regulate the biological process of tooth 
development. We deciphered the subtypes of resident 
immune cells, refined the network of known tooth devel-
opment regulators like BMP, FGF and MSX1, and discov-
ered novel signaling pathways like.

The role of BMP family in the development and reg-
ulation of dental cells has long been highlighted by 

researchers. BMP family encodes various bone mor-
phogenetic proteins, which consist of large subdivi-
sion of transforming growth factor-β ligand family [9]. 
In skeletal tissue, BMP regulates the osteoblastogenesis 
and extra-cellular matrix formation, whereas in den-
tal tissue, BMP also regulate functions of dental pulp 
cells [10] and osteoclasts [14]. Following these observa-
tions, our hypothesis-free signaling network analysis 
further discovered that downstream pathways of these 
regulation were distinct. For the maturation of osteo-
blast, BMP regulated the osteoblast expression of ID1 
and VCAN via BMP2-BMPR1A signaling, in line with 
their known activities during osteoblastogenesis [9]. In 
the self-renewal of APSC, BMP4 and BMP5 secreted 
from osteoblast activated FGFR1 and downstream MSX1 
to regulate a large number of renewal-related genes like 
SOX9 and ID3. Concordantly, knock-down study on mice 
have demonstrated that BMP4 and MSX1 are essential 
in tooth organogenesis [11]. In the transformation of 
osteoclast from monocyte and macrophage, the role of 
BMP is less significant than major regulators CSF1, TNF 
and TNFRSF11, but the BMP4/2-BMPR2 pathway still 
showed regulation potentiality on osteoclast genes like 
SPP1 and GREM1. This result suggested that while BMP 
family took part in various biological process of tooth, 
the mechanism of each process is distinct and should be 
analyzed separately. Concordantly, each member of BMP 
family also showed distinct roles in different process of 
dental development, and their functions might be from 
multi-aspect. For example, BMP7 secreted from APSC 
could serve as ligand to act on osteoblast, whereas BMP7 
expressed in osteoblast could also serve as transcription 
factors and regulate osteoblast maturation.

We also identified the complex regulation network ini-
tiated by TGF and FGF, in accordance with their known 
roles in tooth development. Aside from BMP family, 
the transforming growth factor-β (TGFB) ligand fam-
ily includes various genes including TGFB1, TGFB2 and 
TGFB3  [13]. In dental tissue, TGFB ligands regulate the 
pulpal repair and dentinogenesis, possibly through the 
SMAD2 and extracellular signal-regulated kinases (ERK) 
pathways in pulp cell [12]. In our single-cell analysis, we 
further found that TGFB1, which was mainly originated 
from T cells, activated receptor TGFBR1 and TGFBR2 
to regulate a large number of genes involved in osteo-
blast maturation. This regulation was in part mediated by 
transcription factor FOXQ1. As for APSC renewal, both 
TGFB1 and TGFB3 (mainly originated from osteoblast) 
showed high regulation potentiality. Similarly, we also 
found the cell-type specific networks of FGF signaling, 
which was known to play a role in tooth development 
but the intact pathway remained to be elucidated [46]. 
Specifically, receptor FGFR3 was involved in osteoblast 
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maturation, whereas FGFR1 was mainly responsible for 
ASPC self-renewal. The downstream transcription fac-
tor (ID1 and MSX1, respectively) was also distinct in 
these two processes. Another interesting fact is that aside 
from FGF2, ligands BMP2, 4 and 5 also showed affinity 
with FGF receptor and exhibited even higher regulation 
potentiality, highlighting the importance of cross-path-
way signaling transduction.

Our analysis also discovered the role of immune cell 
in dental development, which was not strengthened by 
previous study. For example, IL1B, which was mainly 
expressed in monocyte, regulated 34 APSC renewal-
related genes, more than other non-immune ligands 
could regulate. It also regulated the maturation of osteo-
blast together with IL1A. It is known that lymphocytes 
could inhibit the dental pulp development by secreting 
cytokines like IL1B and IL6, but this inhibition was only 
found in inflammatory status [47]. Alternatively, since the 
tooth germ sample in the current study was collected at 
normal status, our result suggested that IL1B could also 
regulate the normal developmental process of human 
tooth in the absence of inflammation. Similarly, TGFB1 
also regulated 39 renewal-related genes, and was mainly 
expressed in T cells. As for osteoclast transformation, the 
top ligand was TNF from macrophage. These results indi-
cated that dental immune cells not only defense against 
pathogens, but also regulate the dental development via 
secretion of ligands that act on other dental cell types. 
Under the situation of inflammation or stress, such regu-
lation might lean towards suppression of osteogenesis 
and activation of osteoporosis.

It should be noted that since dental germ develop-
mental stages exhibit high heterogeneity, and that sam-
ples collected from different individual may represent 
distinct status and could not cover the entire process of 
dental development. As a consequence, our result mainly 
complemented the up- and down-stream components 
of known signaling networks like BMP and FGF path-
way, but did not reveal novel and unknown pathways. 
For example, the samples analyzed in the current study 
contained relatively small number of ameloblasts and 
odontoblasts, which are mainly activated at the early 
stage of dental development. Since it is relatively dif-
ficult to obtain highly immature dental tissue in clinical 
scenario, the signaling networks of these cell types might 
be better analyzed using prenatal tissues or by transla-
tional studies of mouse model. Compared with the cur-
rent study, two previous single-cell analysis [16, 48] that 
aimed at different anatomical structures of adult tooth 
have revealed different cell components and provided 
insights into different biological process of mature tooth. 
In the future, more efforts should be devoted to the sin-
gle-cell analysis of human embryo dental tissues.

In conclusion, we provided a cell interactome land-
scape for postnatal human germ and discovered the key 
signaling pathways regulating the development of dental 
cells, which provided novel insights into the mechanism 
of dental development and highlighted potential targets 
for disease intervention and dental regeneration.

Method
Sample collection and pre‑processing
This study was approved and supervised by Ethical com-
mittee of Shanghai Ninth People’s Hospital. Written 
informed consent was provided by all participants. We 
ruled out the possibility of infection based on the fol-
lowing observation: the third molars of the two patients 
had no history of pain or infection, and the molar did 
not erupt, the surrounding gums and alveolar mucosa 
were healthy, without redness, swelling, and fistula, or 
other signs of infection. On oral panorama, there was no 
abnormal low-density shadow around the third molars 
of the two patients. Blood examination also revealed no 
sign of infection. Both the surgical procedures were per-
formed by the same surgeon and assistant with patients 
under local anesthesia. After a full-thickness mucoperi-
osteal flap elevation, the buccal bone of the third molar 
was removed with piezosurgery handpiece to expose the 
tooth germ, which was carefully enucleation by curette 
immediately. We performed the crown sectioning with 
a high-speed handpiece and fissure burs to remove the 
calcified structures when necessary. The tooth germ free 
of mineralized part was rinsed with normal saline and 
stored in MACS Tissue Storage Solution (Miltenyi, Ger-
man), and was immediately delivered to Single-cell RNA-
seq platform within 10 min.

Single‑cell dissociation
Single-cell RNA-seq experiment was performed by 
experimental personnel in the laboratory of NovelBio 
Bio-Pharm Technology Co Ltd. Briefly, samples were 
first washed with phosphate-buffered saline (PBS), 
minced into small pieces (approximately 1  mm3) on ice 
and enzymatically digested with 0.5  mg/mL collagenase 
I/II (Worthington) and 50 U/mL DNase I (Worthing-
ton) for 45 min at 37 °C, with agitation. After digestion, 
samples were sieved through a 70  μm cell strainer, and 
centrifuged at 4  °C, 300×g, 5 min, to remove the super-
natant. The pelleted cells were suspended in red blood 
cell lysis buffer (Miltenyi Biotec) to lyse red blood cells. 
After washing with PBS containing 0.04% BSA, the cell 
pellets were re-suspended in PBS containing 0.04% BSA 
and re-filtered through a 35 μm cell strainer. Dissociated 
single cells were then stained for viability assessment 
using Calcein-AM (Thermo Fisher Scientific) and Draq7 
(BD Biosciences). The single-cell suspension was further 
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enriched with a MACS dead cell removal kit (Miltenyi 
Biotec) [49].

Single‑cell RNA sequencing
BD Rhapsody system was used to capture the transcrip-
tomic information of the (two sample-derived) single 
cells. Single-cell capture was achieved by random dis-
tribution of a single-cell suspension across > 200,000 
microwells through a limited dilution approach. Beads 
with oligonucleotide barcodes were added to saturation 
so that a bead was paired with a cell in a microwell. The 
cells were lysed in the microwell to hybridize mRNA 
molecules to barcoded capture oligos on the beads. Beads 
were collected into a single tube for reverse transcription 
and ExoI digestion. Upon cDNA synthesis, each cDNA 
molecule was tagged on the 5′ end (that is, the 3′ end 
of a mRNA transcript) with a unique molecular identi-
fier (UMI) and cell barcode indicating its cell of origin. 
Whole transcriptome libraries were prepared using the 
BD Rhapsody single-cell whole-transcriptome amplifi-
cation (WTA) workflow including random priming and 
extension (RPE), RPE amplification PCR and WTA index 
PCR. The libraries were quantified using a High Sensi-
tivity DNA chip (Agilent) on a Bioanalyzer 2200 and the 
Qubit High Sensitivity DNA assay (Thermo Fisher Scien-
tific). Sequencing was performed by illumina sequencer 
(Illumina, San Diego, CA) on a 150 bp paired-end run.

Single‑cell RNA analysis
scRNA-seq-seq data analysis was performed by NovelBio 
Bio-Pharm Technology Co., Ltd. with NovelBrain Cloud 
Analysis Platform. We applied fastp [50] with default 
parameter filtering the adaptor sequence and removed 
the low-quality reads to achieve the clean data. UMI-
tools [51] were applied for Single Cell Transcriptome 
Analysis to identify the cell barcode whitelist. The UMI-
based clean data was mapped to human genome (Ensem-
ble version 91) utilizing STAR v2.7.6 [52] mapping with 
customized parameter from UMI-tools standard pipeline 
to obtain the UMIs counts of each sample. Cells con-
tained over 200 expressed genes and mitochondria UMI 
rate below 20% passed the cell quality filtering and mito-
chondria genes were removed in the expression table. 
Seurat v3.0 package [21] was used for cell normalization 
and regression based on the expression table according to 
the UMI counts of each sample and percent of mitochon-
dria rate to obtain the scaled data. PCA was constructed 
based on the scaled data with top 2000 high variable 
genes and top 10 principals were used for tSNE construc-
tion and UMAP construction. We calculated cell cycle 
score using cell cycle gene lists from Tirosh et al. [53] and 
included this score in the normalization.

We applied graph-based Louvain cluster method with 
resolution = 0.8, we acquired the unsupervised cell clus-
ter result based the PCA top 10 principal and we calcu-
lated the marker genes by FindAllMarkers function with 
wilcox rank sum test algorithm under default criteria. We 
also applied the same function to find genes significantly 
differed between osteoclast, macrophage and monocyte. 
For T cell subtypes, we reran FindVariableGenes and 
PCA, reran clustering analysis with top 13 PCA and reso-
lution = 0.6. For SOX9+ cells, osteoblasts and Neutro-
phils, we also carried out similar second-level clustering 
analysis.

CellPhoneDB analysis
we applied cell communication analysis based on the 
CellPhoneDB [32], a public repository of ligands, recep-
tors and their interactions. Membrane, secreted and 
peripheral proteins of the cluster of different time point 
was annotated. Significant mean and Cell Communica-
tion significance was calculated based on the interaction 
and the normalized cell matrix with permutation test. 
For each cell pair, we gathered all ligand-receptor pairs 
with nominal p < 0.05.

Pseudotime analysis
We applied the Single-Cell Trajectories analysis utiliz-
ing Monocle3 [41] for osteoblast pseudotime analysis. 
The pre-processing, dimension reduction, clustering and 
trajectory reconstruction were run with default param-
eter, using all available genes. A specific branch occurred 
at the midpoint of trajectory in Fig.  4A, but differential 
expression analysis did not reveal specific biological 
characteristics of it. We reasoned that this branch might 
reflect osteoblasts without common expression pattern 
of maturation-related genes, possibly due to drop-out, 
and did not further analyze them. For APSC, we used 
differential GeneTest to find high variation genes that 
highly correlated with cell cycle scores and applied tra-
jectory analysis on them using Monocle2 [44] DDR-Tree 
and default parameter. We did not apply Monocle3 to 
APSC since the learn_graph() function does not support 
pseudotime analysis using only a subset of genes, as we 
applied with the cell cycle analysis.

After we calculated the pseudotime for each cell, we 
applied differential GeneTest function to find genes that 
significantly altered along pseudotime. According to 
the trends of alteration (i.e., sign of Pearson Correlation 
Coefficient between gene expression and pseudotime), 
we separated these genes into ascending and descending 
genes. We then applied Gene Ontology Biological Pro-
cess (GO-BP) analysis by clusterProfiler [54] R package 
separately on these genes to elucidate their functions.
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NicheNet analysis
Having identified the key gene lists in osteoblast matu-
ration, APSC self-renewal and osteoclast transformation, 
we applied NicheNet [39] analysis to find the regulation 
network upstream of these gene sets. NicheNet has con-
structed a priori networks consisting of ligands, recep-
tors and targets. Given a set of targets and the range of 
expressed ligands and receptors, NicheNet finds the 
ligands and receptors showing the highest regulation 
potentiality on them. In the current study, NicheNet 
was applied with the following parameter: threshold of 
expression = 25% in receptor cell and 10% in sender cell, 
number of ligand-target pairs = 100, ligand-target activ-
ity threshold = 0.33. For uniformity, we reported top 20 
ligands for all analysis.

For each of the highlighted ligand and receptor, we cal-
culated their average expression in the corresponding 
cell clusters. We denoted the origin of each ligand as the 
cell cluster showing the highest average expression. For 
the ease of visualization, we aligned each target to only 
one receptor with the highest regulation potentiality in 
the a priori network. All targets that were predicted to be 
regulated by at least one of the ligands, but did not had 
potential upstream receptors, were labelled “other recep-
tor” in the circus plot.

SCENIC analysis
To assess transcription factor regulation strength, we 
applied the Single-cell regulatory network inference and 
clustering (pySCENIC, v0.9.5) [40] workflow, using the 
20-thousand motifs database for RcisTarget and GRN-
boost. A regulation score > 1 calculated by SCENIC was 
taken as evidence of the regulation activity of the corre-
sponding TF and target genes. To select TF of interest, 
we only included those TF downstream of the NicheNet 
ligands or receptors, as denoted by the a priori network 
of NicheNet.

Statistical analysis
Statistical analysis was carried out in R 4.0 (R Core 
Team). All p values were two-tailed unless otherwise 
specified. For the comparison of gene expression between 
cell clusters, we applied permutation test by coin R pack-
age [55]. For the enrichment of TF targets in specific gene 
lists, we applied Fisher exact test with background gene 
list defined as all genes with regulation score > 1.
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