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Abstract

Schema matching aims to identify the correspondences among attributes of database schemas. 

It is frequently considered as the most challenging and decisive stage existing in many 

contemporary web semantics and database systems. Low-quality algorithmic matchers fail to 

provide improvement while manually annotation consumes extensive human efforts. Further 

complications arise from data privacy in certain domains such as healthcare, where only schema­

level matching should be used to prevent data leakage. For this problem, we propose SMAT, 

a new deep learning model based on state-of-the-art natural language processing techniques to 

obtain semantic mappings between source and target schemas using only the attribute name 

and description. SMAT avoids directly encoding domain knowledge about the source and target 

systems, which allows it to be more easily deployed across different sites. We also introduce a 

new benchmark dataset, OMAP, based on real-world schema-level mappings from the healthcare 

domain. Our extensive evaluation of various benchmark datasets demonstrates the potential of 

SMAT to help automate schema-level matching tasks.
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1 Introduction

The tremendous growth and availability of data can benefit a broad range of applications 

such as healthcare, energy, transportation, and smart buildings. Unfortunately, across many 

domains, data is collected using a wide variety of database systems with customized 

schemas developed for each company or purpose. The customized databases can hinder data 

exchange, data integration, and large-scale analytics. Schema matching aims to establish the 

correspondence between the fields of a source and target database schema – a decisive initial 

step in the standardization of different databases. Automation of the schema matching task 

has received steady attention in the database and AI communities over the years. It has also 

been adopted as a practical and principled tool to improve the modeling and implementation 
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of data exchange and data integration [2,22,27]. Yet, this problem remains largely unsolved 

and still requires significant manual labor.

Given the importance of schema matching and the time-intensive nature of the task, it is 

crucial to develop new methods to help expedite the process. Several automated schema 

matching methods have been proposed, including constraint-based approaches [5,13,34] and 

linguistic-based approaches [18,21,24,39]. While the existing methods have achieved high 

performance in different domains, they suffer from several limitations. The constraint-based 

approaches analyze the element contents, which is not always guaranteed to be the same 

across the two schemas. Moreover, it assumes the data on both sides can be queried, which 

can violate privacy constraints. For the linguistic approaches, the relations are hand-coded 

between the two schemas or may not properly capture the similarity between the field 

descriptions. Numerous matching tools (matchers) can generate correspondences between 

pairs of schemas [6,13]. Yet they rely on heuristic techniques. Recently, a deep neural 

network (DNN)-based model, ADnEV, was proposed to utilize similarity from existing 

matchers and post-process the results to work across domains [36]. However, ADnEV is 

limited by the capability of existing matchers and may not generalize to all domains.

Given the rising importance of schema integration involving sensitive data, such as in 

healthcare, we focus on schema-level matching rather than instance-level or hybrid schema 

matching. This paper posits that the schema matching process (i.e., source schema elements 

to target schema elements and its attributes matching) can be viewed as inferring the 

relatedness (or similarity) between the source and target fields. We propose SMAT, a DNN­

based model with attention that extends recent advances in natural language processing 

and sentiment analysis. SMAT captures the semantic correlation from the source schema 

attributes to the target schema attributes based on the name and descriptions. Moreover, our 

model can be used to automatically generate the matching between the source and target 

schemas without encoding domain knowledge. We also introduce a new publicly available 

dataset that annotates several source to target conversions in the healthcare domain. We 

perform extensive evaluations of SMAT on a variety of datasets.

2 Related Work

This section describes the existing works related to schema-level matching that only 

considers schema information and not instance data. For a detailed survey on schema 

matching, we refer the reader to [34]. Table 1 provides a brief comparison of some related 

works and our model along four categories (i.e., whether it is schema-level matching, what 

the match cardinality is, whether it captures rich text, and whether it utilizes deep-learning 

framework).

One line of schema matching work is the constraint-based approach. Most schemas contain 

constraints to define the attributes such as data types and value ranges, uniqueness, 

optionality, relationship types and cardinalities [34]. Similarity can be measured by data 

types and domains, key characteristics (e.g., unique, primary, foreign), and relationship 

cardinality [1,14,29]. Recently, [3] proposes a hybrid of the constraint-based approach using 

key characteristics and the instance itself to create the meta-schema. Unfortunately, such 
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approaches cannot readily handle the n:1 scenario that can be found in schema matching. 

For example, if the source schema contains “starttime” and “endtime” and the target 

schema contains “Duration”, the meta-schema mapping can not generate and convert the 

two attributes into the single target.

An alternative method is the linguistic content-based approach, which utilizes names and 

text to explore semantically similar schema elements. There are two primary linguistic 

data mapping techniques: name matching and description matching. The idea behind these 

techniques is to calculate similarity based on either the name of the fields or the description 

of the fields, respectively. In name matching, the similarity of names can be defined and 

measured through equality of names, equality of synonyms, similarity of names based on 

common substrings and user-provided name matches. Examples include [20] which helps 

database designers visualize similarity and dissimilarity based on attribute names and [40] 

which uses a prescribed dictionary to obtain the aggregation among attributes. However, 

consulting a synonym lexicon has limitations since it is common to use abbreviations for 

attribute names (e.g., DOB for date of birth, SSN for Social Security number, etc.) and may 

not identify the relationships.

Description matching is based on the idea that schemas usually contain element and attribute 

names in natural language to express the intended semantics of schema elements. The 

process involves the identification of two semi-related data objects and the creation of 

mappings between them. In a recent work [24], the authors utilized the UMBC EBIQUITY­

CORE technique [19] to obtain the similarity of the comments of schemas. Yet, it may not 

capture the similarity between the descriptions. For example, the similarity score between 

“the comment of the book” and “the review of the article” is 0.39 (1 is the same and 0 

is dissimilar). Another work used word embeddings to link datasets [15]; however it only 

embeds the table name which may not yield sufficient information.

With the development of DL techniques, entity matching [4,27], ontology alignment [25], 

and instance-level schema-matching [26] can utilize rich textual information to provide 

better solutions. However, both entity matching and instance-level schema matching assume 

the data can be queried on both sides, which can violate data privacy constraints. For 

schema-level matching, [31] proposed a probabilistic graphical model and achieved a good 

score on precision and recall. Recently, ADnEV was proposed to utilize a DL technique to 

post-process the matching results from other matchers and outperformed existing models. 

However, the quality of the matchers limits the potential of the model.

3 SMAT: A DNN Model

We introduce SMAT, an attention-based DNN model to automate the schema matching 

between the source and target schemas. We posit that the attribute-to-attribute matching 

performed in schema matching can be viewed as inferring the relatedness (or similarity) 

between the source and target fields. Under this paradigm, the data dictionaries containing 

the tables and attributes descriptions can be used to automatically capture the semantic 

correlation between the two fields without requiring explicit domain knowledge. SMAT 

extends recent advances in natural language processing (NLP) and sentiment analysis to 
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encode the field descriptions for both source and target and determine which two fields are 

related to one another. In this section, we formulate the problem and then introduce the 

various components of SMAT.

3.1 Problem Statement

Given two table descriptions STS and STT, two attributes names NF1 and NF2, and their 

descriptions SF1 and SF2 from the source and target schema respectively, we construct two 

sets of sentences. The source sentence set SS = NF1, STS + SF1 = w1, w2, …, wn  consists 

of n words, and the target sentence set ST = NF2, STT + SF2 = w1, w2, …, wn′  consists 

of n′ words. For the training data, there is an annotated label L(SS, ST) where 0 denotes 

two fields are not related (i.e., not mapped to each other), and 1 denotes two sentences are 

related (i.e., corresponding attribute-to-attribute matching). Table 2 provides an example of 

the sentence pair. Thus the task objective is to classify the semantic relation of each sentence 

pair to reveal the attribute-to-attribute matching.

3.2 Overview

The task of determining the relatedness between two attributes descriptions can be viewed 

as inferring the similarity of two sentence pairs in NLP tasks. Since DNNs can be trained 

end-to-end without any prior knowledge (i.e., no need to implement feature engineering), 

they have been utilized for text similarity tasks. For sentiment classification, InferSent 

introduced an end-to-end DNN and achieved a higher performance than existing sentiment 

analysis models [8]. Yet there are two major limitations to adopting such models for the 

schema matching task. First, the element and attribute description may not contain sufficient 

information to distinguish it from others. Second, the descriptions may have abbreviations or 

words that have unknown word representations.

To address the above limitations, SMAT consists of 4 major modules (shown in Figure 1). 

First, the input embedding of the sentences utilizes a hybrid encoding to deal with large 

vocabularies for any input text. Second, bidirectional Long short term memory (BiLSTM) 

networks are used to capture the hidden semantics of the words in the description and the 

column name separately. Third, the attention over attention (AOA) mechanism [9] is adopted 

to model the correlation between the column name and its description to obtain a better 

sentence representation.

The final prediction layer uses the sentence representations to make an accurate 

classification. We also introduce data augmentation and controlled batch sample ratios 

(CBSR) to deal with the class imbalance problem that is present in schema matching tasks.

3.3 Input Embedding & BiLSTM

Existing word embedding models such as GloVe [33] are limited by vocabulary size or the 

frequency of word occurrences. As a result, rare words like ICD-9 result in unknown tokens. 

Byte-Pair Encoding (BPE) is a hybrid between character- and word-level representations 

which can deal with the large vocabularies common in natural language corpora [35]. 

Instead of full words, BPE learns sub-words units to tokenize any input text without 

introducing any “unknown” tokens.
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Thus, SMAT uses BPE to tokenize the input text. Each word/sub-word wi in the 

sentence S1 = w1, w2, …, wn  is then mapped to a high-dimensional vector ei, using GloVe 

embeddings. While we use GloVe due to its popularity, any word embedding representation 

can be used.

To capture the contextual nature of the text, a BiLSTM network is utilized to capture the 

hidden semantics. Compared with the standard LSTM, BiLSTM can utilize both the past 

and the future information to yield better sentence representations. Thus, after the word 

embedding is obtained for each set of words (i.e., attribute name or attribute description), the 

embeddings are fed to a BiLSTM network.

3.4 Attention-over-Attention (AOA)

The output of the BiLSTM is dealt with using two approaches. All the information in the 

sequence is captured using the max-pooling operator to compress the sequence into a single 

unified vector. However, one limitation of this representation is the inability to capture 

interactions between the attribute name and its description. The second approach uses an 

attention over attention (AOA) module to model this interaction. AOA was first proposed 

for the question answering task [9]. Since calculating the dot product and difference of two 

sentence representations fail to capture fine-grained relations on the word level, the AOA 

module introduces mutual attention to simultaneously capture the relationships between 

attribute name to description and description to attribute name.

Our AOA module captures the correlations between the attribute names and the text using 

two mechanisms. Let ℎc ∈ Rm × 2ℎ denote the attribute name representation, where m is the 

attribute name length (i.e., number of words in the attribute name) and h is the hidden 

dimension. Let ℎs ∈ Rn × 2ℎ denote the element-attribute description representation, where 

n is the description length and h is the hidden dimension. The module first calculates 

the pair-wise interaction matrix I = ℎs ⋅ ℎc
T , where the value of each entry represents the 

correlation of each word pair between the description and attribute name. A column-wise 

softmax and row-wise softmax is applied to the interaction matrix I, to obtain the attribute 

name to description attention, α, and description to attribute name attention, β, respectively. 

Thus for the tth attribute word and kth text description, the associated attentions are:

α(t) = softmax(I(1, t), I(2, t), ⋯, I(m, t)) (1)

β(k) = softmax(I(k, 1), I(k, 2), ⋯, I(k, n)) (2)

Then, the attribute name-level attention β is calculated using a column-wise averaging of β. 

This attention indicates the important words in the attribute name. Finally, the sentence-level 

attention γ ∈ Rn can be obtained by a weighted sum of each individual attribute name to 

description attention α. By considering the contribution of each word explicitly, the AOA 

module learns the important weights for each word in the sentence.
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αij =
exp Iij

∑iexp Iij

βij =
exp Iij

∑jexp Iij

β = 1
n ∑

i
βij

γ = α ⋅ βT

The two sets of final description level attentions for the source and target, γs and γt, are 

concatenated along with the difference between the two max-pooled attribute description 

representations. The new vector representation, P, is sent to the final classification layer 

which consists of several fully-connected layers and a softmax layer to predict whether or 

not two sentences are related.

3.5 Data Augmentation & Controlled Batch Sample Ratio

As attribute-to-attribute mapping generally results in a skewed distribution, SMAT uses 

data augmentation and controlled batch sample ratio (CBSR) to achieve better predictive 

performance. Data augmentation occurs on two levels. First is to generate new positive 

samples using synonyms for different words in the descriptors. For example, an augmented 

sample may replace the word “uniquely” with “unambiguously” and “identify” with 

“describe”. However, since the number of synonyms is limited, we utilize a second 

technique to improve the attribute name description. We use the part-of-speech (POS) tags 

for the descriptions and concatenate the identified nouns to enlarge the dataset safely.

Since SMAT uses batch SGD to learn the parameters, a batch can contain no positive 

samples and thus only properly learn the representation for negative samples. Thus, we 

controlled the ratio of positive samples in each batch size to ensure that our model learns 

from a few positive examples for each batch [12]. Note that since the positive samples 

are small, they are likely to be chosen repeatedly, while there is diversity in the negative 

samples.

4 OMAP: A New Benchmark Dataset

Since existing matching datasets only spans purchase orders, web forms, and bibliographic 

references, we created OMAP, a new benchmark schema-level matching dataset that 

annotates several source-to-target mappings in the healthcare domain. Healthcare data is 

collected worldwide using a wide variety of coding systems. To draw conclusions with 

statistical power and avoid systematic biases, a large number of samples should be analyzed 
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across disparate data sources and patient populations. Such broad analyses requires data 

harmonization to a common data standard (e.g., the Observational Medical Outcomes 

Partnership (OMOP) Common Data Model (CDM) standard) to facilitate evidence gathering 

and informed decision making [32]. Since patient data cannot be queried due to privacy 

concerns, schema-level matching is of great importance. OMAP maps between three 

different healthcare databases and the OMOP CDM standard.

1. MIMIC-III [23]: A publicly available intensive care unit (ICU) relational 

database from the Beth Israel Deaconess Medical Center.

2. Synthea [38]: An open-source dataset that captures the medical history of over 

one million Massachusetts synthetic patients.

3. CMS DE-SynPUF [7]: A set of realistic claims data generated from 5% of 

Medicare beneficiaries in 2008.

For each dataset, the element table name with its descriptions and attribute column name 

with its descriptions are used to construct a sentence. The label is based on the final ETL 

design. If the table-column in the source schema was mapped to a table-column in the 

OMOP CDM the label is 1, otherwise it is 0. Table 2 provides one example from the OMAP 

dataset.

OMAP currently contains 121,689 matching pairs from three different datasets and is 

available publicly on Github3. The summary statistics for each of the three conversions 

are captured in Table 3.

Note that the dataset does not contain any patient information, only attributes and their 

descriptions.

5 Experiments

We designed the experiments to answer three key questions: (1) How accurate is SMAT in 

automating the schema matching? (2) How sensitive is SMAT to the training size? (3) How 

important are the different components of SMAT?

5.1 Dataset

We use the OMAP dataset to evaluate our proposed model (see Table 3 and Section 4). We 

also used three popular schema matching benchmark datasets as shown in Table 4.

Reference matches in these datasets were manually constructed by domain experts and 

considered as ground truth for our purposes. Experiments are performed per dataset 

consistent with existing schema matching papers [17,31,37]. For each dataset, 80% was 

used to train the initial prediction model, the 10% used to further tune the weights, and the 

remaining 10% used to evaluate the experiments.

3 https://github.com/JZCS2018/SMAT 
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5.2 Baseline Models

SMAT is evaluated against five baseline models. For data sensitivity purposes, we focused 

only on schema-level matching. The entity matching solutions that involve semantic 

relatedness technique are chosen to represent the existing schema matching or entity 

matching work.

• ADnEV [36]. A schema matching model that utilizes DNN to post-process 

results from state-of-the-art (SOTA) matchers in an iterative manner.

• InferSent [8]. A SOTA sentence embedding model that classifies the sentiment 

between two sentences. The last layer is modified to tackle a binary classification 

task. GloVe embeddings [33] are used for the input sentences.

• DeepMatcher [30]. An entity matching solution that customizes the Recurrent 

Neural Network (RNN) architecture to aggregate the attribute values then 

compares the aggregated representations of attribute values.

• DITTO [27]. A SOTA entity matching model that cast the problem as 

a sequence-pair classification and fine-tunes RoBERTa [28], a pre-trained 

Transformer-based language model.

• BERT [10]. Bidirectional Encoder Representations from Transformers (BERT) 

has achieved SOTA results in many natural language understanding tasks. We 

fine-tuned the pre-trained BERT-base-uncased model on our datasets.

5.3 Experimental Setup

We implemented SMAT and the baseline models in Python 3.6 using PyTorch. Our code 

is made publicly available on Github5. Performances were measured on the Google Cloud 

Platform with Intel Xeon E5 v3 CPU @ 2.30Ghz, and a Nvidia Tesla K80 with 12 GB Video 

Memory.

For experiments in this paper, the embedding dimension is 300. The number of hidden 

units of BiLSTM is 1024 for InferSent and 300 for SMAT. For the classification model, we 

apply a fully connected layer with one hidden layer of 512 hidden units. Stochastic gradient 

descent is chosen as the optimize algorithm with a batch size of 64. The learning rate and 

weight decay are 0.1 and 0.99 for InferSent and 0.001 and 0.99 for SMAT. For AdnEV, 

DeepMatcher, DITTO, and fine-tuning BERT model, Adam is chosen as the optimization 

algorithm with a learning rate of 0.001, 0.001, 3e – 5, 2e – 5, respectively, and the batch size 

as 64, 64, 64, and 32 respectively. These parameters were obtained from initial experiments 

on a subset of the training data as they provided the most robust performance across multiple 

runs.

5 https://github.com/JZCS2018/SMAT 
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6 Results

6.1 Predictive Performance

Evaluation of SMAT with existing baseline models.—Table 5 summarizes the 

results of the six models tested on the six datasets. We observe that the precision and 

recall varies depending on the dataset suggesting differences in the semantic content 

of their attribute names and descriptions. The results demonstrate that SMAT does not 

require additional hand-coding due to the overall strong performance. It achieves the best 

performance across all three metrics in 3 of the datasets (OAEI, MIMIC, CMS). It also 

yields the best F1 score for all but the Purchase Order dataset. Thus, our proposed model is 

fairly versatile.

ADnEV achieves a higher precision on Purchase Orders and Webforms and a better F1 score 

on Purchase Orders than others. Yet, SMAT outperforms the ADnEV model on OAEI and 

Web-forms in terms of F1 score by 12.4% and 16.1% respectively. Moreover, the results on 

the OMAP datasets illustrate the pitfall of ADnEV. Since ADnEV leverages other matchers, 

it is limited by the capability of the matchers. Thus, ADnEV may not be suitable for 

all domains. Furthermore, comparisons of the DNN-based models (InferSent, Fine-tuned 

BERT, and SMAT) and ADnEV in terms of F1 and recall also illustrate the power of 

end-to-end training without requiring additional feature engineering.

For the OMAP dataset, SMAT achieves a higher precision and recall score suggesting that 

the prediction capability of SMAT is better than the other models. However the precision 

across these four datasets are noticeably lower than those of Purchase Order, OAEI and 

Web-forms. This may be a result of the more complex textual information in the healthcare 

domain. Moreover, there are many abbreviations which can prevent the general model from 

achieving a higher score. This highlights the importance of benchmarking the models across 

various applications and supports the development of OMAP.

The results also capture the difference that arises from schema-level matching. Even 

though DITTO and DeepMatcher perform well in the entity matching task, they do 

not offer comparable performance across the different datasets. This may be due to the 

inconsistencies across the datasets present in the textual information. Moreover, InferSent 

seems to provide better F1 scores compared to the more complex transformer models 

outside of the Purchase Dataset. This suggests that the Bi-LSTM based sentence modeling 

approach shared by InferSent and SMAT may offer better predictive power compared to 

the more complex transformer-based models. In comparing InferSent and SMAT, the results 

suggest that SMAT’s attention mechanism and representation can help capture the elements 

and attributes in source schema and target schema differences better than the other models 

regardless of whether the textual information is rich (OMAP) or not (Purchase Order, OAEI 

and Web forms).

Analysis on Web-form, a cross-domain schema matching.—The Web-forms 

dataset contains 18 domains to represent the cross-domain matching task. Figure 2 analyzes 

the match quality per domain and compares the results between SMAT and ADnEV since 

ADnEV achieves the best precision. From the results, we observe that SMAT outperforms 
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ADnEV across all the domains in terms of recall. Moreover, for the majority of the 

domains, SMAT offers better precision and F1 score over ADnEV. For example, the 

Webmail, Finance, and News domains are difficult for the ADnEV model. For example, 

existing matchers fail to identify the mappings Measures the price performance of a stock 
in comparison to all other stocks (12 Month Relative Strength) ↔ YTD total return and 

Mailbox ↔ @gmail.com (Email). However, SMAT can capture the semantic meaning of 

these pairs. The results also demonstrate that ADnEV performs better on the domain Forums 

and Hotels than SMAT. This is because SMAT excludes the number and type constraints in 

the element and attribute.

6.2 Computational Efficiency

Table 6 summarizes the training time and inference speed for the six different methods using 

the same computer hardware on Synthea dataset. Of all the DNN-based models, InferSent 

is the most computational efficient (i.e., lowest training time and highest inference speed). 

However, the quality of the prediction is significantly lower especially with respect to 

precision as shown in Table 5. With a slight increase in training and lower inference speed, 

SMAT provides the best overall predictive performance across the different datasets. It is 

also worthwhile to highlight that ADnEV takes less training time but the inference speed is 

substantially slower due to the need to post-process the results. Although DITTO is based 

on pre-trained Transformer-based language models, the computation efficiency is better than 

fine-tuned BERT due to optimization details. Such optimization techniques can be adapted 

in our implementation for improved speed.

6.3 Training Size Sensitivity & Scalability

We assessed the robustness of SMAT to the size of the training data. We varied the amount 

of data used to fit SMAT and evaluate its impact on the test dataset performance. Figure 

3 illustrates the results on the six different datasets in terms of F1 score and running time. 

From the results, we notice that SMAT achieves a decent F1 score with only about 20% 

training data (the lone exception is Purchase Orders) and can save 30% of the training time. 

We also notice that the running time per epoch is fairly linear suggesting that SMAT is 

scalable.

6.4 Ablation Study

To gain further insights of the various components in SMAT, we examined the effectiveness 

and contributions of the attribute name input, the AOA module, and the two different class 

imbalance approaches.

• SMAT w/o AOA: The AOA module is removed and instead the outputs of the 

attribute name BiLSTM and description BiLSTM are max-pooled together and 

concatenated with the difference of the two descriptions.

• SMAT w/o column: The attribute name is omitted and only the description is fed 

into the AOA module to calculate the mutual information with itself.

• SMAT w/o DA: The data augmentation with additional positive samples and 

concatenation of nouns to the column name is omitted.

Zhang et al. Page 10

Adv Databases Inf Syst. Author manuscript; available in PMC 2021 October 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• SMAT w/o CBSR: The batch size is randomly sampled without ensuring positive 

samples are present in each batch.

The results of the ablation study are shown in Table 7. It can be seen that the SMAT model 

outperforms the rest of four models on F1 and most precision. In particular, comparing the 

result with SMAT w/o AOA illustrates the importance of the AOA module. The module 

captures the interaction between the attribute description and the correlated attribute name 

better than max-pooling the outputs from BiLSTM. The same conclusion can also be drawn 

by comparing SMAT w/o AOA and SMAT w/o column, the precision of the former is lower 

than the latter. Even without the attribute name feature and the associated data augmentation, 

the AOA module can still generate more useful features.

The ablation results also highlights two benefits of the model. First, the attribute name is 

important as there is a noticeable drop in precision across all the datasets when comparing 

SMAT w/o column with SMAT and SMAT w/o D/A. Second, the two techniques for dealing 

with class imbalance play a crucial role towards improving the predictive power of the 

model. The results of SMAT w/o DA and SMAT w/o CBSR shows that CBSR is more 

effective toward combating the skewed data than data augmentation method due to the 

higher precision values of the former model.

7 Conclusion

This paper proposes an automated schema-level matching model based on the semantic 

meaning of the descriptions. This is particularly beneficial for schema integration involving 

sensitive data, such as healthcare domain. The extensive experiments on a variety of datasets 

illustrate that SMAT serves as the SOTA solution for the schema-level matching task. This 

paper also introduces a new benchmark dataset, OMAP, that captures three different dataset 

conversions from the healthcare domain. As shown in the experiments, OMAP can help 

assess the generalizability of schema-level matching models.

Although the empirical results of SMAT are not yet high enough to be put into practice, 

this work illustrate the potential of automating schema matching. Future directions include 

collecting more data to improve the sentence embedding quality, exploring other DNN 

architectures to tackle the class imbalance problem, and incorporating instance-level features 

to obtain a robust hybrid schema-level and instance-level model.
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Fig. 1: 
Illustration of SMAT’s structure
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Fig. 2: 
Comparison by domain between ADnEV and SMAT
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Fig. 3: 
F1 score (left) and running time (right) per epoch when varying (%) of training data
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Table 1:

Comparison between different approaches on various categories.

Approach Schema-level Cardinality Rich text Deep learning

Constraint-based [3] No 1:n No No

Linguistic content-based [24] Yes n:1 No No

ADnEV [36] Yes n:1 No Yes

DITTO [27] No n:1 Yes Yes

SMAT Yes n:1 Yes Yes
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Table 2:

An example entry from the OMAP dataset.

CDM schema Source schema CDM description (Des 1) Source description (Des 2) Label

person-
person_id

beneficiary 
summary-
desynpuLid

the person domain contains records that uniquely 
identify each patient in the source data who is time 
at-risk to have clinical observations recorded within the 
source systems.a unique identifier for each person.

beneficiarysummary pertains to 
a synthetic medicare beneficiary. 
beneficiary code

1
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Table 3:

Summary statistics of each conversion captured in OMAP.

Data source # elements # attributes # positive labels # sentence pairs

MIMIC 25 240 129 64080

Synthea 12 111 105 29637

CMS 5 96 196 25632
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Table 4:

Summary statistics of the additional benchmark datasets used.

Data source # elements # related # pairs # Domains

Purchase Order[11] 50–400 659 63933 1

OAEI4 80–100 9494 825021 1

Web-forms[16] 10–30 5548 201769 18

4The OAEI competitions can be found at http://oaei.ontologymatching.org/2011/benchmarks/
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Table 5:

Comparison of precision (P), recall (R), and F1 (F) on the datasets.

Dataset
ADnEV InferSent DeepMatcher DITTO BERT SMAT

P R F P R F P R F P R F P R F P R F

MIMIC 0.08 34 0.16 9.8 76.9 17.4 0.04 38.1 0.09 0.3 46.2 0.6 0.4 84.6 0.7 11.5 84.6 20.2

CMS 0.49 44 0.97 20.8 80.0 32.9 0.31 60.7 0.62 2.4 40 4.5 2.4 55.0 4.5 33.9 95.0 50.0

Synthea 0.14 21 0.28 19.2 90.9 31.7 0.06 48.8 0.13 0.7 63.6 1.3 0.9 100 1.8 24.4 90.9 38.5

Purchase 
Order

80 77 78 14.3 59.6 23.1 48.9 80.2 60.8 54.5 98.6 70.2 54.0 98.2 69.7 57.9 99.5 73.2

OAEI 78 76 76 84.5 99.9 91.5 56.1 62.9 59.3 80.5 99.9 89.2 78.3 99.8 87.8 87.8 99.9 93.5

Web-
forms

81 69 72 68.4 99.8 81.2 48.2 74.5 58.5 68.8 95.5 80 63.5 96.3 76.5 79.1 99.3 88.1

Average 34.3 49.9 32.5 33.6 78.2 43.3 22.0 56.8 25.8 29.7 69.4 35.4 28.6 88.8 34.7 45.7 87.0 56.3
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Table 6:

Computational efficiency of the different methods on the Synthea dataset.

Model Training time (sec/epoch) Inference speed (sentence/second)

ADnEV 90 52

InferSent 86 275

DeepMatcher 113 209

DITTO 95 249

Fine-tuned BERT 127 186

SMAT 101 234
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Table 7:

Results for ablation experiments on Precision (P), Recall (R), and F1 (F).

Dataset
SMAT w/o AOA w/o column w/o DA w/o CBSR

P R F P R F P R F P R F P R F

MIMIC 11.5 84.6 20.2 10.3 84.6 18.3 10.2 84.6 18.2 10.7 69.2 18.6 0 0 0

CMS 33.9 95.0 50.0 23.5 80.0 36.3 25.4 80.0 38.6 25.8 80.0 39.0 0.13 15.6 0.25

Synthea 24.4 90.9 38.5 15.3 90.0 26.1 20.0 100 33.3 36.4 36.4 36.4 0 0 0

Purchase Order 57.9 99.5 73.2 17.7 50.0 26.2 26.9 30.3 28.5 42.1 98.2 58.9 10.7 38.2 16.7

OAEI 87.8 99.9 93.5 83.0 99.9 90.7 83.8 99.9 91.2 85.9 99.9 92.4 35.9 72.5 48.0

Web-forms 79.1 99.3 88.1 75.7 96.7 84.9 76.4 93.5 84.1 70.0 99.8 82.3 32.5 68.4 44.1
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