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Abstract

Purpose—The purpose of the study was to assess the utility of tumor biomarkers, ultrasound
(US) and US-guided diffuse optical tomography (DOT) in early prediction of breast cancer
response to neoadjuvant therapy (NAT).

Methods—This prospective HIPAA compliant study was approved by the institutional review
board. Forty one patients were imaged with US and US-guided DOT prior to NAT, at completion
of the first three treatment cycles, and prior to definitive surgery from February 2017 to

January 2020. Miller-Payne grading was used to assess pathologic response. Receiver operating
characteristic curves (ROCs) were derived from logistic regression using independent variables,
including: tumor biomarkers, US maximum diameter, percentage reduction of the diameter
(%US), pretreatment maximum total hemoglobin concentration (HbT) and percentage reduction in
HbT (%HDbT) at different treatment time points. Resulting ROCs were compared using area under
the curve (AUC). Statistical significance was tested using two-sided two-sample student #test with
P < 0.05 considered statistically significant. Logistic regression was used for ROC analysis.

Results—Thirty-eight patients (mean age = 47, range 2471 years) successfully completed the
study, including 15 HER2 + of which 11 were ER + ; 12 ER + or PR + /HER2-, and 11 triple
negative. The combination of HER2 and ER biomarkers, %HbT at the end of cycle 1 (EOC1)

and %US (EOC1) provided the best early prediction, AUC = 0.941 (95% CI 0.869-1.0). Similarly
an AUC of 0.910 (95% CI 0.810-1.0) with %US (EOCL1) and %HbT (EOC1) can be achieved
independent of HER2 and ER status. The most accurate prediction, AUC = 0.974 (95% CI 0.933-
1.0), was achieved with %US at EOC1 and %HbT (EOC3) independent of biomarker status.

Conclusion—The combined use of tumor HER2 and ER status, US, and US-guided DOT may
provide accurate prediction of NAT response as early as the completion of the first treatment cycle.

Keywords
Predicting neoadjuvant therapy; Personalized medicine; Near Infrared imaging; Ultrasound

Introduction

Preoperative neoadjuvant therapy (NAT) for patients with locally advanced breast cancer
downstages the tumor to facilitate breast conserving surgery, and allows in vivo assessment
of therapeutic efficacy for tailored treatment approaches. Pathological response to NAT
predicts clinical outcome. An absence of residual invasive breast cancer cells, in the primary
tumor bed and lymph nodes following NAT is strongly correlated with improved disease-
free survival and overall survival [1]. However, breast cancer is a heterogeneous disease;
approximately 20-25% of breast cancers have amplification of the human epidermal growth
factor receptor 2 (HER-2/neu), while 10-20% of breast cancers lack expression of estrogen
receptor and progesterone receptor and HER2 gene amplification, known as triple-negative
breast cancer (TNBC). Dual HER2 blockade in the neoadjuvant setting has been shown

to increase the pathological complete response (pCR) rate in HER2 positive disease [2—4].
Despite this, there is a significant percentage of HER2 + patients who do not achieve
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a pCR or near pCR [5]. Those patients who have residual invasive breast cancer after
HER2-targeted therapies have a worse prognosis [6]. Moreover, to date, no FDA-approved
targeted therapies are available for early-stage TNBC patients and refining TNBC breast
cancers into molecular subtypes still is a significant challenge in predicting NAT [7]. Thus,
there is an unmet need for individual assessment before and during early NAC to guide
treatment options by switching patients to other therapies to achieve optimal outcomes with
reduced toxicity.

Many ongoing investigations are exploring imaging techniques to monitor response. The
use of imaging is appealing because it is non-invasive and may provide a window of
opportunity wherein ineffective treatment regimens could be altered. Conventional imaging
methods include mammography, ultrasound (US), MRI and PET-CT. Mammography has
low sensitivity in the evaluation of NAT response [8]. US is moderately accurate [9-12]
and has the additional benefits of easy access and low cost. MRI and PET-CT have both
demonstrated good accuracy in predicting pCR [13-15], however, both are cost prohibitive
given the need for serial imaging evaluation.

Optical tomography and spectroscopy using near infrared (NIR) diffused light has been
explored as a novel tool to predict and monitor tumor vasculature response to NAT
[16-26]. The NIR technique utilizes intrinsic hemoglobin contrast, which is related to
tumor angiogenesis. Recently studies have shown that pre-treatment total hemoglobin
concentration (HbT) and changes in HbT measured at the early treatment cycles can
predict treatment outcome [16—-26]. Furthermore, the Diffuse Optical Tomography (DOT)
can be easily integrated with ultrasound systems for dual-modality imaging assessment of
breast cancer response to NAT. This manuscript reports a three-year prospective study of a
considerable patient population evaluated with US and US-guided DOT before, during, and
after treatment completion in an attempt to identify the best and earliest predictors of pCR
for HER2+, ER+/HER2- and triple negative breast cancer subtypes.

Materials and methods

Patient

This prospective study was approved by the local institutional review board and was HIPAA
compliant. Sixty female patients with newly diagnosed breast cancer presenting to medical
oncology at Washington University School of Medicine from February 2017 to August 2019
for preoperative systemic therapy signed informed consent. Exclusion criteria were given in
Fig. 1 and fifteen patients were subsequently deemed ineligible and four patients withdrew.
Of the remaining 41 patients, two developed metastases and did not complete the study and
one had a contralateral abnormality preventing reference imaging. Data from these three
patients were not included in the analysis. Thus 38 female patients (mean age = 47, range
24-T1 years) constituted the study group and underwent US and US-guided DOT imaging of
the index breast cancer prior to the initiation of NAT, at the end of the first three treatment
cycles and before definitive surgery. Patients were treated with NAT regimens according to
current clinical practice or based on therapeutic trial protocols.
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Baseline imaging was performed an average of 28 days after diagnostic core needle biopsy
(median = 26, range 7-56 days) and before the first treatment (median = 1 day, range 0-15
days). During treatment, imaging occurred before patient scheduled treatment (median = 0,
range 0-5 days). The average interval between post-treatment imaging and definitive surgery
was 25 days (median 20, range 1-163 days).

US and US-guided DOT imaging

Ultrasound and US-guided DOT examinations were completed in a breast imaging clinic
with 4 commercial US units and associated US probes of SL15-4 (Aixplorer™, Super-Sonic
Imagine Inc., Aix-en-Provence, FR) and a 4th generation DOT system. Standard US was
performed by one of four dedicated breast imaging radiologists with an average of 12 years
of breast US experience (range 2—24 years) at study initiation. The index tumor was imaged
in orthogonal planes and the maximum diameter was recorded. Prior US examinations
were referenced during the exam to ensure consistency of measurements. The percentage
ratio %US, largest dimension of each post-treatment time point over the largest dimension
pretreatment, was used to evaluate the fraction reduction from NAT. After completion of
the breast US examination, the commercial US probe was inserted into the DOT probe.
The breast radiologist then directed the engineer to the index tumor site and assisted in
US-guided DOT acquisition as needed.

Details of the 4th generation DOT system used for this trial have been previously reported
[27]. Briefly, the US-guided DOT hand-held probe consists of the commercial US transducer
located centrally, with source and detector optical fibers distributed around the periphery
(see Fig. 2). The entire data acquisition from 9 source positions and 14 detectors was

less than 4 s. For each patient, US images and optical measurements were acquired
simultaneously of both the index tumor site and subsequently a normal region within the
corresponding quadrant of the contralateral breast. Multiple datasets were acquired of the
index tumor and contralateral reference site. The perturbation caused by tumor between the
measurements of the tumor site and the reference site was used for image reconstruction.
The measurements from the normal contralateral breast were used for calculating the
background optical absorption and reduced scattering coefficients which were used for
computing weight matrix for image reconstruction.

The US-guided DOT reconstruction algorithm has been reported [22, 28]. In brief, the DOT
reconstruction uses ultrasound lesion identification to segment the imaging volume into a
region of interest (ROI) and background to improve the inversion. The ROI is two to three
times larger in spatial dimensions than the tumor size (as measured by co-registered US)
due to the low spatial resolution of diffused light. A tighter ROI in the depth dimension

is set by using co-registered US. The pretreatment ROI is used for data processing of all
time points, thereby minimizing the effect of treatment related changes in tumor size on the
optical image reconstruction.

The optical absorption distribution at each wavelength was reconstructed, and the total
hemoglobin concentration (HbT), oxygenated-hemoglobin (oxyHb) and deoxygenated-
hemoglobin concentration (deoxyHb) maps were computed. An average maximum value
of HbT, oxyHb, and deoxyHb was obtained from 5 to 10 optical images reconstructed from

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 October 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Zhu et al.

Page 5

each of the separate repetition of measurements acquired from the index tumor. Data with
patient motion were recognized by using two co-registered US images before and after
each optical data set and were excluded from averaging. To assess each patient’s response,
the HbT obtained before treatment was taken as the baseline and the percentage (%HbT)
normalized to the baseline was used to quantitatively evaluate the remaining tumor vascular
fraction during NAT.

Pathology assessment

Pathology data were extracted from pathology reports and from re-examination of formalin-
fixed, paraffin-embedded slides to complete missing data. One breast pathologist (SS,

10 years experience) evaluated cases from patients recruited between February 2017 to
May 2019 and the second breast pathologist (ISH, 7 years experience) evaluated the rest.
Response to NAT in each surgical resection specimen was graded using Miller-Payne (MP)
criteria [29], with comparison to initial core biopsy when necessary. There are five MP
grades based on reduction in tumor cellularity: Grade 1—no change or minor alteration

in individual malignant cells but no reduction in overall cellularity. Grade 2—minor (up

to 30%) loss of tumor cells but overall cellularity remains high. Grade 3—estimated 30%
to 90% reduction in tumor cells. Grade 4—marked (> 90%) disappearance of tumor cells
or near pCR. Grade 5—no malignant cells are identifiable in sections from the tumor

bed (pCR). The MD Anderson residual cancer burden (RCB) was calculated based on the
primary tumor bed, overall cancer cellularity, in situ disease, number of positive lymph
nodes and diameter of the largest lymph node metastasis [30]. Since US and US-guided
DOT were performed on the index tumor, the MP grading system was used to evaluate
pathological response and RCB was used as a reference for MP grade.

Invasive carcinoma within the pretreatment core biopsies was graded using the Nottingham
histologic score (NS). Testing for estrogen receptor (ER), progesterone receptor (PR),

and HER2/neu (c-erbB-2) expression was performed by immunohistochemistry by an FDA-
approved method on formalin-fixed, paraffin-embedded pretreatment core biopsy tissue. The
ER and PR were scored by Allred scoring system [31], where the total score ranges from

0 to 8 (scores = 3 are positive). HER2 was scored in accordance with 2018 ASCO/CAP
guidelines. Cases with equivocal HER2 immunostaining were reflexed to fluorescence in
situ hybridization (FISH).

Statistical analysis

Generalized Logistic Regression (Eq. 1) was used to relate treatment outcomes to individual
predictor variables for ROC analysis [32]. Briefly, logistic regression describes the
relationship of several predictor variables X; X>... X\ to a dichotomous response variable
Y (1: responder, 0: non-responder). The model can be written in the form of the conditional
probability of the occurrence of one of the two possible outcomes of Y; as follows:

1
1+ exp(=(0+ Ty _ | pnXn))

pr(Y =1] X1, Xo,...X) = o
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Given the data on Y; Xi, ... X) the unknown parameters S, n =0, 1, ...k can be estimated
using the maximum likelihood method and an ROC is obtained from the regression output.

Spearman is a rank based Pearson and is used for continuous or ordinal variables [32].
Because binary predictor variables can be viewed as special ordinal variables, Spearman’s
rho correlation coefficient is used for assessing predictors in our study. Each predictor was
first correlated with the MP grade using Spearman’s rho to assess its predictive value. The
t-test was used to evaluate the statistical significance and P values less than 0.05 were
considered significant. For each pair of significant predictors, a correlation between the two
predictors was evaluated using Spearman’s rho. The correlated predictors with Spearman’s
rho greater than 0.6 were not used together for ROC analysis. Minitab 19 software (Minitab,
State College, PA) was used for ROC and statistical calculations. The 95% confidence
interval (CI) of each ROC was computed in R using the pROC package. To evaluate

the significance of different ROCs with different sets of predictors, we used a function
deltaAUC in R, which was specially designed to compare AUCs with overlapping predictors
[33].

When comparing %HbT and %US at different treatment cycles, the Bonferroni-Holm
correction was applied to obtain the corrected Pvalue as P(i) = (n—-i+1) x Al) < a,
where a is 0.05, nis 3 which corresponds to the first three treatment cycles. i starts from 1
(corresponding to the smallest Pvalue) to 3 (corresponding to the largest P value).

In Online Appendix, we developed treatment prediction models using a supervised machine
learning method based on logistic regression (Eg. 1). Data of 38 patients reported in this
study and 22 patients acquired in an earlier study with similar DOT system parameters,
patient and treatment characteristics [19] were used to train and then test the prediction
models for generalizing the models [34].

Table 1 summarizes patient and tumor characteristics, NAT regimens and MP grading.

The histologic type of 35 patients was invasive ductal carcinoma of no special type; one
patient had invasive mucinous carcinoma, one patient had invasive lobular carcinoma and
one patient had invasive mammary carcinoma with mixed ductal and lobular features. One
of the 38 patients had multi-focal disease consisting of three adjacent distinct tumor masses
with identical histology. For this patient, the largest of the three masses was used for data
analysis. Fifteen patients were HER2 + , 11 were triple-negative (TNBC), and 12 were ER
+ /HER2 - (n=10) or PR + /HER2 - (1= 2). Eight patients had stage 3 disease, 27-stage
2, and 3-stage 1. For the three patients with stage 1 disease, two had HER2 + tumors,

and one had high grade TNBC. Based upon MP grade, 5 patients had no response (pPNR)
(MP1), 11 patients had a partial response (pPR), including 3 with a minor response (MP2)
and 8 with an intermediate response (MP3), while 3 had a near pCR (MP4) and 19 had a
pCR (MP5). Tumor characteristics, US and optical parameters were correlated to MP grades
using the Spearman’s rho correlation (Table 2). We have dichotomized MP1-3 to non-

or incomplete response, referred as non-responders, MP4-5 to complete response, referred

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 October 03.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Zhu et al.

Page 7

as complete responders. Spearman’s rho correlation coefficients of all pairs of treatment
prediction variables were given in Table 3.

HER2 + and ER + /HER2- status was significantly associated with MP-grade (P= 0.039, P
= 0.036), while Nottingham grade and TNBC were not predictive (P=0.115, = 0.138).
Pretreatment maximum tumor size measured by US was predictive (P=0.011). MP1-3 had
a baseline maximum of 34.4 mm + 12.8 mm, vs. 26.9 mm + 10.9 mm for MP4-5, but the
difference between the two responder groups was not statistically significant (= 0.066).
Reduction in tumor size %US at the end of each of the first three cycles was predictive of
MP-grade (P=0.005, P=0.045, P=0.013), especially at EOCL. Post-treatment %US was
not predictive (P = 0.111), however, post-treatment tumor size was (P = 0.012). Pretreatment
HbT correlated with MP—grade (P = 0.028), while oxyHb and deoxyHb were not (= 0.091,
P=0.132). Reduction in HbT (%HbT) showed the strongest correlation with MP—grade at
the end of each of the first three cycles (P=0.001, P< 0.001, A< 0.001). Post-treatment
%HDbT also showed a strong correlation with MP—grade (2= 0.007).

Figure 3 demonstrates the HbT, reduction in HbT, %HDbT, and reduction in tumor size, %US,
over the first three treatment cycles. Bonferroni-Holm correction was applied to adjust for
multiple comparisons of %HbT and %US over treatment cycles. There was a significant
difference in pretreatment mean maximum HbT between MP4-5 (85.9 uM * 20.0) vs. MP1-
3 (71.3 uM % 19.1) (P=0.029) (Fig. 3a). However, there was no difference at EOC1 or
EOC2 (P=0.870, P=0.194) because the mean HbT level decreased at a faster rate in
complete responders. At EOC3 complete responders had a significantly lower HbT (P=
0.001). The faster rate of reduction is best visualized in Fig. 3b. MP4-5 tumors decreased
rapidly to 78% (of baseline)x 18.9, 64.2%= 18.5, 48.2 + 13.8 at EOC1, EOC2 and EOC3,
respectively, whereas MP1-3 tumors changed minimally to 97.3%x+ 22.6 (EOC1), 88.7%
+22.9 (EOC2), and 89.0%= 26.4(EOC3). The differences between the two groups were
increasingly significant as treatment progressed through the first three cycles; Pc = 0.012
(EOC1), Pc = 0.008 (EOC2) and Pc < 0.001 (EOC3), respectively.

The %US measurements showed a similar trend. The reduction in diameter was significant
with reduction rate of 74.8%x+ 17.8, 61.8%z 28.3, 52.4%z 29.4 in MP4-5 tumors and
96.5%= 17.8, 82.4%= 23.7 and 74.7%x= 23.5 in MP1-3 tumors, respectively (Fig. 3c). The
differences between the two groups were significant with Pc = 0.003 (EOC1), Pc = 0.028
(EOC2), Pc = 0.040 (EOC3), respectively.

Examples of a treatment responder and a non-responder are shown in Figs. 4 and 5.

We performed ROC analyses using logistic regression (Eq. 1) to identify the best early
predictors of response (MP4-5) at different treatment time points, EOC1-3. AUCs are
tabulated (Table 4) with and without predictive biomarker status of ER and HER2, and
subsets ROCs shown graphically in Fig. 6 with generalized logistic regression parameters,
Bn, given in Table 5. As noted above HER2 and ER status were shown to predict treatment
response without other imaging parameters (AUC = 0.773, 95% CI 0.629-0.917). When
added to ER and HER2 status, %US at EOC1 noticeably improves the AUC (AUC =
0.883, 95% CI 0.768-0.997). Similarly, the addition of HbT and %HbT to biomarker
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status substantially increases the AUC (AUC = 0.903, 95% CI 0.808-0.998). While each
parameter is independently helpful, the combination of %US and %HbT is most effective

in enhancing the prediction. The combination of predictive biomarkers, %US and %HbT at
EOC1 provides the best prediction of response at the earliest time point, AUC = 0.941 (95%
Cl 0.869-1.0), which is significant when compared with biomarkers and %US at EOC1 (P<
0.001). The greatest AUC of any time during early treatment (AUC = 0.974, 95% CI 0.932—
1.0) is achieved through the combination of predictive biomarkers, %US (EOC1) and %HbT
(EOC3), which is also significant when compared with biomarkers and %US at EOC1 (P

< 0.001). Even in the absence of ER and HER2 status, the identical maximum AUC is
achieved (AUC = 0.974, 95% CI 0.933-1.0) using %US (EOC1) and %HbT (EOC3), with
only slight diminution at the earliest time point, i.e. %US (EOCL1) and %HbT (EOC1), AUC
=0.910 (95% CI 0.810-1.0). The AUC improvements of adding %HbT (EOC1) and %HbT
(EOC3) to %US (EOCL) is statistically significant (£ < 0.001). Note that MP—grade and
RCB are highly correlated, Spearman’s rho = 0.941 (P< 0.001). To develop a generalizable
prediction model we have combined data from the 38 patients in this study with earlier data
of a smaller patient population of 22 patients. Similar results were obtained (see Online
Appendix).

Discussion

In current clinical practice, clinical breast examination, mammography, US, MRI, and PET-
CT have been used to evaluate response in patients receiving NAT. Because of low cost and
accessibility, US has been evaluated in several studies [9-12]. In a related study, Marinovich
et al. evaluated 832 patients who underwent US at EOC2 and demonstrated an average
increase in AUCs of 2% and 3% to 0.79 and 0.80 respectively, with the addition of US to
patient characteristics including biomarkers [9]. In this study, we found that the fractional
change of US maximum diameter (%US), measured at EOC1 (AUC = 0.83), was more
predictive than EOC2 (AUC = 0.68). We further showed a substantial 11% increase, AUC
=0.77 t0 0.88 at EOC1, in patients with known ER + or HER2 + disease. Our data show
that early US measurements at EOC1 can substantially avoid measurement uncertainty as
seen by smaller standard deviations of %US at EOC1 as compared to those at EOC2 and
EOCS3 for both responder and non-responder groups. In a recent paper, Dobruch-Sobczak
et al. reported a series study of assessing US echogenicity, size, and other parameters of

19 tumors under NCT before treatment and after 7 days of each treatment course for up

to 4 cycles [35]. They found that tumor echogenicity gradually increased from initially
hypoechoic (all tumors) to mixed (hypo/isoechoic) and isoechoic tumors at a rate of 16%
(3/19), 63% (12/19), 68% (13/19) and 72% (13/18) after each course of NCT. This texture
change was caused by NCT-induced apoptosis of tumor cells, fibrosis, collagenization,

and microcalcification. Tumor size was statistically significant between responders and
non-responders after the first course (= 0.018) but not at the second (£=0.102) and

the third course (P =0.149). In another study, Matsuda et al. reported similar echogenicity
changes during NCT but data were available only at the end of treatment cycle 4 [36]. We
have observed a similar tread in echogenicity change as reported in [35] which increased
uncertainty in US size measurements. Thus an optimal prediction window of NCT by %US
could be as early as completion of one treatment cycle.
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Diffuse optical tomography exploits changes in tumor vascularity and metabolism and
have demonstrated the potential for early prediction of breast cancer pathological response
[18-26]. Studies have shown accurate predictions in the neoadjuvant setting by utilizing
pretreatment hemoglobin levels and changes in hemoglobin early in the course of treatment
[19, 21-26], or by monitoring changes of blood oxygen saturation sO2 at day 1 of dose
dense treatment [18] or day 10 during early treatment [20]. In the recent ACRIN 6691
trial evaluating 36 patients, the authors derived a tissue optical index (TOI), a product of
deoxygenated Hb and water concentration over lipid, and reported that the mid-treatment
TOI can predict pCR with AUC 0.6 to 0.83 [16]. Gunther et al. developed a dynamic
diffuse optical tomography system that could identify patients with a pCR two weeks into
the treatment with AUC = 0.85 [17]. In an earlier investigation of 22 patients [19], Zhu

et al. identified HER2 status and HbT as the best pretreatment predictors of pCR (AUC =
0.88). With known HER2 positivity, the best window to accurately predict response was at
the completion of the first and second cycles of NAT (AUC = 0.96, AUC = 0.97). For ER
+ /HER2- or TNBC subtype, the best window was at the completion of the first cycle of
NAT and the best predictors were HbT and %HbT (AUC = 0.95).

In this new cohort of 38 patients, “HER2, ER and pretreatment HbT” has shown good
prediction, AUC = 0.80 and “HbT alone” has shown moderate prediction AUC = 0.71.
However, fractional reduction of HbT (%HDbT) is a much more powerful predictor of
response, as is fractional reduction of maximum diameter measured with US (%US) in

the first three cycles. For chemo-sensitive tumors, NCT-induced neovasculature damage
causes a significant and progressive decrease in tumor hemoglobin, as measured by the
DOT system, and NCT-induced tumor tissue damage causes a significant size reduction, as
measured by US. In particular, combining tumor HER2 and ER status, %US and %HbT at
EOC1 provided the best early indicator of treatment response, AUC = 0.941, and remained
powerful even without biomarker data, AUC = 0.910. With the assessment window extended
to EOC3, the combination of %US EOC 3 and %HbT EOC3 provided accurate prediction,
with AUC values of 0.969 with biomarker data and 0.944 without it. Overall, the highest
accuracy, AUC = 0.974, was achieved with the combination of %US EOC1 and %HbT at
EOCS3, irrespective of biomarker status. To our knowledge, these AUC values are among the
highest reported results using NAT regimens in current clinical practice.

The US-guided DOT has low intrinsic cost and is easily adaptable to clinical US systems.
Disadvantages include: US-guided DOT imaging is not real-time and reconstruction
currently takes 20 to 30 min. US-guided DOT is not suitable for imaging tumors in the

dark nipple-areolar complex, and requires a sonographically visible tumor and normal
contralateral reference tissue. Our study has a number of limitations. The treatment regimens
were based on current practice at a research institution and were not limited to a single
regimen. The choice of systemic therapies for breast cancer patients are based on multiple
factors, including tumor biology, stage, patient characteristics and wishes, clinical trial
availability. The study population was not large (7= 38) and to develop supervised machine
learning prediction models detailed in Online Appendix, we included data from 22 patients
from an earlier study with similar study criteria and patient characteristics [19]. Similar
results were obtained. Only one patient was treated with an antiestrogen regimen, i.e.
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anastazole, in our study cohort. Due to the limited sample size, we have grouped this patient
with the rest of the patients and used pCR as surrogate endpoint.

In our previous work, we dichotomized our comparison groups as pCR and near pCR
(MP4-5) versus non-responders (MP1-3) [19, 21, 22]. In this report, we have used the same
comparison groups with the rationale given as follows: In the original study by Ogston [29]
the MP 5 and 4 groups tended to track together with regard to 5 year disease free survive
(DFS) after NCT and surgery (85% and 72%) versus 66%, 60% and 55% (for MP1-3). Later
Zhao et al. [37], evaluating the MP system using a different dataset found very similar 5 year
distant DFS and local recurrence-free survival rates for MP4-5 versus MP1-3. In a recent
study, Sejben et al. [38] using the RCB system and another separate dataset also found the
similar 5-year DFS for pCR and near-pCR (RCB-1) (85.2% and 84.4%) versus 58.2 and
33.0 for RCB-2 and RCB-3 and 5-year overall survival for pCR and near-pCR (94.4 and
87.7) versus 61.8 and 69.0 for RCB-2 and RCB-3 (RCB-2, partial response and RCB-3,
chemoresistant).

Our study has substantial implications for the combined use of tumor subtypes, US and
near-infrared-measured tumor hemoglobin content in accurately predicting pCR as soon as
one treatment cycle is completed. A recently phase 3, open-label trial involving patients with
HER2-positive early breast cancer who were found to have residual invasive disease has
shown that adjuvant trastuzumab emtansine for 14 cycles reduced the risk of recurrence

of invasive breast cancer or death by 50% as compared with trastuzumab alone [6].

Another trial of 910 HER2-negtive residual invasive breast cancer patients after neoadjuvant
chemotherapy showed that adjuvant capecitabine was safe and effective in prolonging
disease-free survival and overall survival [39]. If the residual disease could be accurately
estimated earlier in the NCT, patients with an unsatisfactory response could be switched

to investigational therapies or even definitive surgery as soon as cycle 1 is completed,
allowing for personalized treatment. This ability will gain value as our armamentarium

of interventions increases and responses can more effectively tailor the therapeutic agents
selected.

Conclusion

In conclusion, our results suggest that the combination of HER2 and ER status, %HbT at the
end of cycle 1 (EOC1) and %US (EOC1) accurately predict NAT (AUC = 0.941), and %HbT
(EOC1) and %US (EOC1) predict NAT (AUC = 0.910) regardless of HER2 and ER status.
A greater prediction accuracy can be achieved with AUC of 0.974 regardless of biomarkers
when the treatment window is extended to EOC3. The synergistic use of US and US-guided
DOT may provide a safe and low-cost strategy to accurately predict NAT outcomes early in
the course of therapy.
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Subjects consented
(n=60)

Excluded (n=19)
- Ineligible (n=15)
* Biopsy less than 7 days before imaging (n=3)
* Contralateral masses in mirror positions (n=2)
* Prior cancer mastectomy of one breast (n=2)
* Prior breast reduction or radiation (n=2)
* Schedulingrestriction (n=6)
- Withdrew (n=4)

Imaged with US/US-
guided DOT (n=41)

Excluded (n=3)
- Cancer Metastases and did not
complete
Abnormality at contralateral
positon

Completed Series
US/US-guided DOT
(n=38)

Fig. 1.
Patient Study Flow Diagram. Exclusion criteria included pregnancy, breastfeeding, prior

history of breast cancer, prior history of chest wall radiation, prior history of breast
reconstruction, reduction, or augmentation and bilateral breast cancers
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Fig. 2.
US-guided DOT probe. The foot-print of the combined DOT probe is approximately 10 cm.

Four source laser diodes of 730 nm, 785 nm, 808 nm and 830 nm optical wavelengths were
sequentially switched to nine source positions (pointed by an arrow) on the probe, while
the reflected light was coupled by the 14 light guides (pointed by an arrow) to 14 parallel
detectors

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 October 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Zhu et al. Page 17

(A) 140 — — — —
P=0.087
120 1
P=0.870
100 - 1

HbT
1]
-

(T3}

HO

60

40 = - i H -

20 - 1

0 : .

oY MY ¥ e ™
O RS et AR NS
e\\(\ 6\(\ dﬁ do 6‘0 do A o
AR )
) - - . : - ; .
(B)

sisk Pc<0.001 |

b Pc=0.012 55,008 .

wf —— — B T |

5 Wl 0 [ _
ES -
6 4 E - -
i H .
20F B
0 PR PR - -
Pl & & i & @
AN ) o Y AN B\
Beﬁé“tgﬁ‘(e & & & & & &
14 e - . ' ,
(C) Pc=0.003 Pc=0.028
120 + - Pc=0.040 -
' 1 - : -

0o} —— - E] 4
» 80F H i 1
3
< e ‘ ]

.
401 3 i B 1
20+ 1
Ry B ol b b
5 D b 2 s 2 b )
. Qu&‘g\ .\t\?b‘ W @ @\Qu T2
W e AR I F P &
'b‘*‘e\\’ﬁa\\ ') P ) ') ) ')
el

Fig. 3.
a HbT of Miller-Payne grade 4-5 tumors (therapy responders) and grade 1-3 tumors after

1, 2, 3 cycles of neoadjuvant therapy. The unit is uM. b %HbT of grade 4-5 tumors vs.
grade 1-3 tumors after first three cycles of neoadjuvant therapy. ¢ %US of grade 4-5 tumors
vs. grade 1-3 tumors after first three cycles of neoadjuvant therapy. A is Bonferroni-Holm
corrected Pvalue

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 October 03.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Zhu et al.

DOT Measurement

\
= tumor Reference
t \ t \

Slice 1 Slice 2 N
- = - -
2 50 3 50
2 2
-4 -4
42024 4 0 4
Slice 4 Slice 5
4 w 4 w
2 2
0 50 0 ¥
2 2
42024 ’ 4 0 4
Slice 7
5 Baseline
RIGHT 10:30 8 cm fn
. Slice 2
100 4 100
50 0 50
. iy

Slice 4 - Slice 5

EOC1

RIGHT 10:30 8 cm fn EOC1

2D o QRN -~ -

aona
-

4 0 4
Sliced Slice5
2 h. & A
‘ i, 3 i,
42024 4 0 4
EOC3

RIGHT 10:30 8 cm fn EOC 3

Fig. 4.

Page 18

Slice 3
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A 59 year-old patient with a T3 triple negative cancer and treated with ACT. The US/DOT
imaging were performed at baseline, end of cycle 1 (EOC1), 2, 3, 5 and before surgery.

a—c are co-registered US images obtained at baseline, EOC1 and EOC3. The largest lesion
diameters measured by US were 4.6 cm, 3.4 cm, 1.0 cm. The corresponding %US at EOC1
and EOC 3 were 73.9% and 21.7%. e—f are corresponding HbT maps. Each map has 7 slices
reconstructed at depths from 0.5 cm to 3.5 cm with 0.5 cm spacing. Each slice has spatial

dimensions of 9 cm by 9 cm. The maximum HbT measured at baseline, EOC1,
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were 108.7 uM, 73.5 uM, and 45.0 uM. The %HbT were 67.6% and 41.4% at EOC1 and
EOC3. The patient achieved pCR with Miller-Payne of 5

Breast Cancer Res Treat. Author manuscript; available in PMC 2021 October 03.
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Fig. 5.

A%Z year-old patient with a T2 ER negative PR positive and HER2 negative IDC and treated
with ACT. The US/DOT imaging were performed at baseline, end of cycle 1, 2, 3 and before
surgery. a—c are co-registered US images obtained at baseline, EOC1 and EOC3. The largest
lesion diameters measured by US were 3.6 cm, 2.4 cm, 1.7 cm. The corresponding %US at
EOCL1 and EOC 3 were 66.7% and 47.2%. e—f are corresponding HbT maps. Each map has
7 slices reconstructed at depths from 0.5 cm to 3.5 cm with 0.5 cm spacing. Each slice has

a spatial dimensions of 9 cm by 9 cm. The maximum HbT measured at baseline, EOC1, and
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EOC3 were 70.3 uM, 79.3 UM, and 65.8 pm. The %HbT were 112.8% and 93.6% at EOC1
and EOC3. The patient had 2.4 cm residual tumor with no histologic evidence of tumor
response as evaluated after the surgery. Miller-Payne grade was 1
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Fig. 6.
ROCs obtained from different set of predictor variables. a ROCs of known HER2/ER

subgroup with 5 sets of predictor variables, and b ROCs based on HbT, %US-EOC1, %HbT
and %US changes regardless of biomarkers
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