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What are the novel findings of this work?
This is a novel systematic review assessing the incremental yield of exome sequencing over chromosomal microarray analysis/
karyotyping in non-immune hydrops fetalis. An apparent incremental yield exome sequencing is demonstrated.
What are the clinical implications of this work?
Prenatal exome sequencing should be considered in prenatally diagnosed non-immune hydrops fetalis that is unexplained by standard 
genetic testing and either isolated or associated with additional fetal structural anomalies.
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Abstract

OBJECTIVES: Determine the incremental yield of next generation sequencing (predominantly 

exome sequencing (ES)) over quantitative fluorescence-polymerase chain reaction (QF-PCR) and 

chromosome microarray analysis (CMA)/karyotyping in; (i) all cases of prenatally diagnosed 

non-immune hydrops fetalis (NIHF); (ii) isolated NIHF; (iii) NIHF associated with additional 

structural anomalies and; (iv) NIHF according to severity (i.e., two cavities versus three or more 

cavities affected).

METHODS: A prospective cohort study (from an extended group of the Prenatal Assessment of 

Genomes and Exomes (PAGE) study) of n=28 cases of prenatally diagnosed NIHF undergoing 

trio ES following a negative QFPCR and CMA/karyotype was combined with a systematic 

review of the literature. Electronic searches of relevant citations from MEDLINE, EMBASE and 

CINAHL and clinicaltrials.gov (January 2000 – October 2020) databases was performed. Studies 

included were those with: (i) ≥ n=2 cases of NIHF undergoing sequencing; (ii) testing initiated 

based on prenatal ultrasound-based phenotype and; (iii) a negative CMA/karyotype. PROSPERO 

Registration No. CRD42020221427.

RESULTS: The PAGE cohort study noted the additional diagnostic yield of ES was 25.0% 

(n=7/28) for all NIHF, 21.4% (n=3/14) for isolated NIHF and 28.6% (n=4/14) for non-isolated 

NIHF. From the meta-analysis, the pooled incremental yields from n=21 studies (n=306 cases) 

were 29% (95% CI 24-34%, I2=0%, p<0.00001) in all NIHF, 24% (95% CI 16-33%, I2=0%, 

p<0.00001) in isolated NIHF and; 38% (95% CI 28%-48%, I2=6%, p<0.00001) in NIHF 

associated with additional anomalies. In the latter, congenital limb contractures were the most 

prevalent additional structural anomaly at 17.3% (n=19/110). Incremental yield did not differ 

significantly based upon hydrops severity. The commonest genetic disorders identified were 

RASopathies in 30.3% (n=27/89), most commonly due to PTPN11 variants in 44.4% (n=12) and 

the predominant inheritance pattern was autosomal dominant in monoallelic disease genes 57.3% 

(n=51/89), of which most were de novo 86.3% (n=44).

CONCLUSIONS: Use of prenatal next generation sequencing in both isolated and non-isolated 

NIHF should be considered in developing clinical pathways. Given the wide range of potential 

syndromic diagnoses and heterogeneity in prenatal phenotypes of NIHF, exome or whole genome 

sequencing may prove to be a more appropriate testing approach than a targeted gene panel testing 

strategy.

Mone et al. Page 2

Ultrasound Obstet Gynecol. Author manuscript; available in PMC 2022 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clinicaltrials.gov


Keywords

exome sequencing; fetus; hydrops; prenatal diagnosis; next generation sequencing; nonimmune 
hydrops fetalis

INTRODUCTION

Nonimmune hydrops fetalis (NIHF) is traditionally defined as fluid accumulation in two or 

more fetal body cavities (in cases not secondary to maternal red cell alloimmunization).1 

It affects up to 1 in 1700 pregnancies, with associated high risks of perinatal morbidity 

and mortality.2 Excluding infection, fetal structural anomalies (FSAs) and complications of 

twin pregnancies, aneuploidy may explain a quarter of cases, with chromosome microarray 

(CMA) demonstrating a further abnormality of copy number variants (CNVs) in 6-14%.3,4 

Despite this, the definitive diagnostic yield of CMA over standard G-banding karyotype is 

moderate and following exclusion of the aforementioned causes up to 50% of NIHF remains 

unexplained, with a significant proportion thought to be secondary to single gene variants.5 

Over 170 genes have been identified as being associated with NIHF and until the recent 

revolution of next generation sequencing (NGS), testing for such conditions has relied upon 

targeted gene testing and enzyme assays.3,6 Single gene causes of NIHF are associated 

with significant risks of perinatal death or neurodevelopmental sequalae.2 Establishing a 

diagnostic aetiology prenatally is a vital step in facilitating informed decision making (for 

both parents and clinicians), considering options such as termination of pregnancy, planning 

neonatal care and addressing recurrence risks.2 The latter could theoretically be mitigated 

using novel technologies such as preimplantation genetic testing.7 While individual case 

cohort studies have assessed the diagnostic yield of exome sequencing (or an alternative 

sequencing approach) over Quantitative Fluorescent Polymerase Chain Reaction (QF-PCR) 

and CMA or karyotype in NIHF, they are heterogenous in relation to populations assessed 

and genetic platforms used.3 There is a need to integrate existing data on single gene 

disorders underlying NIHF given this heterogeneity. Hence, the aims of this study were 

to evaluate the incremental diagnostic yield of prenatal exome sequencing (ES) (or an 

alternative sequencing technology) in; (i) all NIHF; (ii) isolated NIHF; (iii) NIHF associated 

with fetal structural anomalies (FSAs) and; (iv) NIHF according to severity (i.e., two cavities 

versus three or more cavities affected).

METHODS

Extended Prenatal Assessment of Genomes and Exomes (PAGE) study Cohort

This included prospectively identified cases of prenatally confirmed NIHF from an extended 

cohort of the Prenatal Assessment of Genomes and Exomes (PAGE) Study.8 For the 

purposes of the FIND study, we defined NIHF as ultrasonographically prenatally confirmed 

pathological fluid accumulations in ≥two fetal cavities, where cases with aneuploidy, 

congenital infection, alloimmunization or and twin-twin transfusion syndrome had been 

excluded.1,2 The final PAGE cohort included n=850 fetuses (published cohort n=596) 

with trio ES performed in instances when an ultrasound-confirmed FSA was detected.8 

Such cases were recruited between October 2014 and May 2018 across 34 fetal medicine 
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centres in England and Scotland, with ES performed centrally at the Wellcome Trust Sanger 

Institute.8 PAGE eligibility criteria included: (i) prenatal detection of a FSA after 11-weeks’ 

gestation; (ii) availability of proband and parental DNA and; (iii) negative QF-PCR and 

CMA or karyotype testing. The PAGE study methodology has been published previously 

and utilized a standard ES approach with variant interpretation based on a targeted virtual 

1628 gene panel for developmental disorders.8,9 Phenotypes of all cases were classified 

using Human Phenotype Ontology (HPO) terms,10 and those defined as Hydrops Fetalis 

HP:0001789 were selected and further analysed to determine if the criteria for NIHF for 

the purposes of the FIND study were met. Cases were further classified into ‘isolated’ 

and ‘associated with additional FSAs’ using the HPO approach to coding additional 

anomalies. Fetal phenotypes were described by fetal medicine specialists/sonographers and 

documented principally on Viewpoint® Version 5.6.16 (GE Healthcare). Variants were 

classified in accordance with the American College of Medical Genetics and Genomics 

(ACMG) guidelines as agreed by a clinical review panel and incidental findings (IFs) were 

not reported.11 Pathogenic and likely pathogenic variants explaining the fetal phenotype 

were confirmed using Sanger sequencing and results returned to parents after the end of 

pregnancy. Ethical approval was obtained from the Research Ethics Committees at the West 

Midlands – South Birmingham (ref: 13/WM/1219) and the Harrow - REC reference number 

01/0095. Local Research and Development offices subsequently approved the study at each 

participating organisation.

Systematic review and meta-analysis

Information sources—This review was performed in a standardized fashion in 

line with recommended methods for systematic reviews and PRISMA guidance and 

was prospectively registered [PROSPERO No. CRD42020221427].12,13 The following 

databases were searched electronically for relevant citations, from January 2000 (ES was 

not an available technology prior to this) until October 2020: MEDLINE, EMBASE, 

CINAHL and clinicaltrials.gov. The search strategy consisted of relevant Medical Subject 

Headings (MeSH) terms, keywords and word variants for ‘exome sequencing’, ‘fetus’ 

and ‘abnormality’ were used with alternative terms encompassing ‘genome sequencing’, 

‘exome’, fetal’, ‘prenatal’, ‘antenatal’, ‘defect’ and ‘anomaly’. Bibliographies of relevant 

articles were searched manually and experts in prenatal genomics were also contacted to 

identify further relevant studies. The search strategy is available from the corresponding 

author on request.

Study selection—The inclusion criteria for study selection were any prospective or 

retrospective cohort studies or case series which: (i) included two or more cases of NIHF 

undergoing ES (or an alternative sequencing strategy such as gene panels); (ii) initiated 

testing based on prenatal ultrasound-based phenotype; (iii) had a negative CMA/karyotype 

result and; (iv) results of genetic testing were known. Where ES was initiated postnatally, 

such cases were included if testing was based upon the prenatal phenotype and instances 

where sequential Sanger sequencing was utilised were also included. When studies were not 

specific to NIHF exclusively, data regarding such cases were extracted from the paper or via 

author request. All study abstracts were screened by two reviewers (F.M. and M.D.K.) and 

full manuscripts were subsequently reviewed when further information was required.
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Data extraction and quality assessment—Both reviewers independently extracted 

data on study characteristics and outcome data using a proforma. Data extracted from 

studies, when obtainable, included: ultrasound phenotype, sequencing approach, reported 

variants, source of fetal DNA, turnaround time, fetal outcome, maternal age and gestational 

age at testing. Quality assessment was performed using modified Standards for Reporting 

of Diagnostic Accuracy (STARD) criteria.14. Criteria deemed most important to optimise 

accuracy were: (i) trio analysis; (ii) use of ACMG criteria for variant interpretation; (iii) 

Sanger sequencing validation and; (iv) description of the prenatal phenotype.

Data analysis—Descriptive tables were produced detailing study characteristics and 

outcomes. The incremental diagnostic yield, or risk difference, with 95% CI, of ES (or 

alternative sequencing strategy) over QF-PCR and CMA or karyotyping was calculated for 

each study and as a pooled value for: (i) all NIHF; (ii) isolated NIHF; (iii) NIHF associated 

with additional structural anomalies and; (iv) NIHF according to severity. Where reported, 

pooled values for variants of uncertain significance (VUS) and IFs was also determined. 

Risk differences from each study were pooled using a random effects model throughout to 

estimate incremental yield by a previously published method which facilitated calculation 

with adjustment for ‘zero’ values from negative QF-PCR and CMA or karyotype testing.9,15 

Results were displayed in Forest Plots with corresponding 95% confidence intervals (CIs). 

Heterogeneity was assessed graphically within the forest plot and statistically using Higgins’ 

I2. Publication bias was assessed graphically using funnel plots. Statistical analysis was 

performed using RevMan version 5.3.4 (Review Manager, The Cochrane Collaboration, 

Copenhagen, Denmark) statistical software.

RESULTS

Extended PAGE cohort

Of the 850 cases of prenatal structural anomaly which underwent ES, there were n=28 

(3.3%) cases that met the definition for NIHF. Of these 50% (n=14) were apparently isolated 

and 50% (n=14) were associated with additional FSAs. In the majority of cases (96.4%; 

n=27) the original genetic test was CMA, with the remainder being karyotype with most 

proband DNA originating from cultured amniocytes (50%; n=14). The diagnostic yield of 

ES overall in all NIHF was 25.0% (n=7/28) and was 21.4% (n=3/14) and 28.6% (n=4/14) 

in isolated NIHF and NIHF associated with additional FSA respectively. Where additional 

anomalies associated with pathogenic variants were present, there were most commonly 

congenital limb contractures due to arthrogryposis multiplex congenita (HP0002804) 75% 

(n=3/4). In instances where no pathogenic variant was obtained, the commonest additional 

anomalies were cardiac, genitourinary and thoracic in nature (each 50.0% (n=5/10)). One 

case of Noonan syndrome was initially not detected as pathogenic as it was filtered out 

of the bioinformatic pipeline due to inheritance from an apparently unaffected parent. 

Subsequently the pipeline was adjusted so that such variants were not filtered out even 

if inherited. The incidence of VUS was 7.1% (n=2/28). Pathogenic variants and VUS are 

described and outlined in supplementary tables S1 and S2.
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Systematic review and meta-analysis

Where a study was suitable for inclusion but data were incomplete, the corresponding 

authors were contacted to request further data (n=5), regarding fetal phenotype, of which 

two responded and provided full datasets.16,17 One of these, the study from Columbia 

University Medical Centre, New York provided an extended dataset from the paper by 

Petrovski, et al. 2019.16 In addition, to the extended PAGE Study cohort8, there were a 

further n=20 studies which met the inclusion criteria as demonstrated in Figure 1.2,8, 16-34 

Table 1 highlights the characteristics of included studies and Figure 2 shows the overall 

quality assessment.

Systematic review outcomes

In total n=21 studies were included with a total of n=306 NIHF cases. Where stated 

(n=217), there were n=107 (49.3%) cases of apparently isolated NIHF (on prenatal detailed 

ultrasound) and n=110 (50.7%) cases associated with additional FSAs. The mean maternal 

age and gestation at testing was 30.9 (+/−3.5 SD) years and (21.9 +/−5.4 SD) weeks, 

respectively. Fetal DNA was obtained in the majority of cases via amniocentesis; 50.6% 

(n=121/239) with the initial test prior to ES performed; CMA; 84.0% (n=257) and the 

remainder G-banding karyotype. Where documented (n=12 studies), the median turnaround 

time for ES was 40 (range 7-140) days. Pregnancy outcome was available for (32.4%, 

99/306 of cases (termination of pregnancy; n=79 (30.9%); in-utero demise; n=57 (22.3%) 

livebirth and; n=21 (8.1%) neonatal death). When reported, the pooled incremental yield for 

VUS and IFs was 19% (95% CI 6-22%, I2=62%, p=0.003) and 4% (95% CI −1-9%, I2=0%, 

p=0.09), respectively. Pathogenic variants and VUS are outlined in supplementary tables S1 

and S2.

Systematic review pathogenic variants

The apparent incremental yields with ES (or an alternative sequencing strategy) in 

(i) all NIHF, (ii) isolated NIHF and (iii) NIHF associated with additional anomalies 

are demonstrated in Forest plots (Figures 3a-c) and were 29% (95% CI 24-34%, 

I2=0%, p<0.00001), 24% (95% CI 16-33%, I2=0%, p<0.00001) and, 38% (95% CI 

28%-48%, I2=6%, p<0.00001) respectively. The corresponding funnel plots are displayed 

in supplementary figures S1-2. The commonest additional anomalies in the presence of 

pathogenic variants were those affecting the upper and/or lower limbs due to congenital 

contractures (HP:0002803); 17.3% (n=19/110). Where the NIHF phenotype was described, 

the incremental yield of pathogenic variants was not significantly greater where the hydrops 

was more severe (two cavities versus three or more cavities affected); 34% (95% CI 23-45%, 

I2=0%, p<0.00001) and 30% (95% CI 19-40%, I2=0%, p=0.003) respectively p=0.26. 

Where pathogenic variants were documented (n=89) (supplementary table 1) the commonest 

genetic disorders were (i) RASopathies 30.3% (n=27), primarily due to PTPN11 variants 

44.4% (n=12/27); (ii) musculoskeletal disorders 14.6% (n=13), primarily due to RYR1 
variants 46.2% (n=6/13) and; (iii) inborn errors of metabolism 12.4% (n=11), primarily 

due to GUSB variants 54.5% (n=6/11) The predominant inheritance pattern was autosomal 

dominant in monoallelic disease genes 57.3% (n=51), of which most were de novo 86.3% 

(n=44). Where the type of ES performed was stated [Table 1] (n=20 studies), the overall 
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incremental yield did not differ significantly dependent on whether a panel or whole exome 

approach was used; 26% (95% CI 16-36%, I2=0%, p<0.00001) and 27% (95% CI 19-36%, 

I2=25%, p<0.00001) respectively.

DISCUSSION

This systematic review demonstrates substantial incremental yield with NGS (principally 

ES) over QF-PCR and CMA or karyotyping of 29% in cases of prenatally diagnosed NIHF. 

This yield was higher among cases with additional FSAs, but severity of NIHF did not 

demonstrate a significant difference in the incremental yield. In the majority of instances 

pathogenic variants were de novo in autosomal dominant disease genes, predominantly in 

those causative of RASopathies.

The findings of the final PAGE cohort and systematic review were broadly concordant, with 

a lower yield in the cohort study, which may be explained by the smaller case number 

as well as the unselected approach to case selection. The dominance of RASopathies and 

of de novo variants in autosomal dominant disease genes is expected and not mutually 

exclusive.2 Incremental yield was higher in instances where additional FSAs were present, 

predominantly so in cases of congenital arthrogryposis, which is intuitive as contractures 

are a common musculoskeletal phenotype of higher diagnostic yield with sequencing. 

Again this was unsurprising as contractures are seen commonly in the highest yielding 

musculoskeletal phenotype group.35 In contrast, isolated NIHF was seen commonly within 

the RASopathies; 47.8% (n=11/23). This is in keeping with the variable phenotype reported 

in the RASopathies and supports the use of prenatal ES in cases of isolated NIHF.36 

There is phenotypic variability in cases with known RASopathy pathogenic variants, as 

well as in cases with pathogenic variants in other types of genetic diseases. This supports 

the use of ES or WGS, rather than a targeted or stepwise approach, in the investigation 

of NIHF.37 One must always respect the role of QF PCR or conventional karyotyping in 

NIHF, given the high incidence of aneuploidy.38 However, given the limited additional yield 

of CMA compared to karyotype and the ability of WGS to detect structural variants, it 

may be reasonable in the future as clinical and technical application of NGS technology 

includes validated CNV detection, to consider this as the second line test after QF-PCR or 

conventional karyotype.5 The list of novel causative genes in NIHF is constantly expanding, 

and with time the yield with prenatal NGS will likely improve as more genes are discovered 

and out understanding of the prenatal phenotype develops.2,37 This is supported by the 

high number of class III variants (VUS) identified within candidate genes from this study, 

high-lighted by the largest series in this study.2 Re-analysis and potential re-classification of 

VUS is currently underway for the PAGE cohort which may increase the diagnostic yield.

Due to the relatively high yield evident in isolated NIHF from this study (and individual 

papers in the literature) it was decided to include NIHF (from March 2021) as an indication 

for inclusion in the R21 pathway of the National Health Service (NHS) England National 

Genomic Test Directory for Rare and Inherited Disease.36,39 This (R21) pathway is a 

nationally (England presently) commissioned rapid prenatal ES service for fetuses with 

multiple, multisystem, major and selected isolated FSAs which is performed by two 

Genomic Laboratory Hubs in line with a set protocol.40 Inclusion of hydrops fetalis has been 
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discussed as an inclusion phenotype and adopted in April 2021. Furthermore, the on-going 

Fetal Oedema and Lymphatic Disorder (FOLD) study is presently ongoing in the UK.41

Our study based its selection criteria upon the routine definition of what constitutes 

NIHF.1 It has been proposed that this definition be expanded to include pathological fluid 

accumulation in one or more fetal body cavity, inclusive of a large nuchal translucency 

(NT)[>3.5 mm] or cystic hygroma.2 This is being further explored but appears a reasonable 

argument given the large variability in NIHF phenotypes as well as their complex evolution 

and sometimes resolution seen in causative syndromes such as the RASopathies and is 

supportive by our finding that the mere presence of NIHF as opposed to its severity 

influence diagnostic yield with ES.2,42 Prenatal ES performed at the time of an isolated 

increased NT or pleural effusion for instance may be the only snapshot to obtaining 

a prenatal diagnosis and is indicative of the nature of evolving and resolving NIHF 

phenotypes. There are a need for studies which track the evolution of the phenotype and 

respective diagnostic yields with NGS. Despite this, prenatal ES offered in cases of isolated 

elevated NT appears to offer a modest increase in diagnostic yield over CMA at around 

5-7%.2,42-44 It would appear to not just be the mere presence of the increased NT but 

its severity (≥5mm), persistence and association with additional anomalies that influence 

diagnostic yield with NGS.2,37,44

The strength of this systematic review lies in its novelty in concept, the robust methodology 

utilized as well as collaboration between experts of some of largest contemporary series in 

this area.2,8,16,17 The relatively small number of cases (n=306) represents the largest reviews 

of prenatal NIHF cases and did not appear to impact upon heterogeneity. Due to absence 

from the literature, no included studies used a WGS approach, hence the difference in yield 

between WGS and ES could not be assessed. This is likely to change in the coming years 

and will likely prove more beneficial due to its all-in-one ability to detect most chromosomal 

and genetic differences.7,39

In conclusion, the use of prenatal NGS in both isolated NIHF and NIHF associated with 

additional FSAs should be considered in developing clinical pathways. Given the vastness of 

syndromic categories and heterogeneity in prenatal phenotypes of NIHF, a whole exome or 

genome sequencing approach in combination with accurate prenatal phenotyping is likely a 

more appropriate tool than a targeted or stepwise single gene testing strategy in achieving 

an optimum diagnostic yield. The current definition of NIHF in assessing yield appears 

appropriate, although further studies assessing expansion of this definition are required to 

support this.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
Flowchart demonstrating included studies *Corresponding author contacted to request 

additional information
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Figure 2 –. 
Quality assessment of 21 studies included in systematic review, using modified Standards 

for Reporting of Diagnostic Accuracy criteria. ACMG, American College of Medical 

Genetics and Genomics; NGS, next-generation Sequencing; TAT, turnaround time, VUS, 

variants of uncertain significance.  No  Yes
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Figure 3 - 
Forest plots showing incremental yield of exome sequencing (or an alternative sequencing 

strategy) over chromosomal microarray analysis/karyotyping in fetuses with prenatally 

detected non-immune hydrops fetalis (NIHF), overall (a) and in those with isolated NIHF (b) 

and NIHF with additional fetal structural anomalies (c). Only first author of each study is 

given. Refers to cases with a normal CMA result. CMA = chromosome microarray; M–H = 

Mantel–Haenszel.
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Table 1-

Characteristics of included studies [CE, clinical exome; FSA, fetal structural anomaly, NIHF, nonimmune 

hydrops fetalis; N/S, not-stated; WES, whole exome sequencing *coverage not stated]

Study Next Generation Sequencing Approach Number of NIHF cases

All NIHF Isolated
NIHF

NIHF and
additional

FSAs

Becher, et al.26 WES Trio 103 × coverage
Roche SeqCap EZ MedExome Plus capture + Illumina NextSeq 500

4 4 0

Boissel et al.18 WES Trio 110 × coverage
Agilent capture + Illumina HiSeq 2000 or 2500

2 0 2

Corsten-Janssen, et al.32 WES Trio 20 × coverage
Agilent capture + Illumina NextSeq500

6 2 4

Croonen, et al.33* Clinical Exome; Noonan Panel
Illustra amplification. Sequencer not stated

15 N/S N/S

Denden, et al.27 WES Trio 200-300 × coverage
Agilent capture + Illumina NextSeq500

4 1 3

Deng, et al.19 WES Trio 120 × coverage
Agilent capture + Illumina HiSeq XTen or Novaseq 6000 21 14 6

Jelin, et al.20 WES Trio depth of coverage <10 removed
Agilent capture + Illumina Hi-Seq 2500

5 3 2

Greenbaum, et al.28 WES Trio 100 × coverage
Capture kit unknown + Illumina sequencing

3 2 1

Lord et al.8 Trio WES Panel 1628 genes
Agilent capture + Illumina Hi-Seq 2500

98.3% of the bait regions covered at a minimum depth of 5 × 28 14 14

Mone, et al.34 Trio WES Panel 1628 genes
Agilent capture + Illumina Hi-Seq 2500

98.3% of the bait regions covered at a minimum depth of 5 ×

6 3 3

Normand et al.21 WES Trio Coverage 150 ×
Roche NimbleGen capture

Illumina Genome Analyzer IIx platform/HiSeq 2000
10 N/S N/S

Petrovski et al.16 WES Trio
Nimblegen SeqCap EZ capture + Illumina Hiseq 2500.

Average read coverage 89.3 reads
Bioinformatic signatures

23 14 9

Sparks, et al. 201929* WES × 1 Clinical exome × 7
Details not specified

8 N/S N/S

Sparks 2, et al. 20202* WES Trio
llumina HiSeq 2500 or Illumina NovaSeq 6000

78 32 46

Stals et al.23 WES Parents only 80 × coverage
Agilent capture + Illumina HiSeq 2500 or NextSeq500. Only include het 

rare (MAF<0.001) variants in same gene in both parents
4 0 4

Vora et al.22* CE and WES Trio
Illumina Hi-Seq 2500

2 2 0

Westerfield, et al.30 WES Trio 130 × coverage
Roche NimbleGen capture + Illumina Genome Analyzer IIx or HiSeq 2000

2 0 2

Westphal et al.24 WES Trio 20,000 genes
150 × coverage

2 0 2

Yang, et al.31* Clinical exome; Lymphoedema panel
Oligo 6.1 PCR amplification + ABI. PRISM 3000 DNA sequencer

27 N/S N/S

Yates et al. 25 WES Trio 140 × coverage
Agilent capture + Illumina HiSeq 2000 or 2500

2 8 N/S N/S
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Study Next Generation Sequencing Approach Number of NIHF cases

All NIHF Isolated
NIHF

NIHF and
additional

FSAs

Zhou, et al.17* WES Trio in recurrent NIHF
Agilent capture + Illumina HiSeq X Ten

28 16 12
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