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Summary

We show how entropy balancing can be used for transporting experimental treatment effects from

a trial population onto a target population. This method is doubly-robust in the sense that if either

the outcome model or the probability of trial participation is correctly specified, then the estimate

of the target population average treatment effect is consistent. Furthermore, we only require the

sample moments of the effect modifiers drawn from the target population to consistently estimate

the target population average treatment effect. We compared the finite-sample performance of

entropy balancing with several alternative methods for transporting treatment effects between

populations. Entropy balancing techniques are efficient and robust to violations of model

misspecification. We also examine the results of our proposed method in an applied analysis of the

Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORD-BP) trial

transported to a sample of US adults with diabetes taken from the National Health and Nutrition

Examination Survey (NHANES) cohort.

Keywords

Calibration; Causal Inference; Generalizablity; Effect Modification

1 | INTRODUCTION

In a randomized controlled trial (RCT), the population from which the sample is collected,

the trial population, often differs from the population of interest, the target population. This

scenario becomes problematic when the true causal effect is heterogeneous, implying the

existence of effect modifying covariates - effect modifiers - which alter the average
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treatment effect. If the distribution of the effect modifiers is different in the trial and target

populations, the average treatment effect observed in the trial will likely differ from what

would be observed within the target population, limiting the conclusions that can be drawn

from an otherwise well-designed study. It is worth noting that effect modifiers are specific to

the scale of the target estimand. Throughout, we will refer to effect modifiers as variables

that modify the average treatment effect which we will define later on.

The recent literature on the subject of transportability is divided into two scenarios

determined by the nature of the trial and target populations, and the desired causal estimand.

If the trial population is nested within the target population, we can extend the results of an

RCT using a sample from the target population in a process called generalizability. If the

target and trial populations are subpopulations drawn from some super population, then the

problem is one of transportability. Figure 1 provides a diagram relating the data to the

corresponding populations in both the generalizeability and transportability problems. Note

that for generalizability, the trial population is a subpopulation of the target population,

while in transportability the target and trial populations are not nested. We will discuss the

difference between these two scenarios in more detail in Section 2.2. The work herein,

however, will focus primarily on the issue of transportability.

Some articles have approached the problem of transportability from the setting in which the

investigator is provided the individual-level data from the trial population along with

individual-level covariate data from the target population.1 Another setting provides the

individual-level data from the trial population, but only the covariate sample moments (e.g.,

the mean and standard deviation) from the target population, which can often be found in a

so-called Table 1 throughout the medical literature.2 One property that is often sought while

developing estimators for causal inference is called double-robustness.3 In the context of

transporting experimental results, this means that if either the probability of trial

participation or the outcome model are correctly specified, then the resulting average

treatment effect estimator is consistent.

We propose using entropy balancing to solve transportability problems. The procedure we

propose builds upon several other causal effect estimators which employ convex

optimization techniques to estimate a vector of sampling weights.2,4,5,6 These sampling

weights would otherwise be uniform if the RCT data were randomly sampled from the target

population. The literature on convex optimization in the context of causal inference has

abounded in recent years.7,8,9 Rather than using these methods to exactly balance the

covariate distribution between the treated and control units within an observational study,

convex optimization techniques applied to transportability can be used to estimate weights

which balance the covariate distribution of the trial participants and non-participants.

Entropy balancing is flexible in that it can be applied both when the complete individual-

level covariate data are provided as well as when only the covariate sample moments of the

target population are provided, such as what might appear in the Table 1 of a clinical paper.

Furthermore, the specific entropy balancing procedure we develop can be shown to be

doubly-robust for estimating the target population average treatment effect given the

complete individual-level covariate data in the context of transportability.
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The entropy balancing solution we propose is also considered as a solution for indirectly

comparing experimental results from two separate randomized trials with an anchored

treatment arm, a problem not too dissimilar from that of transportability. However,

transportability as we describe it does not require a second randomized trial. The sample

drawn from the target population, which is subsequently used in our transportability

formulations, does not require any information about the outcome or treatment assignment.

Moreover, based on new results identified in the indirect comparison literature, we can relax

a rather strong assumption about the nature of the potential outcomes typically made in the

transportability literature.6 In addition, we take a more comprehensive view of entropy

balancing through the lens of causal inference, motivating this work through the potential

outcomes framework and describe several properties about entropy balancing for

transportability that are sought for estimators in the causal inference literature. This includes

the property of double-robustness, semiparametric efficiency, and considerations between

finite-sample and superpopulation settings. We also compare the entropy balancing approach

with several other methods in an effort to showcase the strengths of doubly-robust estimators

more generally in transportability problems.

The contents of the article are as follows. In Section 2 we define the notation, setting, and

assumptions necessary for transporting experimental results between populations and

describe several existing methods for transportation, including two methods that can be

applied in the setting where we are given only the sample covariate moments of the target

population and two methods that require individual-level covariate data from the target

population, one of which is doubly-robust. In Section 3, we introduce entropy balancing and

describe the difference between conducting inference upon the target population average

treatment effect versus the target sample average treatment effect. In Section 4 we compare

the five methods considered in Sections 2 and 3 using numerical studies. We also illustrate

through a secondary simulation how entropy balancing and other methods that do not

require individual-level data from the target population only allow for inference upon the

target sample average treatment effect and not the target population average treatment effect.

In Section 5 we compare entropy balancing and inverse odds of sampling weights in a real-

data example: transporting results from a clinical trial of blood pressure treatment intensity

in diabetes patients to a representative sample of the US population. Section 6 concludes

with a discussion.

2 | SETTING AND PRELIMINARIES

2.1 | Notation and Potential Outcomes

Suppose we have two random samples from different populations. For independent sampling

units i = 1, 2, …, n, let Si ∈ {0, 1} denote a random sampling indicator. Indexed by {i : Si =

1}, the trial sample evaluates the efficacy of some treatment on the trial population. The

second sample is randomly selected from the target population and indexed by {i : Si = 0}.

We refer to this sample as the target sample. We denote n1 = ∑i = 1
n Si, n0 = ∑i = 1

n 1 − Si , and

n = n1 + n0. Both 𝔼 ⋅  and Pr{·} will be evaluated over the superpopulation which is the

combined trial and target population.
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For i = 1, 2 …, n, let Xi ∈ 𝒳 denote a vector of measured baseline (i.e. pretreatment)

covariates. For i ∈ {i : Si = 1}, let Y i ∈ ℜ denote the real valued outcome, and Zi ∈ {0, 1}

denote the random treatment assignment. We assume throughout that Xi contains an

intercept term. The probability density function for Xi is denoted ƒ (xi) for xi ∈ 𝒳. Indexed

by j = 1, 2, …, m, we denote the vector-valued balance function

c Xi ≡ c1 Xi , c2 Xi , …, c j Xi , …, cm Xi
T

, which are the effect modifiers included into the

models of Si and Yi along with Zi. We suppose c1(Xi) = 1 for all i = 1, 2, …, n. Some

examples for cj(Xi), j = 2, 3, …, m include polynomial transformations of the covariates and

interaction terms - anything that might modify the effect of the treatment on the outcome. It

is common practice to balance the covariates as well as the variance (i.e. second moments)

of the covariates when more intimate knowledge about the effect modifying process is

unknown.2

We employ the potential outcomes framework for a binary treatment.10 This framework

allows us to construct the observed outcome in terms of the factual and counterfactual

variables Yi(0) and Yi(1), i = 1, 2, …, n. Yi(0) and Yi(1) correspond to each unit’s outcomes

when Zi = 1 and Zi = 0, respectively. The observed responses are then defined as

Y i ≡ ZiY i 1 + 1 − Zi Y i 0 . The potential outcomes framework also allows us to define the

target population average treatment effect, τTATE = 𝔼 Y i 1 − Y i 0 |Si = 0  and the target

sample average treatment effect

τTSATE ≡ 1
n0

∑
i:Si = 0

Yi 1 − Yi 0 .

The target sample average treatment effect only concerns the effects among units within the

target sample whereas the target population average treatment effect concerns the average

effect for all units that make up the target population.11 We also define ρ Xi ≡ Pr Si = 1|Xi

and π ≡ Pr Zi = 1|Xi . Recall that in an RCT, π ∈ (0, 1) should be independent of Xi.

Another way to write τTATE is

τTATE ≡
𝔼 1 − ρ Xi Yi 1 − Yi 0

𝔼 1 − ρ Xi
.

This alternative definition identifies the target population average treatment effect as a type

of weighted average treatment effect. A corollary to Theorem 4 of Hirano et al. can be used

to derive the semiparametric efficiency bound for any estimator of τTATE as

Σsemi ≡
𝔼 1 − ρ Xi

2 𝕍 Yi 1 Xi
π +

𝕍 Yi 0 Xi
1 − π + τTATE Xi − τTATE

2

𝔼 1 − ρ Xi
2

(1)
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where τTATE Xi ≡ 𝔼 Y i 1 − Y i 0 |Xi, Si = 0 .12 This setup allows us to utilize the asymptotic

results about weighted average treatment effects derived previously using convex

optimization techniques such as those employed by entropy balancing.13

We denote the population moments of the target covariate distribution as 𝔼 c Xi |Si = 0 = θ0.

For much of this paper, we will describe methods for transporting experimental results

which weight the responses Yi for i ∈ {i : Si = 1} so that the weighted trial sample moments

are the same as the population moments of the target population.14 We will denote the

sample weights as γ ≡ γ1, γ2, …, γn1
. Since θ0 is usually unknown, we will need to make use

of the estimator θ0 ≡ n0
−1∑

i:Si = 0
c Xi . In practice, we usually set c(Xi) = Xi unless more

is known about the data generating mechanisms. In those cases, θ0 typically appears in the

so-called Table 1 of many publications.

2.2 | Assumptions for Transportability

The following assumptions facilitate our ability to transport experimental results onto a

target population. These assumptions represent the necessary conditions required for the

transporting experimental results. They are also adapted from similar articles on the subject.
15,1,16 Furthermore, we invoke the stable unit treatment value, which comprises the no

interference and consistency assumptions.

Assumption 1 (Mean Difference Exchangeability).—The target population average

treatment effect conditional on the baseline covariates is exchangeable between samples:

𝔼 Yi 1 − Yi 0 Xi, Si = 1 = 𝔼 Yi 1 − Yi 0 Xi, Si = 0 = 𝔼 Yi 1 − Yi 0 Xi .

Assumption 2 (Sampling Positivity).—The probability of trial participation,

conditioned on the baseline covariates necessary to ensure Assumption 1, is bounded away

from zero and one:

0 < Pr Si = 1 Xi = xi < 1 for all xi ∈ 𝒳 where f xi Si = 0 > 0.

Assumption 3 (Strongly Ignorable Treatment Assignment).—The potential

outcomes among the trial participants are independent of the treatment assignment given Xi:

Yi 0 , Yi 1 T ￒ Zi Xi for all i ∈ i:Si = 1 .

Assumption 3 is a standard assumption in the potential outcomes literature.17 This

assumption can be further simplified in an RCT setting to assume

Yi 0 , Yi 1 T ￒ Zi for all i ∈ i:Si = 1
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since there should be no association between the treatment assignment and the covariates.

The covariate imbalance that requires amelioration in transportability instead appears

between Xi and Si.

As noted previously in the Introduction, there are subtle distinctions between

generalizability and transportability. The main difference occurs with the causal estimand of

interest. In transportability, the target estimand is τTATE. For generalizability, the causal

estimand of interest is τATE = 𝔼 Y i 1 − Y i 0 . This is on account of the trial population being

nested within the target population, so the superpopulation and the target population are

identical. Under our notation, generalizability further assumes that the units {i : Si = 0} are

sampled from the target population and the complement of the trial population. As a result,

we would need to rewrite Assumption 2 for generalizability to state

0 < Pr Si = 1 Xi = xi < 1 for all xi ∈ 𝒳 where f xi > 0 .

We avoid this setup to the problem and instead focus on methods developed for

transportability and inference on τTATE.

In addition to Assumptions 1–3, we require the following assumptions to establish the

double-robustness property of entropy balancing. We will show that if either assumption is

met, then the entropy balancing methods introduced in Section 3 will be consistent for the

target population average treatment effect. We also use these assumptions to establish

consistency for some of the other methods we describe in Section 2.3 when standard

regression methods are employed. Note that an underlying requirement implied by these two

assumptions is that there is no unnmeasured effect modification present given the known

balance functions. If an effect modifier is missing, then any estimator we present will likely

produce biased estimates of the target population average treatment effect.

Assumption 4 (Conditional Linearity).—The expected value of the potential outcomes,

conditioned on Xi, is linear across the span of the covariates. That is

𝔼 Y i 1 − Y i 0 |Xi = c Xi
Tα and 𝔼 Y i 0 |Xi = c Xi

T β for all i = 1, 2, …, n and α, β ∈ ℜm.

Assumption 5 (Linear Conditional Log-Odds).—The log-odds of trial participation

are linear across the span of the covariates. That is logit ρ Xi = c Xi
Tλ for all i = 1, 2, …, n

and some λ ∈ ℜm.

Assumption 1 is substantially relaxed from what appears in more recent literature.1,16 These

other articles require the expected value of the potential outcomes to be exchangeable

between populations:

𝔼 Y i 1 Xi, Si = 1 = 𝔼 Y i 1 Xi, Si = 0 and 𝔼 Y i 0 Xi, Si = 1
= 𝔼 Y i 0 Xi, Si = 0 . (2)
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The indirect comparison literature refers to this assumption as the conditional constancy of

absolute effects whereas Assumption 1 is commonly referred to as the conditional constancy

of relative effects. Whereas the conditional constancy of absolute effects requires adjustment

for all prognostic and effect modifying covariates, the conditional constancy of relative

effects only requires adjustments for the effect modifiers. Note that the much stronger

conditional constancy of absolute effects assumption is enforced in Assumption 4. However,

the less stringent Assumption 1, in addition to Assumptions 2 and 3, is all that is required to

obtain consistent estimates when Assumption 5 holds. This assumption relaxation result can

be made using arguments of anchored indirect comparisons.6 Suppose the target sample is a

randomized control trial comparing Z = 1 with Z = 0, similar to the data contained within the

trial sample, only we do not observe either the outcome or the treatment assignment. Then

this target “trial” is figuratively anchored by both treatment groups. If the target “trial” were

to be conducted, and the outcome and treatment data were collected, then a resulting indirect

comparison estimator should yield estimates of zero as both “trials” examine the same

estimand.18 This is precisely what transportability methods are targeting – what the causal

effect would be if the trial were conducted on a different population. Only requiring the

conditional constancy of relative effects assumption versus the conditional constancy of

absolute effects assumption adds incentive to focus on correctly specifying the sampling

model over the outcome model through the entropy balancing techniques that we will

describe in Section 3.

2.3 | Alternative Methods for Transportability

In this section we present four different methods for transporting experimental results to

estimate τTATE. For each method, we assume we are given Assumptions 1–3. The first

method weights responses of the trial sample with the inverse odds of sampling.19 Define the

inverse odds of sampling weights as

γ i
PS =

1 − ρ Xi
ρ Xi π

, when Si = 1, Zi = 1

1 − ρ Xi
ρ Xi 1 − π

, when Si = 1, Zi = 0

0, when Si = 0

where π is a consistent estimator of the probability of treatment and ρ Xi  is a consistent

estimator of the probability of trial participation. The target population average treatment

effect is then estimated by computing

τ IOSW = ∑
i:Si = 1

γ i
PSZiYi

∑
i:Si = 1 γ i

PSZi
− ∑

i:Si = 1

γ i
PS 1 − Zi Yi

∑
i:Si = 1 γ i

PS 1 − Zi
.

If Assumption 5 is given, we may use logistic regression to consistently estimate ρ Xi . A

consistent estimator for ρ(Xi) by extension renders τ IOSW consistent for τTATE.
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Given the extended conditional constancy of absolute effects assumption in (2), another

proposed solution is to find a consistent estimator of the conditional means for the potential

outcomes with the sample data; μ1 Xi ≡ 𝔼 Y i 1 |Xi, Si = 1  and μ0 Xi ≡ 𝔼 Y i 0 |Xi, Si = 1 .

We will refer to this method as the outcome modeling (OM) approach. The consistent

estimators are denoted as μ1 Xi  and μ0 Xi , respectively. Under Assumption 1, τTATE can be

estimated by solving for

τOM = 1
n0

∑
i:Si = 0

μ1 Xi − μ0 Xi .

In the causal inference literature, this method follows the framework for computing causal

effects known as g-computation.20 If Assumption 4 is given, we can estimate τTATE with the

OM approach if we are only given θ0 instead of Xi for all i ∈ {i : Si = 0}. To do so, we

would regress Yi onto c(Xi) for all {i : Si = 1, Zi = 1} and {i : Si = 1, Zi = 0} to get α and β,

respectively. We then compute

τOM = θ0
T α − β

where α and β can be fit with ordinary least squares.

The OM approach and the inverse odds of sampling weights may be combined into a so

called doubly-robust estimator. A doubly robust (DR) estimator combines estimators of the

model components, in this case the model for [Yi(1), Yi(0)] and Si, as to be consistent when

at most one model is misspecified. The conventional doubly-robust estimator for a binary

treatment was first proposed as a semiparametric technique for missing-data problems.21

There have been extensive modifications to this conventional doubly-robust estimator,

including alterations for transporting experimental results of a binary treatment.5 Using the

same notation outlined for the outcome model approach and the inverse odds of sampling

weights, the target population average treatment effect can be estimated by solving for

τDR = ∑
i:Si = 1

γ i
PSZi Y i − μ1 Xi

∑ i:Si = 1 γ i
PSZi

− ∑
i:Si = 1

γ i
PS 1 − Zi Y i − μ0 Xi

∑ i:Si = 1 γ i
PS 1 − Zi

+ 1
n0

∑
i:Si = 0

μ1 Xi − μ0 Xi .
(3)

It is easy to see that if μ0 Xi  and μ1 Xi  are consistent for µ0(Xi) and µ1(Xi), respectively,

then the last summation in (3) is consistent for the target sample average treatment effect

(and therefore also for the target population average treatment effect) while the first two

summations converge in probability to zero. Similarly, if γPS is consistent for
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ρ Xi 1 − ρ Xi
−1, then the first two summations of (3) will consistently estimate the

negative bias induced by the last summation.16

Another doubly-robust estimator closely related to the augmented estimator in (3) uses

targeted maximum likelihood estimation (TMLE).22 TMLE is a popular choice among

causal practitioners due to its flexibility for estimating a variety of different estimands,

including the target population average treatment effect.1 For transportability, the targeted

maximum likelihood estimator is constructed as follows. First, the initial estimates of μ1 Xi

and μ0 Xi  are fit using the trial sample data. We then update the predictions of the potential

outcomes on the trial sample with

μ0 Xi = μ0 Xi + ϵ0 1 − Zi γ i
PS

μ1 Xi = μ1 Xi + ϵ1Ziγ i
PS .

(4)

The estimates of ϵ0 and ϵ1 are obtained by regressing the outcome Yi onto the clever

covariates – Ziγ i
PS and 1 − Zi γ i

PS – with μ0 Xi  and μ0 Xi  serving as offsets for all i ∈ {i : Si

= 1}. The estimator of τTATE under the TMLE framework solves for

τTMLE = 1
n0

∑
i:Si = 0

μ1 Xi − μ0 Xi (5)

in a similar manner to the OM approach. Equation (5) is doubly-robust for estimating τTATE

in the sense that if either the sampling model or the potential outcomes models are

consistent, then τTMLE is also consistent.1 TMLE also requires individual-level covariate

data to estimate some of the components in (4) and (5).

For the DR and TMLE methods, it is unclear to us whether the more relaxed Assumption 1

remains applicable in cases where the sampling model is correctly specified. Note that both

these methods are heavily geared toward the outcome regression model being correctly

specified. To avoid any distraction from this potential discrepancy, we ensure the conditional

constancy of absolute effects assumption is satisfied in the simulation study found in Section

4.1. Furthermore, we will compare the entropy balancing methods described in the next

section with IOSW alone in the data analysis found in Section 5 as the conditional constancy

of absolute effects assumption cannot be guaranteed like in a simulation study.

3 | ENTROPY BALANCING

Entropy balancing has emerged as a popular method for estimating weights in a variety of

contexts, particularly for estimating the average treatment effect of the treated.7,23 Entropy

balancing has also previously been introduced for evaluating indirect comparisons of

randomized trials, though in this case it is referred to as a method of moment estimator for

the inverse odds of sampling when the probability of trial participation follows a a logit

model.2 This method of moment estimator just so happens to be the dual solution to an
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entropy balancing primal problem. We prefer to use the term entropy balancing as it more

concisely describes the underlying constrained convex optimization problem that must be

solved in order to balance the covariate distribution,

minimize ∑
i:Si = 1

γilogγi − γi

subject to ∑
i:Si = 1

Aiγi = B
(6)

Note that the criterion distance in (6) is the entropy function, hence the “entropy” in entropy

balancing. The constraints in (6), represented by the vectors Ai and B, can be constructed to

satisfy some moment balancing conditions, hence the “balancing” aspect of entropy

balancing. For example we can set Ai = c(Xi) and B = θ0 so that the weighted sample

moments of c(Xi) for all i ∈ {i : Si = 1} are equal to the sample moments c(Xi) for all i ∈ {i :
Si = 0}. This specific choice of Ai and B is the primal problem for the previously proposed

method of moments estimator.2 Entropy balancing and the method of moment estimator for

evaluating indirect comparisons are often conflated due to the different Lagrangian dual

solutions one can arrive at while solving (6), one of which we will get to later in this section.

Nevertheless, due to the strict convexity of the criterion function, the solution to (6) is

unique and hence the dual solution must also be unique.24 This result was also made explicit

specifically when the convex criterion function is the entropy function.18

The dual solution for the method of moments estimator only requires the target sample

moments of the covariates. For this balancing solution, denote c Xi = 2Zi − 1, Xi  and

θ0 = 0, θ0
T T

. The method of moments estimator first solves the Lagrangian dual problem

λ = arg max
λ ∈ ℜm + 1

∑
i:Si = 1

−exp −c Xi
Tλ − θ0

Tλ ,
(7)

which in turn is used to estimate the sampling weights, γ i
MOM = exp −c Xi

Tλ  for all i ∈ {i :

Si = 1}. We can then use a Horvitz-Thompson type estimator similar to the inverse odds of

sampling weights to estimate τTATE,

τMOM = ∑
i:Si = 1

γ i
MOM 2Zi − 1 Yi

∑
i:Si = 1 γ i

MOMZi
.

In Signorovitch et al., Assumptions 1–3 along with Assumption 5, are necessary to establish

the consistency of τMOM for τTATE.2 More recent work can be adapted to show that this

estimator is also consistent when Assumption 4 holds, thus achieving the doubly-robust

property.25
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Our proposed adaptation to this entropy balancing solution instead sets Ai = Ai0
T , Ai1

T T
 with

Ai0 = (1 − Zi)c(Xi) and Ai1 = Zic(Xi) while B = θ0
T, θ0

T T
 to solve (6) using the following

separable Lagrangian dual problem,

λ0 = arg max
λ ∈ ℜm

∑
i:Si = 1

−exp − 1 − Zi c Xi
Tλ − θ0

Tλ and

λ = arg max
λ ∈ ℜm

∑
i:Si = 1

−exp −Zic Xi
Tλ − θ0

Tλ .
(8)

The empirical sampling weights are subsequently found with

γ i
CAL = exp − 1 − Zi c Xi

Tλ0 − Zic Xi
Tλ1 for all i ∈ i:Si = 1 . (9)

The estimator for τTATE using these estimated sampling weights is the same Horvitz-

Thompson type estimator used by both the MOM and the IOSW approaches,

τCAL = ∑
i:Si = 1

γ i
CAL 2Zi − 1 Y i

∑ i:Si = 1 γ i
CALZi

. (10)

Notice that the covariate distributions are balanced between treatment groups and between

the target sample and the trial participants. This is in contrast with the MOM estimator

which only balances the covariate distribution between the target sample and the trial

participants. This alteration to τMOM remains doubly-robust for estimating τTATE given

either Assumption 4 or 5. The double-robustness property of τCAL is examined more closely

in the Supplementary Material. The alteration to the MOM estimator is also motivated by the

equivalence of (8)–(10) to the exponential tilting estimator implicitly proposed by Chan et
al., which is why we refer to it as the calibration (CAL) estimator.13 Recall that τTATE is a

special case of a weighted average treatment. According to Theorem 3 of Chan et al., if we

can can uniformly approximate ρ(Xi), µ1(Xi), and µ0(Xi) using a sufficiently rich basis

represented by the balance functions c1(Xi), c2(Xi), …, cm(Xi) (i.e. the number of balancing

functions m increases with n) while assuming mild conditions about the data generating

processes, then the estimate of τTATE with τCAL will achieve the efficiency bound in (1).13

This efficiency property is not shared by the method of moments version of entropy

balancing, further motivating the calibration version.25 Additional details on how to estimate

the variance appears in the Supplementary Material.

There are a few reasons why we use the relative entropy over other criterion distance

functions for transporting experimental results. The first is due to the resemblance of (9) to

the inverse odds of sampling prescribed under Assumption 5. This relationship has been

noted in several other articles.2,23 Another reason for using the relative entropy is the
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guarantee that the estimated sampling weights will always be positive. Another suggestion

might be to construct a Lagrangian dual using the Euclidean distance as the criterion

function to get a different version of (6) and (8). However, the support for the Euclidean

distance is the real numbers, implying that negative weights are feasible in such a setup.

Adding the necessary constraint that γi > 0 for all i = 1, 2, …, n makes the optimization

problems in (6) and (8) less straightforward to solve.

Now consider the setting where we are provided only the sample covariate moments from

the target sample. Assuming that θ0 is fixed results in an inflated Type I error rate for

inferences of τTATE. The one exception to this rule is when θ0 = θ0 with zero variability. In

other words, we would need to estimate θ0 over the entire target population. If we are

provided individual-level covariate data from the target sample, then we may derive a

variance estimator for estimates of τTATE as opposed to τTSATE. Despite this shortfall, the

estimators (8) – (10) remain consistent for τTATE in either setting. The same rule applies for

both the OM approach and the MOM estimator since neither of these methods necessarily

require the complete individual-level covariate data. A more concrete demonstration of this

phenomenon is shown in Section 4.2.

4 | NUMERICAL EXAMPLES

4.1 | Simulation Study

In this section we present a simulation study to better understand the performance of entropy

balancing techniques compared with the alternative methods illustrated in Section 2.3. We

consider four experimental scenarios that test the consistency and efficiency of the

estimators on finite-samples by altering the data generating processes. redThese scenarios all

make the conditional constancy of absolute effects assumption defined in (2) to ensure

compatibility between all the methods in consideration.

The first scenario establishes a baseline. For i = 1, 2, …, n, let Xi0 |Si = 0 𝒩 −1, 4 ,

Xi1 |Si = 0 Bin 1, 0.6 , Xi2 |Si = 0 𝒩 0, 1 , and (Xi3|Si = 0) ~ Bin(1, 0.5). Let

Xi0 |Si = 1 𝒩 1, 4 , (Xi1|Si = 1) ~ Bin(1, 0.4), Xi2 |Si = 1 𝒩 0, 1 , and (Xi3|Si = 1) ~ Bin(1,

0.5). We generate the treatment assignment by sampling Zi ~ Bin(1, 0.5). The conditional

mean of the potential outcomes are constructed as

μ0 Xi = 10 − 3Xi0 − Xi1 + Xi2 + 3Xi3 and
μ1 Xi = μ0 Xi + 5 + 3Xi0 − Xi1 + Xi2 − 3Xi3 .

(11)

Gaussian potential outcomes for each experimental scenario are generated by sampling

Y i 0 𝒩 μ0 Xi , σ2  and Y i 1 𝒩 μ1 Xi , σ2 , with the observed outcome determined by Yi =

ZiYi(1) + (1 − Zi)Yi(0) for each i = 1, 2, …, n. We discard the n0 values of Yi and Zi for all i
∈ {i : Si = 0}. We will refer to this set of conditions with the label “baseline”. Unless stated
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otherwise, Si, Xi = (Xi0, Xi1, Xi2, Xi3), Yi, and Zi are provided to estimate γ i
PS, γ i

MOM, γ i
CAL,

μ1 Xi , μ0 Xi , μ1 Xi , and μ0 Xi  which are required in the estimators described in 2.3 and 3.

In the scenarios labeled “positivity”, we increase the difference between the two covariate

distributions by substituting Xi0 |Si = 0 𝒩 1, 2 , Xi0 |Si = 1 𝒩 −1, 1 , (Xi1|Si = 0) ~ Bin(1,

0.2), and (Xi1|Si = 1) ~ Bin(1, 0.8) for the respective covariates into the data generating

mechanisms. This alteration will test the sensitivity of each method on the intrinsic

limitations associated with Assumption 2. For the scenario labeled “sparse”, we provide

each method an additional set of covariates that do not affect the responses. The potential

outcomes are still determined from (11) with the original covariate values, yet the different

estimators must also accommodate the additional noise covariates of (Xir|Si = 0) ~ (Xi(r−4)|Si

= 1) and (Xir|Si = 1) ~ (Xi(r−4)|Si = 0) for r ∈ {4, 5, 6, 7}. Each of the estimators are provided

data for (Xi0, Xi1, …, Xi7) in addition to Yi Zi, and Si. In the scenarios labeled “missing”, we

generate the outcomes according to (11) yet we provide each method only (Xi0, Xi2) and

omit Xi0 and Xi2 while estimating τTATE. Note that this means we omit one of the effect

modifiers, Xi1. Next, we formulate scenarios which misspecify the outcome model

(“outcome”). To do so, we generate outcomes according to the model

μ0 Xi = 10 − 3Ui0 − Xi1 + Ui2 + 3Xi3 and
μ1 Xi = μ0 Xi + 5 + 3Ui0 − Xi1 + Ui2 − 3Xi3

(12)

where Ui0 = exp(−Xi0/4 + Xi2/4) and Ui2 = (Xi0/2 − Xi2/2)2. Both Ui0 and Ui2 are

standardized across both samples to have a mean of 0 and variance 1 in the combined trial

and target samples. We then provide each method the original covariate values (Xi0, Xi1, Xi2,

Xi3) for all i = 1, 2, …, n. On the other hand, in the sampling misspecification scenario

(“sampling”), we provide each method data for (Ui0, Xi1, Ui2, Xi3) while the outcomes are

still generated by the model in (12). The standardization step is key to ensure that the true

magnitude of the differences between the sample covariate distributions are never fully

expressed by the sampling model. In addition to varying the scenarios that test the violations

to the assumptions in Section 2.2, we also vary n0 ∈ {500, 1000} and n1 ∈ {500, 1000},

creating 24 different conditions for which we will generate 1000 replications.

We report the average bias and empirical mean squared error of the average treatment effect

estimates across the 1000 iterations for each scenario. The average model and empirical

standard errors are provided in tables S1 and S2 in the Supplementary Materials. The model

standard errors are obtained using a sandwich variance estimator for each estimate in every

iteration of the simulation. The empirical standard errors are the standard deviations of the

estimates from each estimator pooled across the iterations of a given scenario. The five

methods we compare for estimating the target average treatment effect are: Inverse Odds of

Sampling Weights (IOSW), G-Computation (OM), Augmented Inverse Odds of Sampling

Weights (DR), Targeted Maximum Likelihood Estimation (TMLE), Method of Moments

(MOM), and Calibration (CAL). Additionally, for IOSW, OM, DR, and TMLE, both μ1 Xi

and μ0 Xi  are fit by regressing Yi onto the covariates provided in each scenario with data

from Si = 1 and stratified by the Zi. ρ Xi  is fit with logistic regression using covariates that
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predict Si. The standard errors are estimated using robust sandwich variance estimators. For

the non-entropy balancing type estimators, R code for finding variance estimates are

provided in the existing literature.1,16

The average bias and mean squared errors of the experiment are summarized in Table 1. A

visual comparison for a subset of the results featured in Table 1 where n1 = 200 and n0 = 500

appear in the boxplots of Figure 2. Each method produces consistent estimates under the

baseline scenario. However, each method also has its short-comings. First, we can see that

IOSW produce highly variable estimates in cases where the positivity assumption

(Assumption 2) is practically violated and is biased in cases when the sampling scenario is

misspecified. On the other hand, the OM approach is biased when the outcome model is

misspecified. TMLE, DR, MOM, and CAL all appear to produce unbiased estimates of the

average treatment effect in every scenario. This is interesting for the MOM estimator since

this would imply that it is also doubly-robust in terms of consistency. Some insight into why

this might be is provided elsewhere.25 However, we can see in Table 1 that CAL had either

the same or smaller mean squared errors over TMLE and MOM. In some scenarios DR did

have smaller errors than CAL. Nevertheless, The OM approach had the smallest mean

squared errors across most scenarios, other than in the scenarios where we misspecify the

outcome model naturally. When the models miss (or ignore) some of the effect modifiers,

we see that every method we test produces biased estimates of the target population average

treatment effect. This particular scenario emphasizes the results of these estimators when

both the outcome and the sampling models are misspecified, even when missing a single

effect modifier.

There is a downside to the so-called calibration version of entropy balancing. In the sparse

and positivity violation scenarios, the number of models that converge decreases

considerably. When n1 = 200 and n0 = 500, CAL was only able to find a solution in 64.2%

of the iterations under the sparse scenario and 49.0% of the iterations when positivity is

practically violated. When n1 = 200 and n0 = 1000 we observe a 66.0% and 48.1% rate of

convergence in the sparse and positivity scenarios, respectively. Otherwise, the calibration

approach to entropy balancing converged in each iteration for every other scenario.

Meanwhile, the method of moments approach to entropy balancing also failed to converge in

approximately 7.5% of the scenarios in both of the positivity scenarios where the calibration

estimator often failed to converge.

4.2 | Coverage Probabilities of τTATE and τTSATE

Consider the baseline scenario in the previous set of simulations. Using the individual-level

data from the trial sample, and the target sample covariate moments, we demonstrate how

inferences for τTATE will have an inflated Type I error. We do so by finding the empirical

coverage probability of both τTSATE and τTATE with both of the entropy balancing

approaches described in Section 3. Robust sandwich variance estimators are used to

construct the confidence intervals. The coverage probability is obtained by averaging over

the indicator variable generated by whether the resulting confidence interval about the

average treatment effect estimate covers either of τTSATE or τTATE at each iteration. This will

demonstrate why entropy balancing can only be used to infer upon the target sample average
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treatment effect instead of the target population average treatment effect unless the entire

individual-level data about the balance functions in both the target and trial samples is

available. For this simulation experiment, we set the target and trial sample sizes at n0 ∈
{500, 1000, 10000} and n1 ∈ {1000, 10000}, respectively. We use large sample sizes to

ensure the accuracy of the robust variance estimator.

The results in Table 2 show how modifying n1 and n0 affects the coverage probabilities for

τTSATE and τTATE for the setting where we are given the target sample covariate moments.

Observe that the coverage probability of τTSATE is dependent on n1 alone - as n1 increases,

the coverage probabilities increase. The coverage probability of τTATE, on the other hand,

appears to be dependent on the ratio between n0 and n1. For inference on τTATE, we see the

best results occur when n1 is small relative to n0. When n1 = 1000 and n0 = 10000, the

variation of θ  has less impact on the total variance, producing the best results. In contrast,

when n1 = 10000 and n0 = 10000, the variation of θ  has a greater impact, resulting in a

decreased probability of coverage. This observation is only compounded in cases where n1 >
n0. This leads us to believe that n1 needs to be sufficiently large while also remaining small

compared to n0 in order to be effective for inferring on τTATE. When we adjust the sandwich

estimator to incorporate individual-level covariate data from the target sample, we see that

the accuracy of coverage probability is now tied to the total sample size n = n0 + n1, which is

typical for robust variance estimators as they are derived under asymptotic conditions.

5 | TRANSPORTING RESULTS OF ACCORD-BP STUDY TO THE US

POPULATION

Translating clinical trial results to clinical care is particularly challenging when the results of

two studies conducted for similar indications and treatments yield conflicting conclusions.

For example, the optimal approach to hypertension treatment remains unclear, partly due to

conflicting clinical trial results. The Systolic Blood Pressure Intervention Trial (SPRINT)

and the Action to Control Cardiovascular Risk in Diabetes Blood Pressure (ACCORD-BP)

trial both randomized participants with hypertension to intensive (< 120 mmHg) or

conventional (< 140 mmHg) blood pressure control targets. The study populations differed

in that ACCORD-BP was limited to diabetes patients while SPRINT excluded diabetes

patients. The two similarly designed studies in differing populations had different results:

SPRINT, but not ACCORD-BP, found an association of intensive blood pressure control

with several clinically meaningful outcomes including cardiovascular disease events.26,27

Importantly, the ACCORD-BP trial was enriched for individuals at high cardiovascular

disease risk aside from the presence of diabetes, raising the question of whether the result of

the trial applies to a more general diabetes patient population. Thus, transporting the

ACCORD-BP trial to the general US population of diabetes patients may provide insight

into hypertension management for individuals with diabetes and help reconcile the

discrepant trial results.

To address this question, Berkowitz et al. used inverse odds of sampling weights (IOSW) to

transport the ACCORD-BP trial to a sample of US diabetes patients drawn from the US

National Health and Nutrition Examination Survey (NHANES).28 They found that
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weighting the ACCORD-BP sample to reflect the diabetes patient sample in NHANES

yielded intervention effects more similar to those observed in the SPRINT trial of non-

diabetes patients than in the unweighted ACCORD-BP trial. We use this previously

demonstrated application of transportability methods to ACCORD-BP as a real-world

application of the entropy balancing (CAL) methods described here. In our applied example,

we transport four-year post randomization risk difference estimates of total mortality

observed in the ACCORD-BP trial26 to a sample of US diabetes patients drawn from the

NHANES cohort.28 We use two methods for transporting the results of ACCORD-BP to

NHANES - IOSW and entropy balancing (CAL). Furthermore, using entropy balancing we

provide confidence intervals about the target sample average treatment effect and the target

population average treatment effect. Recall that the former estimand does not require any

individual-level data from the NHANES sample.

Table 3 shows covariates (which we set as the balance functions) balanced between

ACCORD-BP and NHANES, their unweighted sample covariate moments from the

NHANES and from the ACCORD-BP data, and the subsequent weighted covariate sample

moments of the ACCORD-BP sample after balancing. Compared to ACCORD-BP, the

NHANES diabetes sample was younger, more likely to be Hispanic and less likely to be

black, more likely to be never smokers, less likely to have a history of myocardial infarction

(MI) but more likely to have a history of congestive heart failure (CHF), and had a shorter

duration of diabetes and better glycemic control (indicated by hemoglobin A1c) (Table 3).

Many of the differences in covariate distributions reflect that ACCORD trial eligibility

criteria focused on those with relatively long duration of diabetes and high prevalence of

cardiovascular risk factors. Of note, the intensive blood pressure control intervention had a

smaller benefit in individuals with pre-existing cardiovascular disease in the SPRINT trial,

making it plausible that differences between the ACCORD-BP population and a general

population of diabetes patients might modify the effect of the blood pressure intervention.27

In another study using data from NHANES, hemogloblin A1c was associated with increased

risk of all-cause and cause-specific mortality.29 Zoungas et al.30 show that diabetes duration

is associated with death while McEwen et al.31 identified multiple predictors of total

mortality such as race, age, and previous cardiovascular events among diabetic patients.

These previous findings imply that numerous factors might have the potential for

confounding the relationship between sampling and the outcome. The differences in baseline

covariates between ACCORD-BP and NHANES are reduced after balancing with both CAL

and IOSW. However, the covariate sample moments after CAL weighting consistently

matched the NHANES sample more closely than after IOSW weighting (Table 3, Figure 3).

Small residual differences remain between NHANES and the weighted ACCORD-BP

sample, for example with triglycerides and high density lipoproteins (Figure 3).

The ACCORD-BP study originally found an increase in four-year mortality of 0.59% [95%

CI:(−0.75%, 1.93%)] in the intensive treatment group. After weighting the ACCORD-BP

responses with inverse odds of sampling weights estimated with maximum likelihood, the

estimated risk difference on the NHANES population is −1.35% [95% CI: (−3.5%, 0.8%)].

Using CAL, we observe a risk difference of −0.04% [95% CI: (−1.80%, 1.71%)] where the

confidence interval corresponds to the NHANES sample average treatment effect. The 95%
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confidence interval for the NHANES population average treatment effect is (−1.94%,

1.86%) when using the individual level covariate data from the NHANES sample.

Though the total mortality is insignificant at a 0.05 level of significance, regardless of

method, we see changes in the risk difference estimate. The original analysis found an

increase in mortality among the intensively treated patients. IOSW weights yielded a

decreased total mortality among intensively treated patients in the NHANES population,

while CAL weights yielded a nearly null result. These differences seem to indicate the

presence of effect modifiers contributing to the effect of blood pressure treatment intensity

on mortality. Notice also that the population level estimate is the same as the sample level

estimate using entropy balancing. However, the width of the confidence interval is wider for

the population level estimate. Nevertheless, the population level estimate from the CAL

approach is still narrower than the estimated confidence interval produced by the IOSW

approach, indicating an increase in efficiency.

6 | DISCUSSION

In this article we have described a doubly-robust method for transporting experimental

results borrowed from the entropy optimization literature. We also borrow results from the

indirect comparison literature, which allows us to relax the conditional constancy of absolute

effects assumption typically applied in the transportability literature and focus our efforts on

modeling relative effects with effect modifiers rather than the absolute effects which require

both the effect modifiers and any prognostic variables.1,16 However, if the sampling model is

incorrect, then we would need the conditional constancy of absolute effects assumption to

hold in order to get consistent estimates given the doubly-robust property. As a result more

emphasis should be placed on correctly specifying the sampling model over the outcome

model if modelling choices begin to deviate. The entropy balancing methodology may

operate in two settings - when we are presented with the complete individual-level data of

the trial sample and either the individual-level covariate data or the covariate sample

moments of the target sample. The distinction between the two settings amounts to inferring

upon the target population average treatment effect versus the target sample average

treatment effect. We showed entropy balancing to be an efficient causal effect estimator in

finite-samples through simulation. We also compared two methods for transporting the

ACCORD-BP study to the NHANES population. These numerical examples demonstrate

some of the practical implications of our work.

The drawback to using entropy balancing for transportability is with the algorithm’s rate of

convergence. In small samples, the probability that a feasible weighting solution exists

decreases, particularly when the positivity assumption is practically violated. One solution

applied to covariate balance problems is to use inequality constraints to mitigate treatment

group heterogeneity.9 This solution is most useful in high-dimensional settings. There may

also be a way to incorporate the method of moment balancing weights into the TMLE

framework by substituting γMOM for γPS in (5). This could eventually set up a targeted

maximum likelihood-type estimator that can operate in the setting where we do not have any

individual-level data from the target population. In the case where convergence failure

occurs due to a high dimension of potential effect modifiers relative to the trial sample size,
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one should carefully consider balance diagnostics between trial participants and non-

participants in much the same way as one identifies potential confounders in an

observational study.32,33 Additional sensitivity analyses should be employed intermittently

to ensure that every effect modifier is accounted for.34 In the case of positivity violations, it

seems that methods that employ more direct implementations of an outcome model, such as

the G-compuation and DR approaches, fair better given their ability to extrapolate over the

covariate space. Violations of Assumptions 1 and 3 pose a more difficult challenge to

evaluate as these assumptions are untestable. Expert level knowledge of the domain area are

necessary to ensure that these assumptions will hold with the preferred transportability

model.

Future work will address two additional data settings not evaluated here. First, the setting

where the target sample contains data from a second randomized experiment, including both

the individual-level outcome and the treatment assignment. The process of combining

experiments, termed as data-fusion, is beyond what we discuss in this paper but is

nevertheless an important problem which we would like to approach with entropy balancing

in future research. A second direction for future work is to examine methods for

transportability between two observational samples, rather than assuming availability of

randomized clinical trial data for the trial sample.35 In this situation, we would also need to

model the probability of treatment within the the observational study representing the “trial”

sample. We might also seek to relax Assumptions 4 and 5 using a nonparametric setup to the

problem similar to the sieve approach but instead applied to transportability.12,13 Finally,

while the average treatment effect estimands under consideration in this manuscript are

applicable to various outcomes, including a binary one, more work is needed to generalize

many of these estimators to accommodate a non-linear link function for the outcome model.

In summary, entropy balancing provides an approach to transportability that is flexible

regarding the applicable data settings and exhibits double robustness in specific scenarios. In

particular, entropy balancing yields more precise effect estimates across a range of

simulation scenarios when the target population is large than alternative methods using only

covariate sample moments from the target population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

A SIMULATION CODE

Code for reproducing the simulation experiment conducted in Section 4.1 is available at the

following address: https://github.com/kevjosey/transport-sim. All data analyzed in this study

are publicly available to investigators with approved human subjects approval via the US

National Institutes of Health, National Heart, Lung, and Blood Institutes, Biologic Specimen

and Data Repository Information Coordinating Center (ACCORD Study, https://

biolincc.nhlbi.nih.gov/studies/accord/) or the US National Center for Health Statistics

(NHANES, https://www.cdc.gov/nchs/nhanes/). Statistical code for creating analytic

datasets and for performing analyses are available from the authors upon request.

References

1. Rudolph KE, van der Laan MJ. Robust estimation of encouragement design intervention effects
transported across sites. Journal of the Royal Statistical Society: Series B (Statistical
Methodology)2017; 79(5): 1509–1525. 10.1111/rssb.12213 [PubMed: 29375249]

2. Signorovitch JE, Wu EQ, Yu AP, et al. Comparative Effectiveness Without Head-to-Head Trials.
PharmacoEconomics2010; 28(10): 935–945. 10.2165/11538370-000000000-00000 [PubMed:
20831302]

3. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models.
Biometrics2005; 61(4): 962–973. 10.1111/j.1541-0420.2005.00377.x [PubMed: 16401269]

4. Hartman E, Grieve R, Ramsahai R, Sekhon JS. From sample average treatment effect to population
average treatment effect on the treated: combining experimental with observational studies to
estimate population treatment effects. Journal of the Royal Statistical Society: Series A (Statistics in
Society)2015; 178(3): 757–778. 10.1111/rssa.12094

5. Zhang Z, Nie L, Soon G, Hu Z. New methods for treatment effect calibration, with applications to
non-inferiority trials. Biometrics2016; 72(1): 20–29. 10.1111/biom.12388 [PubMed: 26363775]

6. Phillippo DM, Ades AE, Dias S, Palmer S, Abrams KR, Welton NJ. Methods for Population-
Adjusted Indirect Comparisons in Health Technology Appraisal. Medical Decision Making2018;
38(2): 200–211. 10.1177/0272989X17725740 [PubMed: 28823204]

7. Hainmueller JEntropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce
Balanced Samples in Observational Studies. Political Analysis2012; 20(1): 25–46. 10.1093/pan/
mpr025

8. Imai K, Ratkovic M. Covariate balancing propensity score. Journal of the Royal Statistical Society:
Series B (Statistical Methodology)2014; 76(1): 243–263. 10.1111/rssb.12027

9. Wang Y, Zubizarreta JR. Minimal dispersion approximately balancing weights: asymptotic
properties and practical considerations. Biometrika2020; 107(1): 93–105. 10.1093/biomet/asz050

10. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies.
Journal of Educational Psychology1974; 66(5): 688–701. 10.1037/h0037350

11. Imai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists
about causal inference. Journal of the Royal Statistical Society: Series A (Statistics in
Society)2008; 171(2). 10.1111/j.1467-985X.2007.00527.x

12. Hirano K, Imbens GW, Ridder G. Efficient Estimation of Average Treatment Effects Using the
Estimated Propensity Score. Econometrica2003; 71(4): 1161–1189. 10.1111/1468-0262.00442

13. Chan KCG, Yam SCP, Zhang Z. Globally efficient non-parametric inference of average treatment
effects by empirical balancing calibration weighting. Journal of the Royal Statistical Society:
Series B (Statistical Methodology)2016; 78(3): 673–700. 10.1111/rssb.12129 [PubMed:
27346982]

14. Deville JC, Särndal CE. Calibration Estimators in Survey Sampling. Journal of the American
Statistical Association1992; 87(418): 376–382. 10.1080/01621459.1992.10475217

Josey et al. Page 19

Stat Med. Author manuscript; available in PMC 2022 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/kevjosey/transport-sim
https://biolincc.nhlbi.nih.gov/studies/accord/
https://biolincc.nhlbi.nih.gov/studies/accord/
https://www.cdc.gov/nchs/nhanes/


15. Pearl J, Bareinboim E. External Validity: From Do-Calculus to Transportability Across
Populations. Statistical Science2014; 29(4): 579–595.

16. Dahabreh IJ, Robertson SE, Steingrimsson JA, Stuart EA, Hernán MA. Extending inferences from
a randomized trial to a new target population. Statistics in Medicine2020; 39(14): 1999–2014.
10.1002/sim.8426 [PubMed: 32253789]

17. Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for
causal effects. Biometrika1983; 70(1): 41–55. 10.1093/biomet/70.1.41

18. Phillippo DM, Dias S, Ades AE, Welton NJ. Equivalence of entropy balancing and the method of
moments for matching-adjusted indirect comparison. Research Synthesis Methods2020; 11(4):
568–572. [PubMed: 32395870]

19. Westreich D, Edwards JK, Lesko CR, Stuart E, Cole SR. Transportability of Trial Results Using
Inverse Odds of Sampling Weights. American Journal of Epidemiology2017; 186(8): 1010–1014.
10.1093/aje/kwx164 [PubMed: 28535275]

20. Robins JA new approach to causal inference in mortality studies with a sustained exposure period
—application to control of the healthy worker survivor effect. Mathematical Modelling1986; 7(9):
1393–1512. 10.1016/0270-0255(86)90088-6

21. Robins JM, Rotnitzky A, Zhao LP. Estimation of Regression Coefficients When Some Regressors
are not Always Observed. Journal of the American Statistical Association1994; 89(427): 846–866.
10.1080/01621459.1994.10476818

22. van der Laan MJ, Rubin D. Targeted Maximum Likelihood Learning. The International Journal of
Biostatistics2006; 2(1). 10.2202/1557-4679.1043

23. Zhao Q, Percival D. Entropy Balancing is Doubly Robust. Journal of Causal Inference2017; 5(1).
10.1515/jci-2016-0010

24. Josey KP, Juarez-Colunga E, Yang F, Ghosh D. A Framework for Covariate Balance using
Bregman Distances. Scandinavian Journal of Statistics2020. 10.1111/sjos.12457

25. Dong L, Yang S, Wang X, Zeng D, Cai J. Integrative analysis of randomized clinical trials with real
world evidence studies. 2020. https://arxiv.org/abs/2003.01242v1.

26. ACCORD Study Group . Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus.
New England Journal of Medicine 2010; 362(17): 1575–1585. 10.1056/NEJMoa1001286

27. SPRINT Research Group. A Randomized Trial of Intensive versus Standard Blood-Pressure
Control. New England Journal of Medicine2015; 373(22): 2103–2116. 10.1056/NEJMoa1511939

28. Berkowitz SA, Sussman JB, Jonas DE, Basu S. Generalizing Intensive Blood Pressure Treatment
to Adults With Diabetes Mellitus. Journal of the American College of Cardiology2018; 72(11):
1214–1223. 10.1016/j.jacc.2018.07.012 [PubMed: 30189998]

29. Palta P, Huang ES, Kalyani RR, Golden SH, Yeh HC. Hemoglobin A1c and Mortality in Older
Adults With and Without Diabetes: Results From the National Health and Nutrition Examination
Surveys (1988–2011). Diabetes Care2017; 40(4): 453–460. 10.2337/dci16-0042 [PubMed:
28223299]

30. Zoungas S, Woodward M, Li Q, et al. Impact of age, age at diagnosis and duration of diabetes on
the risk of macrovascular and microvascular complications and death in type 2 diabetes.
Diabetologia2014; 57(12): 2465–2474. 10.1007/s00125-014-3369-7 [PubMed: 25226881]

31. McEwen LN, Karter AJ, Waitzfelder BE, et al. Predictors of mortality over 8 years in type 2
diabetic patients: Translating Research Into Action for Diabetes (TRIAD). Diabetes Care2012;
35(6): 1301–1309. 10.2337/dc11-2281 [PubMed: 22432119]

32. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Stürmer T. Variable Selection for
Propensity Score Models. American Journal of Epidemiology2006; 163(12): 1149–1156.
10.1093/aje/kwj149 [PubMed: 16624967]

33. Westreich D, Cole SR, Funk MJ, Brookhart MA, Stürmer T. The role of the c-statistic in variable
selection for propensity score models. Pharmacoepidemiology and Drug Safety2011; 20(3): 317–
320. 10.1002/pds.2074 [PubMed: 21351315]

34. Nguyen TQ, Ackerman B, Schmid I, Cole SR, Stuart EA. Sensitivity analyses for effect modifiers
not observed in the target population when generalizing treatment effects from a randomized
controlled trial: Assumptions, models, effect scales, data scenarios, and implementation details.
PLOS ONE2018; 13(12): e0208795. 10.1371/journal.pone.0208795 [PubMed: 30533053]

Josey et al. Page 20

Stat Med. Author manuscript; available in PMC 2022 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/2003.01242v1


35. Josey KP, Yang F, Ghosh D, Raghavan S. A Calibration Approach to Transportability with
Observational Data. arXiv preprint arXiv:2008.066152020.

Josey et al. Page 21

Stat Med. Author manuscript; available in PMC 2022 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1.
Square nodes represent populations whereas circular nodes represent samples. The solid

arrow represents a subsetting of the origin node. The dashed line represents the process of

generalizability (A) and transportability (B).
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FIGURE 2.
Estimates of the target population average treatment effects over the 1000 iterations of the

simulation study described in Section 4.1. The dashed line demarcates the true target

population average treatment effect for each scenario while the x is the average of the

estimates. These estimates are drawn from cases when n1 = 200 and n0 = 500.
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FIGURE 3.
Absolute standardized mean differences for various weighting estimators between NHANES

and ACCORD. The red dotted line demarcates an absolute standardized mean difference of

0.1.
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TABLE 1

Average bias and (mean squared error) of τTATE estimates. The scenarios where n1 = 200 and n0 = 500 are

detailed in Figure 2.

n 0 n 1 Scenario τ TATE IOSW OM DR TMLE MOM CAL

500 1000 baseline −0.1 0.03 (0.47) 0.00 (0.09) 0.00 (0.10) 0.00 (0.10) 0.00 (0.33) 0.00 (0.10)

500 1000 missing −0.1 0.23 (0.48) 0.19 (0.16) 0.19 (0.17) 0.19 (0.17) 0.19 (0.36) 0.19 (0.17)

500 1000 outcome 8.9 −0.03 (0.41) −1.44 (2.23) −0.08 (0.72) −0.03 (0.26) −0.05 (0.24) −0.08 (0.20)

500 1000 positivity −0.3 0.27 (1.51) −0.01 (0.08) −0.01 (0.19) −0.01 (0.38) 0.00 (0.81) −0.01 (0.19)

500 1000 sample 4.5 0.64 (3.61) 0.00 (0.03) 0.00 (0.05) −0.02 (0.59) 0.00 (0.06) 0.00 (0.04)

500 1000 sparse −0.1 0.08 (1.18) −0.01 (0.11) −0.01 (0.16) −0.02 (0.20) −0.03 (0.63) −0.01 (0.16)

1000 200 baseline −0.1 0.15 (2.04) 0.00 (0.14) 0.00 (0.18) −0.01 (0.18) −0.02 (1.18) −0.01 (0.18)

1000 200 missing −0.1 0.30 (1.94) 0.18 (0.27) 0.20 (0.33) 0.20 (0.33) 0.19 (1.07) 0.20 (0.33)

1000 200 outcome 8.9 −0.10 (1.66) −1.45 (2.87) −0.22 (2.87) −0.15 (1.14) −0.15 (0.87) −0.26 (0.76)

1000 200 positivity −0.3 0.91 (4.80) 0.03 (0.24) 0.05 (0.49) 0.05 (3.10) 0.11 (3.17) 0.08 (0.62)

1000 200 sample 3.2 0.37 (2.63) −0.01 (0.10) −0.01 (0.14) 0.07 (1.57) 0.00 (0.20) −0.01 (0.13)

1000 200 sparse −0.1 0.31 (4.14) −0.01 (0.20) −0.01 (0.37) −0.01 (0.84) −0.05 (2.67) 0.00 (0.41)

1000 1000 baseline −0.1 0.01 (0.48) 0.00 (0.06) 0.00 (0.07) 0.00 (0.07) −0.02 (0.29) 0.00 (0.07)

1000 1000 missing −0.1 0.21 (0.46) 0.19 (0.11) 0.19 (0.13) 0.19 (0.13) 0.19 (0.30) 0.19 (0.13)

1000 1000 outcome 8.9 −0.03 (0.43) −1.41 (2.14) −0.06 (0.75) −0.03 (0.23) −0.05 (0.23) −0.08 (0.20)

1000 1000 positivity −0.3 0.19 (1.74) 0.00 (0.06) 0.00 (0.16) −0.01 (0.31) −0.01 (0.81) 0.00 (0.16)

1000 1000 sample 4.0 0.78 (4.22) 0.00 (0.02) −0.01 (0.04) −0.12 (1.89) −0.01 (0.04) −0.01 (0.03)

1000 1000 sparse −0.1 0.12 (1.03) −0.01 (0.07) −0.01 (0.12) −0.01 (0.14) 0.00 (0.57) −0.01 (0.11)
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TABLE 2

Coverage Probabilities of τTSATE and τTATE using Entropy Balancing and Outcome Modeling Techniques.

n 0 n 1
 Without Individual Level Data With Individual Level Data

MOM τTSATE MOM τTATE CAL τTSATE CAL τTATE MOM τTATE CAL τTATE

500 1000 0.926 0.882 0.929 0.623 0.937 0.943

500 10000 0.956 0.667 0.936 0.289 0.948 0.960

1000 1000 0.922 0.897 0.938 0.761 0.928 0.951

1000 10000 0.929 0.770 0.938 0.372 0.945 0.942

10000 1000 0.928 0.923 0.930 0.902 0.923 0.929

10000 10000 0.930 0.912 0.960 0.791 0.935 0.958
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TABLE 3

Values are mean ± SD or %. Means and percentages for NHANES are nationally representative using

NHANES sampling weights.

Variables NHANES ACCORD-BP IOSW ACCORD-BP CAL ACCORD-BP

Baseline age, yrs 59.65 ± 13.70 62.84 ± 6.74 61.50 ± 6.66 59.61 ± 6.91

Female 48.9 47.1 48.0 48.9

Race/Ethnicity

Non-Hispanic white 62.6 58.7 51.6 62.5

Non-Hispanic black 15.2 24.0 19.6 15.2

Hispanic 15.2 6.8 22.3 15.2

Asian/multi/other 7.0 10.5 6.5 7.1

Insurance 86.8 85.0 84.6 86.6

Smoking status

Never 51.4 44.6 52.9 51.4

Former 33.1 42.6 30.9 33.1

Current 15.5 12.8 16.2 15.5

Education

Less than HS 25.7 16.3 30.9 25.7

HS diploma 27.1 27.0 26.4 27.1

Some college 29.3 32.4 26.5 29.3

College diploma or higher 17.9 24.3 16.2 17.9

History of CHF 7.7 4.2 11.0 7.7

History of MI 10.5 13.6 11.4 10.5

History of stroke 7.9 6.4 7.5 7.8

Years with diabetes 7.49 ± 9.20 10.88 ± 7.83 10.05 ± 7.26 7.50 ± 6.51

BMI, kg/m2 32.80 ± 7.31 32.10 ± 5.47 32.07 ± 5.52 32.80 ± 5.78

SBP, mm Hg 130.05 ± 19.15 139.33 ± 15.61 133.94 ± 14.42 129.67 ± 13.98

DBP, mm Hg 69.50 ± 12.96 75.86 ± 10.28 71.53 ± 9.57 69.44 ± 9.55

HDL, mg/dl 49.11 ± 13.46 46.049 ± 13.68 51.60 ± 17.24 49.08 ± 17.72

LDL, mg/dl 103.83 ± 36.03 110.70 ± 36.52 105.42 ± 31.33 103.59 ± 33.31

Triglycerides, mg/dl 148.93 ± 76.13 193.36 ± 174.21 125.40 ± 68.01 147.21 ± 95.52

FPG, mg/dl 151.88 ± 54.62 174.81 ± 57.66 171.54 ± 57.47 151.11 ± 47.30

HbA1c, % 7.16 ± 1.64 8.34 ± 1.09 7.94 ± 0.95 7.16 ± 0.75

Estimated GFR, ml/min 87.46 ± 28.11 91.64 ± 29.83 84.99 ± 21.16 87.31 ± 22.66

Urine albumin to creatinine ratio 75.44 ± 481.68 93.84 ± 333.81 105.89 ± 427.60 45.32 ± 204.57
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