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Aims Coronary artery disease is frequently diagnosed following evaluation of stable chest pain with anatomical or func-
tional testing. A more granular understanding of patient phenotypes that benefit from either strategy may enable
personalized testing.

...................................................................................................................................................................................................
Methods
and results

Using participant-level data from 9572 patients undergoing anatomical (n = 4734) vs. functional (n = 4838) testing in
the PROMISE (PROspective Multicenter Imaging Study for Evaluation of Chest Pain) trial, we created a topological
representation of the study population based on 57 pre-randomization variables. Within each patient’s 5% topo-
logical neighbourhood, Cox regression models provided individual patient-centred hazard ratios for major adverse
cardiovascular events and revealed marked heterogeneity across the phenomap [median 1.11 (10th to 90th per-
centile: 0.52–2.61]), suggestive of distinct phenotypic neighbourhoods favouring anatomical or functional testing.
Based on this risk phenomap, we employed an extreme gradient boosting algorithm in 80% of the PROMISE popu-
lation to predict the personalized benefit of anatomical vs. functional testing using 12 model-derived, routinely col-
lected variables and created a decision support tool named ASSIST (Anatomical vs. Stress teSting decIsion Support
Tool). In both the remaining 20% of PROMISE and an external validation set consisting of patients from SCOT-
HEART (Scottish COmputed Tomography of the HEART Trial) undergoing anatomical-first vs. functional-first
assessment, the testing strategy recommended by ASSIST was associated with a significantly lower incidence of
each study’s primary endpoint (P = 0.0024 and P = 0.0321 for interaction, respectively), as well as a harmonized
endpoint of all-cause mortality or non-fatal myocardial infarction (P = 0.0309 and P < 0.0001 for interaction,
respectively).

...................................................................................................................................................................................................
Conclusion We propose a novel phenomapping-derived decision support tool to standardize the selection of anatomical vs.

functional testing in the evaluation of stable chest pain, validated in two large and geographically diverse clinical trial
populations.
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Graphical Abstract

A novel phenomapping approach, trained and validated in patients from two large randomized clinical trials, evaluated the clinical value of coronary com-
puted tomography vs. functional testing to individualize the selection of the appropriate diagnostic test for stable chest pain. CAD, coronary artery disease;
ECG, electrocardiogram.
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Introduction

Nearly 200 million people globally suffer from coronary artery dis-
ease (CAD),1 half of whom initially present with chest pain.2 The op-
timal non-invasive diagnostic strategy for chest pain in patients with
suspected stable CAD is clinically important to define, yet remains
uncertain.3 PROMISE (PROspective Multicenter Imaging Study for
Evaluation of Chest Pain)4 and SCOT-HEART (Scottish COmputed
Tomography of the HEART Trial)5,6 have recently demonstrated
that anatomical imaging has comparable outcomes to stress testing
and may improve long-term outcomes when used in addition to
standard of care including stress testing. This allowed computed tom-
ography coronary angiography (CTCA) to gain traction as an alterna-
tive to functional testing.7,8 However, the choice between these two
strategies remains arbitrary, despite over 14 000 randomized individ-
uals across these large, well-conducted trials. This clinical equipoise is
evident in the recent European Society of Cardiology (ESC) guide-
lines that assign a Class I recommendation to both CTCA and non-in-
vasive functional testing as appropriate initial tests to diagnose CAD
in symptomatic patients.9

The PROMISE trial remains the largest randomized controlled trial
to have compared CTCA with functional testing in low-risk symp-
tomatic patients with stable chest pain,4 and included 10 003 individu-
als followed for a median 25 months.4 However, subsequent analyses
have revealed evidence of heterogeneity across broad subgroups,
with women compared with men, and patients with diabetes com-
pared with those without diabetes experiencing fewer adverse car-
diovascular events with anatomical testing than with functional
testing.10–12

Nevertheless, broad subgroup assessments do not account for
large variation in demographic and clinical features within such sub-
groups. Therefore, there are no tools that support individualization
of the expected benefit of anatomical and functional testing based on
each patient’s unique phenotype, which is essential for shared deci-
sion-making.

In this study, we developed a method that evaluates the phenotyp-
ic diversity of patients presenting with stable chest pain as well as
their optimal non-invasive testing strategy based on each patient’s
unique set of pre-randomization characteristics, and subsequent out-
comes, using individual patient data from two major clinical trials
investigating the clinical value of anatomical testing in the evaluation
of chest pain (Graphical abstract).

Methods

Data source
We obtained participant-level data of the PROMISE trial through the
National Heart, Lung and Blood Institute. Details of the PROMISE trial
have been previously published.4 Briefly, PROMISE (ClinicalTrials.gov
identifier: NCT01174550) recruited 10 003 patients from multiple
centres in the USA and Canada who were randomized to either anatom-
ical (CTCA) or functional testing (including exercise electrocardiography,
nuclear stress testing, or stress echocardiography).4 The Yale Institutional
Review Board approved our study and waived the requirement for
informed consent for our post hoc analysis of de-identified data. SCOT-
HEART (ClinicalTrials.gov identifier: NCT01149590) enrolled 4146
patients from 122 cardiology chest pain clinics across Scotland and

randomized to CTCA in addition to standard care compared with stand-
ard care alone for the evaluation of stable chest pain, as previously
described.5,6 The dataset was made available through a collaboration
with the original study investigators. We confirm that the present study
complied with the Declaration of Helsinki.

Study population and covariates
In PROMISE, we identified all individuals who underwent initial assess-
ment with anatomical or functional testing, consistent with their original
randomized assignment. This represented 9572 of the 10 003 original
participants. We included patient characteristics available at trial enrol-
ment, including demographics (age, sex, race, ethnicity), anthropometrics
[body mass index (BMI)], cardiovascular risk factors (systolic and diastolic
blood pressure, hypertension, diabetes mellitus, smoking status, family
history), laboratory measurements (haemoglobin, creatinine, lipid panel),
medications, presenting symptoms (i.e. chest pain, shortness of breath),
chest pain characteristics (typical, atypical, non-cardiac), electrocardio-
graphic parameters (i.e. rhythm, Q waves, findings interfering with stress
test interpretation), and clinical risk scores (pooled cohort equation-
derived 10-year atherosclerotic cardiovascular disease risk13 and modi-
fied Diamond-Forrester risk for obstructive CAD14). We excluded varia-
bles from model development if they were missing in over half of the
participants (included/excluded variables listed in Supplementary material
online, Table S1) or if they were recorded after study initiation.15 We
imputed missing data for the included variables using chained random for-
ests with predictive mean matching.16 Following imputation, we trans-
formed continuous variables into standardized scores (z-scores) by
subtracting their mean and dividing by their respective standard deviation
(Supplementary material online, Methods).

In SCOT-HEART, we identified a subpopulation that underwent diag-
nostic evaluation of chest pain similar to PROMISE. This subpopulation
included individuals in the CTCA arm who underwent anatomical testing
without antecedent stress electrocardiogram (ECG) in clinic (anatomical-
first arm). In the control arm that did not undergo CTCA, we identified
all individuals with an initial stress test, across all modalities of stress ECG,
radionuclide perfusion, stress echocardiography, or stress magnetic res-
onance imaging (functional-first arm).

Study outcomes
To ensure consistency with the original trials, we used each study’s pre-
specified primary endpoint. In PROMISE, our primary study population,
we trained our models using a composite of death, myocardial infarction
(MI), unstable angina hospitalization, or major procedural complication
(major adverse cardiovascular events [MACE]).4 In SCOT-HEART, the
primary endpoint was a composite of death due to coronary heart dis-
ease and non-fatal MI.6

Further, to harmonize the two studies for validation of our algorithm,
we also identified a secondary composite endpoint of all-cause mortality
and non-fatal MI that was captured in both studies.

Defining phenotypic neighbourhoods
In PROMISE, we computed a dissimilarity index that classified individuals
based on 57 pre-randomization characteristics according to the Gower
distance, a metric of dissimilarity between two patients based on mixed
numeric and non-numeric data.17 For each patient in PROMISE, we iden-
tified a topological neighbourhood of the 5% most phenotypically similar
participants based on Gower’s distance. In sensitivity analyses, we itera-
tively evaluated random neighbourhood sizes between 2.5% and 10%,
assessing the correlation of effect estimates in these iterations with those
derived from the 5% neighbourhood size (see Supplementary material
online, Methods).
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Individualized risk phenomapping
Within each patient-centred neighbourhood, we assessed the association
of undergoing anatomical vs. functional testing with MACE in age- and
sex-adjusted Cox regression models, thus providing individualized risk
estimates based on each patient’s unique neighbourhood. The natural
logarithmic transformations of the hazard ratio (HR) from the Cox mod-
els comparing anatomical and functional testing for each patient’s topo-
logical neighbourhood represented their individualized effect estimate. In
our approach, negative log-HRs favour anatomical testing, whereas posi-
tive values favour functional testing.

Furthermore, since an unbiased personalized effect estimate is contin-
gent upon the similarity of individuals in their topological neighbour-
hoods, we created a measure of neighbourhood homogeneity. This
represented the square of 1 minus the average pairwise distance between
the index patient and each one of their neighbours, with higher values
reflecting a neighbourhood of phenotypically more similar patients.

To visualize the phenotypic variation in the PROMISE population and
neighbourhoods we used uniform manifold approximation and projec-
tion (UMAP),18 which constructs a two-dimensional representation of
the high-dimensional feature space. We employed colour maps to visual-
ize the topological distribution of the patient baseline demographics and
neighbourhood estimates in the phenomap.

We demonstrated the ability of our approach to detect heterogeneity
in treatment effects using examples of individuals sharing a key set of fea-
tures (age, sex, traditional risk factors) but differing on other baseline
characteristics.

Extreme gradient boosting algorithm to

predict the benefit of anatomical testing
To translate the heterogeneity in treatment effect across the PROMISE
phenomap to a clinical population, we constructed an extreme gradient
boosting algorithm to predict the personalized risk of MACE with ana-
tomical vs. functional testing (natural logarithm of the neighbourhood
HR) using variables, which were available in >_50% of participants in both
PROMISE and SCOT-HEART, spanning demographics, comorbidities, la-
boratory testing, vitals, and medications with implications for anatomical
or functional testing. This process yielded 21 variables including key
demographics (age, sex), risk factors (smoking, family history of CAD,
hypertension, diabetes mellitus, total cholesterol, high-density lipopro-
tein, statin use), anthropometrics (BMI, systolic and diastolic blood pres-
sure), cerebrovascular and peripheral vascular disease, ECG findings
(rhythm, Q waves, findings interfering with stress test interpretation, as
defined in PROMISE),4 and use of antiplatelets and beta-blockers.

We randomly divided the PROMISE population into training (80%,
n = 7660) and internal validation (20%, n = 1912) sets. Data pre-process-
ing, parameter set-up, and hyperparameter tuning are described in the
Supplementary material online, Methods. Briefly, we trained the extreme
gradient boosting algorithm to identify patient characteristics that were
strongly associated with improved outcomes (patient-centred log-haz-
ards) for anatomical or functional testing. We used root mean squared
error to evaluate our model performance, identified the optimal hyper-
parameters using a grid search, and implemented 10-fold cross-validation.
We evaluated feature importance using SHAP (SHapley Additive
exPlanations) values,19 which identify a predictor contribution, either
positively or negatively, to the prediction.

To improve the model practical application, we selected features that
were strongly associated with improved outcomes with either anatomical
or functional testing based on a feature importance of 0.03 or higher,
resulting in 12 features. We retrained our model using these limited set
of features, using 10-fold cross-validation in the 80% of PROMISE, fol-
lowed by further validation in the remaining (unseen) 20% of PROMISE.

This machine learning-derived parsimonious model trained on 12 fea-
tures represented ASSIST (Anatomical vs. Stress teSting decIsion
Support Tool). Negative ASSIST values (<0) predicted improved out-
comes with anatomical-first assessment, whereas positive ASSIST values
(>0) favoured functional-first assessment.

External validation and performance of

ASSIST
We validated the decision support tool, ASSIST, externally in a selected
subset of SCOT-HEART that underwent anatomical-first vs. functional-
first assessment. As the SCOT-HEART subset represented a selected
population with the potential for intervention and covariate imbalance, in
a sensitivity analysis, we created propensity score-matched subgroups of
patients undergoing anatomical or functional testing (Supplementary ma-
terial online, Methods).

Statistical analyses
We compared the two treatment groups using Student’s t-test for con-
tinuous variables and chi-square test for categorical variables and used
Pearson’s correlation to assess continuous variables. We performed sur-
vival analyses using Cox proportional-hazards regression. While neigh-
bourhoods were matched on pre-randomization covariates, we explicitly
adjusted Cox models for age and sex. We assessed the association of the
ASSIST recommended testing modality and outcomes through its group-
wise interactions with the two treatment groups in Cox models.
Statistical tests were two-sided with a level of significance of 0.05.
Analyses were performed using R (version 4.0.2) and Python (version
3.8.5). Reporting of the study design and findings stands consistent with
the STROBE (Strengthening the reporting of observational studies in epi-
demiology) guidelines (see checklist in Supplementary material online,
Data).20

Role of the funding source
Funding sources had no involvement in the study design, collection, ana-
lysis, interpretation of the data, or the decision to submit the paper for
publication.

Results

Study population
From PROMISE, we included 9572 patients [age 60.3 ± 8.3 years,
n = 5013 (52.4%) women] with stable chest pain. Of these, 4734
(49.5%) underwent CTCA and the remaining 4838 (50.5%) functional
testing (Figure 1A). Baseline characteristics were balanced between
the two study arms (Supplementary material online, Table S2). Over
a mean follow-up period of 2.1 ± 0.9 years, there were 294 MACE
(primary study outcome), with no significant difference in the primary
outcome in the two arms [adjusted HR 1.03 (95% confidence interval
(CI): 0.82–1.29), P = 0.8159 for anatomical vs. functional testing].

In the external validation dataset from SCOT-HEART, 2135
patients [age 57.1± 9.8 years, n = 949 (44.4%) women] underwent ei-
ther anatomical testing alone (n = 301) or functional testing alone
(n = 1834) (Figure 1B, baseline characteristics in Supplementary ma-
terial online, Table S3). Over an average follow-up of 4.8± 1.1 years, a
total of 74 primary outcome events of coronary heart disease death
or non-fatal MI events were recorded [adjusted HR 0.63 (95% CI
0.29–1.37), P = 0.2411], an effect size consistent with the beneficial
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Figure 1 Alluvial diagram of diagnostic testing in PROMISE and SCOT-HEART. (A) Among 10 003 participants randomized to anatomical vs. func-
tional testing in the PROMISE trial, a total of 4834 vs. 4734 individuals underwent an anatomical vs. functional test as their initial investigation (and
were included in this study), with 402 patients receiving no testing and the remaining 29 undergoing invasive coronary angiography as the initial diag-
nostic test. (B) Among 4146 chest pain patients in SCOT-HEART who were randomized to standard care vs. standard care plus computed tomog-
raphy coronary angiography, a total of 301 patients underwent computed tomography coronary angiography imaging without baseline stress
electrocardiography vs. 1834 patients who underwent stress/functional testing as their initial investigation without the addition computed tomog-
raphy coronary angiography. CTCA, computed tomography coronary angiography; ECG, electrocardiography; PROMISE, PROspective Multicenter
Imaging Study for Evaluation of Chest Pain; SCOT-HEART, Scottish COmputed Tomography of the HEART Trial.

2540 E.K. Oikonomou et al.
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role of CTCA seen in the original trial (Supplementary material on-
line, Figure S1).

Phenomapping the stable chest pain in
PROMISE
We first created a phenomap of our study population using a pair-
wise dissimilarity metric derived from 57 pre-randomization pheno-
typic characteristics and visualized it as a two-dimensional manifold
representation. Based on visual assessment, the two treatment arms
were distributed uniformly throughout the phenotypic space, con-
sistent with their random allocation across the population (Figure 2A)
with varying baseline clinical factors and risk of CAD (Figure 2B).

Distribution of neighbourhood-based
individualized risk estimates
Patient-specific neighbourhoods for each of the 9572 included
PROMISE participants, included 5% of the population in their topo-
logical vicinity, with a wide distribution of neighbourhood-specific
risk effect estimates (Supplementary material online, Figure S2). The
median neighbourhood-specific HR for MACE was 1.11 with 10th,
25th, 75th, and 90th percentiles of 0.52, 0.76, 1.67, and 2.61, respect-
ively. A projection of each person’s individual effect estimate on the
phenomap suggested distinct topological neighbourhoods favouring
anatomical or functional testing (Figure 2C and D). There was also
variation in both the direction of the effect and the effect size for dif-
ferent endpoints across the topological space of the study
population.

In sensitivity analyses for variable neighbourhood sizes (2.5%, 5%,
7.5%, 10%, 15% of the study population), an increasing neighbour-
hood size was associated with a narrower distribution of individual
risk estimates around the average treatment effect across the cohort
(HR 1.03), representing loss of risk heterogeneity observed at larger
neighbourhood sizes. The larger neighbourhood, however, also com-
pared dissimilar individuals with decreasing neighbourhood homo-
geneity based on increasing mean distances (Supplementary material
online, Figure S3). Random iterations for various neighbourhood sizes
between 2.5% and 10% showed that the average effect size
was strongly correlated with that derived from 5% neighbourhoods
[r = 0.72 (95% CI 0.71–0.73)] (Supplementary material online,
Figure S4).

Using risk phenomap for individualized
risk prediction
To demonstrate an example of individualized risk estimation using
the phenomap, we identified a subset of three phenotypically similar
PROMISE participants, each of them a 59-year-old woman, with a his-
tory of diabetes and hypertension but not smoking, presenting with
atypical chest pain and a modified pre-test Diamond-Forrester score
of 20%. Despite the above similarities, phenomapping using all 57
included variables (Supplementary material online, Table S4) revealed
that these patients were located in distinct topological neighbour-
hoods (Figure 3A). Each patient’s neighbourhood-specific assessments
identified differential risk/benefit associated with anatomical vs. func-
tional testing, ranging from improved outcomes with functional test-
ing (Figure 3B) to similar outcomes with either strategy (Figure 3C), or
improved outcomes with anatomical imaging (Figure 3D). Of note,

each patient neighbourhood had phenotypically similar patients in
the two study arms (Supplementary material online, Table S5).

The Anatomical vs. Stress teSting
decIsion Support Tool (ASSIST)
In the 80% training set from PROMISE (n = 7660), an extreme gradi-
ent boosting algorithm identified hypertension, diabetes mellitus, use
of beta-blockers, female sex, statin use, smoking history, antiplatelet
use, BMI, age, and cholesterol levels as the predictors with highest
feature importance for relative hazard of MACE with anatomic or
functional testing (Figure 4A). Feature importance analysis suggested
that female sex, hypertension, diabetes mellitus, use of beta-blockers,
and active or former smoking were each associated with improved
outcomes with anatomical testing (Figure 4B), whereas absence of
these risk factors as well as lower BMI and statin use favoured func-
tional testing. Our clinical decision support tool, ASSIST, represents
the extreme gradient model developed using these 12 most import-
ant features. Hold-out validation performance of the parsimonious
12-feature tool was comparable with that of a model relying on all 21
inputs (RMSE of 0.59 vs. 0.57, respectively), while logistically easier to
deploy.

Of note, in both the cross-validated training and testing sets of
PROMISE, there was no association between the ASSIST risk predic-
tion and the allocation to either anatomical or functional testing, con-
sistent with the random allocation to the two arms (Figure 4C and D).

Internal and external validation of
ASSIST
In the remaining 20% PROMISE participants (n = 1912, internal valid-
ation; Figure 5), as well as in the selected unmatched and propensity
score-matched population of SCOT-HEART (external validation;
Figure 6), the ASSIST performed well in identifying the favoured diag-
nostic strategy. In both the internal and external validation sets,
agreement between the ASSIST recommendation (score >0: favour-
ing functional, score <0: favouring anatomical) and the actual test per-
formed was associated with a significantly lower incidence of each
primary composite endpoint (Figures 5A–C and 6A–C, respectively) as
well as the harmonized endpoint of all-cause mortality and non-fatal
MI (Figures 5D–F and 6D–F, respectively), with consistent significant
interaction between the ASSIST-recommended test and performed
strategy (Figures 5 and 6). Findings demonstrated a dose–response re-
lationship in a pooled analysis of the two cohorts (Supplementary
material online, Figure S5) and were also robust to a sensitivity ana-
lysis for all-cause mortality (Supplementary material online, Figure
S6). Of note, a post hoc analysis of individual risk factors in the exter-
nal validation set did not identify patients more likely to have favour-
able outcomes with anatomical vs. functional testing (Pinteraction =
0.7925 for sex, 0.3450 for hypertension, and 0.8474 for diabetes
mellitus).

Discussion

In the largest clinical trial to have evaluated the role of CTCA in the
investigation of stable chest pain, we developed and validated a ma-
chine learning-based decision support tool to guide the selection be-
tween anatomical and functional evaluation. We defined a novel
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strategy that constructs a high-dimensional phenotypic represen-
tation of trial participants, permitting a series of local experiments
within the trial uncovering heterogeneous treatment effects, iden-
tifying individuals who may derive benefit from one strategy over
another. Our approach synthesizes the complex relationship be-
tween a large number of pre-randomization characteristics in cre-
ating and visualizing a comprehensive phenomap of patients, with
an individualized assessment of the risk of adverse cardiovascular
events with anatomical or functional testing for assessing chest
pain. Our new machine learning-derived tool (ASSIST) based on
12 widely available clinical parameters derived from risk pheno-
maps reliably and consistently identified patients who were more

likely to have improved outcomes when assigned to an anatomical
or functional diagnostic strategy.

To date, there has been no consensus on the strategy to choose
between anatomical and functional testing in chest pain evaluation,21

and different clinical practice guidelines provide varying levels and
strengths of recommendation on the use of CTCA vs. functional test-
ing.8,9,22,23 Despite PROMISE and SCOT-HEART, identifying a popu-
lation that may benefit from CTCA or functional testing has been
mostly supported through post hoc analyses in large population sub-
groups, specifically women,10 and patients with diabetes,11 and con-
siderations about CTCA test characteristics, including high
sensitivity,24 but limited specificity in detecting haemodynamically

Figure 2 Phenomapping the patient with chest pain in PROMISE. We present a manifold embedding of the baseline phenotypic variance seen in
the PROMISE chest pain population based on 57 pre-randomization phenotypic traits. (A) Labelling of the phenomap based on the treatment alloca-
tion reveals homogeneous distribution of the two strategies in the topological space, consistent with the random allocation to the two groups. (B) In
contrast, baseline phenotypic traits, such as the pooled cohort equation-derived 10-year ASCVD score were heterogeneously distributed, suggestive
of clustering along a spectrum of baseline risk phenotypes. (C and D) Labelling of the phenomaps with the neighbourhood-derived individualized risk
estimates demonstrated distinct topological neighbourhoods favouring anatomical imaging or functional testing based on the observed risk in
PROMISE. ASCVD, atherosclerotic cardiovascular disease; PROMISE, Prospective Multicenter Imaging Study for Evaluation of Chest Pain.

2542 E.K. Oikonomou et al.



..

..

..

..

..

..

..

.
significant lesions.25 Therefore, the default strategy may be to use
CTCA in individuals at presumably low-to-intermediate risk of
CAD.9 Unfortunately, this approach does not benefit from the know-
ledge gained from the large clinical trials and the extensive phenotyp-
ic variability among trial participants. Our approach overcomes these

limitations through a specific focus on a large feature set and their
complex relationship to each other, therefore deriving a personalized
estimate, as opposed to an average treatment effect across large het-
erogeneous groups. In addition, instead of focusing on the absolute
risk of obstructive disease or myocardial ischaemia, our study

Figure 3 Example of patient phenomapping for personalized risk assessment. Phenomapping of three PROMISE study participants, all 59-year-old
women with a history of diabetes, hypertension who presented with atypical chest pain and a pre-test Diamond-Forrester score of �20%.
Phenomapping revealed that despite the above similarities, the patients were located in spatially distinct areas of the phenomap when accounting for
the multitude of their phenotypic traits (A). Neighbourhood-specific analysis further revealed differential benefit with anatomical vs. functional testing
for each one of these patients (B–D). aHR, adjusted hazard ratio; ASA, aspirin; BMI, body mass index; CCB, calcium channel blocker; CI, confidence
interval; HDL, high-density lipoprotein; PROMISE, PROspective Multicenter Imaging Study for Evaluation of Chest Pain.
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..explores the factors associated with the relative benefit obtained
from anatomical vs. functional testing.

Our study uses a novel approach to achieve these goals. Our
approach leverages the detailed phenotypic characterization of
clinical trial populations at enrolment and the unbiased treatment
allocation to infer a personalized treatment effect. Therefore, it
provides a quantitative evaluation of the heterogeneity of out-
comes, and an assessment whether the average treatment effect

observed in a clinical trial setting applies to a given trial participant.
We also created a visual representation of differences across indi-
viduals enrolled in a clinical trial, allowing interpretability of differ-
ent patients and the observed effects. Our approach builds upon
prior studies that have employed clustering to demonstrate clinical
trial participants have discordant effects.26–29 However, they are
limited in clinical application as they ultimately represent broad
subgroups of patients that differ from each other on many

Figure 4 Developing a decision support tool to predict individualized benefit from anatomical vs. functional testing in chest pain investigation. (A)
In a randomly selected sample of the PROMISE population, we trained an extreme gradient boosting tree to predict the phenomap-derived individu-
alized risk with anatomical vs. functional testing. We identified the most important input features based on the SHAP values and selected the top 12
predictors (all with feature importance of 0.03 or higher) to create an easy-to-use clinical support tool, named ASSIST. (B) To offer some insight into
each variable contribution, we used a SHAP summary plot, in which the y-axis represents the variables in descending order of importance and the x-
axis indicates the change in prediction. The gradient colour denotes the original value for that variable (for instance for Booleans such as hypertension
or diabetes it only takes two colours, whereas for continuous variables it contains the whole spectrum), with each point representing an individual
from the original training set. Negative SHAP values (x-axis) indicate improved outcomes with anatomical imaging (as seen among individuals with
hypertension and diabetes) whereas positive values indicate improved outcomes with functional testing. (C and D) Notably, ASSIST predictions were
independent of the random assignment to the anatomical or functional testing group in both the training and testing sets of PROMISE. ASSIST,
Anatomical vs. Stress teSting decIsion Support Tool; PROMISE, PROspective Multicenter Imaging Study for Evaluation of Chest Pain; SHAP, SHapley
Additive exPlanations.
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..characteristics, thereby limiting a personalized treatment selection.
In our approach, each individual represents the centre of their
own cluster and, therefore, is compared with similar individuals in
inferring a treatment effect.

In addition, our machine learning-based decision support tool,
ASSIST, allows such personalization of the diagnostic strategy for
chest pain using only 12 key variables. The tool (which is available on-
line,30 also see Supplementary material online, Figure S7) consistently

demonstrated a lower rate of all-cause mortality and adverse cardio-
vascular outcomes where the diagnostic strategy was aligned with
ASSIST recommendation. Moreover, these findings were replicated
in the SCOT-HEART study, which included a geographically and
phenotypically distinct population. Notably, previously suggested
broad demographic and clinical groups that may benefit from ana-
tomical evaluation10,11 were not generalizable to the external
population.

Figure 5 Internal validation and performance of ASSIST in PROMISE. Application of the ASSIST tool in both the training and testing (internal valid-
ation) set of PROMISE demonstrated that concordance (vs. disagreement) between the ASSIST-proposed best initial diagnostic strategy and a patient
random allocation to functional or anatomical testing was associated with an approximate two-fold reduction in the risk of the study primary com-
posite endpoint (A–C), as well as a composite endpoint of all-cause mortality and non-fatal myocardial infarction (D and E). ASSIST, Anatomical vs.
Stress teSting decIsion Support Tool; PROMISE, PROspective Multicenter Imaging Study for Evaluation of Chest Pain.
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..Our study should be interpreted in light of the following limita-
tions. First, our approach does not offer a mechanistic explanation
for the differential effect of testing strategy on outcomes. Both trials
did not require a fixed treatment cascade that follows each strategy,
and differences in clinical endpoints likely reflect medical and

procedural interventions that follow these tests. A validation in two
distinct cohorts suggests consistency in the observation and general-
izability of our findings; however, treatment strategies deviating from
PROMISE and SCOT-HEART may not find a similar effect. Second,
our study is a post hoc analysis, and therefore, our findings are

Figure 6 External validation and performance of ASSIST. Application of the ASSIST tool in both the unmatched and matched subpopulation of
SCOT-HEART used for external validation purposes confirmed that concordance (vs. disagreement) between the ASSIST-proposed best initial diag-
nostic strategy and a patient allocation to anatomical-first imaging vs. standard of care (which included functional-first testing) was associated with a
reduction in the risk of the study primary composite endpoint (A–C), as well as the harmonized composite endpoint of all-cause mortality and non-
fatal myocardial infarction (D and E). ASSIST, Anatomical vs. Stress teSting decIsion Support Tool; SCOT-HEART, Scottish COmputed Tomography
of the HEART Trial.
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descriptive and only represent a way to interpret trial data. While
randomization was not fully preserved, the treatment allocation itself
was not driven by clinical indications and diagnostic strategies were
assigned as part of the trial protocol. This overcomes the limitation
of other observational studies based on real-world data, which are
often subject to confounding by indication. However, our findings do
highlight heterogeneity in risks and benefits of anatomical and func-
tional testing, and a significant interaction between the test received
and a patient baseline profile suggests that ASSIST accurately identi-
fied individuals for whom anatomical or functional testing may have
differential outcome implications. Therefore, ASSIST may aid patient
discussions, particularly at centres where both tests are similarly ac-
cessible. To this end, future validation in unselected cohorts will be
crucial. Third, SCOT-HEART had a different design than PROMISE,
with the majority (�85%) of patients in the computed tomography
coronary angiography arm undergoing baseline exercise ECG (rather
than nuclear imaging), whereas as the standard of care control arm
did not explicitly require functional testing.5 We harmonized the
diagnostic testing in SCOT-HEART to PROMISE to allow its use as a
validation study, and explicitly conducted a matched analysis of
SCOT-HEART participants with equal propensity of undergoing ana-
tomical or functional testing as their first test. However, this process
resulted in loss of randomization and the conclusions of the study
would not be generalizable to the strategy assessed in the overall
SCOT-HEART population, which demonstrated the benefit of ana-
tomical imaging when used in addition to rather than as an alternative
to functional testing.5,6 Finally, while missing data were imputed only
if missing in a minority of the included patients, imputation may limit
the accuracy of some of our study estimates.

Conclusion

We have developed an approach that defines an evidence-based
strategy to pursue anatomical or functional evaluation of patients
with suspected CAD. The approach uses a series of local experi-
ments in a multidimensional phenomap of trial participants to infer a
personalized strategy of the diagnostic evaluation approach most
likely to achieve the best outcomes. Furthermore, a generalizable de-
cision support tool derived from this phenomap, and validated in two
geographically distinct large studies, enables a broader use of this in-
formation in shared decision-making in clinical practice.

Supplementary material

Supplementary material is available at European Heart Journal online.
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