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Abstract

Osteoporosis, a disease characterized by low bone mineral density (BMD), increases the risk 

for fractures. Conventional risk factors alone do not completely explain measured BMD or 

osteoporotic fracture risk. Metabolomics may provide additional information. We aim to identify 

BMD-associated metabolomic markers that are predictive of fracture risk. We assessed 209 plasma 

metabolites by LC-MS/MS in 1,552 Framingham Offspring Study participants, and measured 

femoral neck (FN) and lumbar spine (LS) BMD 2–10 years later using dual energy x-ray 

absorptiometry. We assessed osteoporotic fractures up to 27-year follow-up after metabolomic 

profiling. We identified twenty-seven metabolites associated with FN-BMD or LS-BMD by 
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LASSO regression with internal validation. Incorporating selected metabolites significantly 

improved the prediction and the classification of osteoporotic fracture risk beyond conventional 

risk factors (AUC=0.74 for the model with identified metabolites and risk factors vs AUC=0.70 

with risk factors alone, p=0.001; Net reclassification index=0.07, p=0.03). We replicated 

significant improvement in fracture prediction by incorporating selected metabolites in 634 

participants from the Hong Kong Osteoporosis Study (HKOS). The glycine, serine, and threonine 

metabolism pathway (including four identified metabolites: creatine, dimethylglycine, glycine, 

and serine) was significantly enriched (FDR p-value=0.028). Furthermore, three causally related 

metabolites (glycine, Phosphatidylcholine [PC], and Triacylglycerol [TAG]) were negatively 

associated with FN-BMD while PC and TAG were negatively associated with LS-BMD through 

Mendelian randomization analysis. In summary, metabolites associated with BMD are helpful in 

osteoporotic fracture risk prediction. Potential causal mechanisms explaining the three metabolites 

on BMD are worthy of further experimental validation. Our findings may provide novel insights 

into the pathogenesis of osteoporosis.
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Introduction

Osteoporosis is the most common metabolic bone disease, mainly characterized by low 

bone mineral density (BMD) and deteriorated bone strength and is associated with an 

increased risk of low-trauma fractures.(1) Osteoporotic fractures, particularly vertebral and 

hip fractures, can be associated with chronic disabling pain and have a profound impact on 

patients’ quality of life.(2) More than 75 million people in the United States, Europe, and 

Japan are affected by osteoporosis, which causes more than 8.9 million fractures annually 

worldwide.(3) Therefore, prevention and early detection of osteoporosis are essential for 

people to maintain bone health and improve their overall quality of life.

Other than BMD, which is used for the diagnosis of osteoporosis, many clinical risk factors 

have been identified for osteoporotic fracture prediction such as age, female sex, premature 

menopause, smoking.(4) A fracture risk assessment tool (FRAX), for example, has been 

developed based on the clinical risk factors to predict fracture.(5) However, previous studies 

have shown that the aforementioned clinical risk factors do not completely explain measured 

BMD or fracture risk.(6,7) Metabolomics, as products of metabolism, may provide additional 

information to predict BMD or may identify those individuals with a high probability of 

experiencing an osteoporotic facture.

Metabolites are small molecules that can be reactants, intermediates, or products of 

metabolism. Many previous studies show that metabolites are closely related to bone 

health.(8–13) For example, a cross-sectional study identified a group of metabolites for 

characterizing low BMD in postmenopausal women.(8) Another study also reported that 

metabolites represented useful markers to predict bone loss in menopausal women.(9) 

However, these studies were limited by their relatively small sample sizes or a focus 

Zhang et al. Page 2

J Bone Miner Res. Author manuscript; available in PMC 2021 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mainly on women. A larger community-based study including both women and men is 

needed to investigate potential relationships between metabolites and osteoporosis in the 

general population. Metabolomics may also provide insights into the biological mechanism 

of osteoporosis. In this study, our primary aim was to identify BMD-associated metabolomic 

markers that are predictive of fracture risk and to explore potential causal mechanisms 

between identified metabolites and BMD as a secondary goal.

Subjects and Methods

Discovery cohort

Framingham Heart Study (FHS) Offspring participants, aged 30–82 years, whose underwent 

plasma metabolite profiling at their fifth examination cycle 1991–1995 (baseline) and who 

underwent both femoral neck (FN) and lumbar spine (LS) BMD measurements between 

their sixth and the seventh examination cycles (1996–2001) comprised the sample for the 

present investigation. The FHS is a community-based cohort study that started in 1948, 

with the recruitment of 5,209 men and women between the ages of 28 and 62 years from 

Framingham, MA, USA.(14) The FHS Offspring cohort enrolled the children of the original 

cohort and the children’s spouses, including 5,124 participants who underwent physical 

examination, medical history, and routine laboratory tests approximately every four years 

since 1971.(15) There were 2067 Offspring participants with metabolites measurements at 

the fifth examination and 1604 of them also had BMD measurements between the sixth 

and the seventh examination. Individuals without body mass index information, smoking 

status, or women without menopausal status at the fifth examination were excluded. A total 

of 1552 individuals were eligible for the present investigation. All participants provided 

written informed consent and the study protocol was approved by the Hebrew SeniorLife 

and Boston University Medical Campus institutional review boards.

Metabolite profiling

Plasma samples of FHS Offspring participants were collected in a fasting state at their 

fifth examination cycle between 1991 and 1995. High throughput metabolite profiling was 

performed on the collected plasma samples and the concentration of plasma metabolites was 

assessed using a liquid chromatography / mass spectrometry (LS/MS) platform as previously 

described.(16,17) We removed metabolites with a high missing rate (≥ 20%) and replaced 

the missing values in the remaining metabolites by the half of minimum value of the same 

metabolite.(18) A total of 209 metabolites were included in this study.

BMD measurement and ascertainment of fracture incident

We measured BMD (g/cm2) at the femoral neck (greater trochanter & Ward’s area) and 

lumbar spine (average BMD of L2-L4) using a Lunar dual-energy x-ray absorptiometry 

(DXA) between the sixth and the seventh examination of the FHS Offspring cohort. 

Further details about BMD measurements were well described previously.(19) Major incident 

osteoporotic fractures were assessed using self-report and subsequent medical record 

confirmation over 27 years of follow-up after the fifth examination. We defined incident 

osteoporotic fractures as follows: at least one fracture associated with falling from a standing 

height or less, excluding fracture at toes, fingers, skull, or face.
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Clinical covariates

Clinical covariates including age (years), sex, body mass index (BMI, kg/m2), current 

smoking status, and menopausal status (women only) were assessed at baseline (i.e. the fifth 

examination). BMI was calculated as weight divided by height squared. Current smoking 

status was defined as “yes” if an individual reported current smoking cigarettes regularly 

over the year preceding the Heart Study visit and “no” if an individual reported never 

smoking or smoking previously. Menopausal status in women was classified as “yes” 

for women whose menstruation stopped for at least 12 months and “no” otherwise. We 

additionally considered diabetes status, drinking status, and calcium intake at baseline for 

sensitivity analysis. Diabetes status was “yes” if an individual was treated for diabetes 

and “no” otherwise. Drinking status was defined as “yes” if an individual reported weekly 

drinking any type of alcohol and “no” otherwise. Calcium intake was “yes” if an individual 

reported taking calcium supplement and “no” otherwise.

Replication cohort

The Hong Kong Osteoporosis Study (HKOS) is a prospective cohort established since 

1995. The cohort profile has been described elsewhere.(20) In brief, approximately 9,449 

community-dwelling Southern Chinese subjects were recruited at baseline. Since 2015, 

these participants were invited to attend in-person follow-up visits. At both baseline and 

follow-up visits, the subjects were required to complete clinical assessments comprising 

physical examination (including measurement of height, weight, DXA-measured BMD, etc.) 

and self-reported questionnaires (such as tobacco use, menopause status, etc.). Fasting blood 

samples were also collected, with multiple aliquots of serum and plasma stored at −80 °C. 

Part of the serum samples collected at baseline and in-person follow-up visits were sent to 

a liquid chromatography–mass spectrometry (LC-MS) platform, Metabolon, for untargeted 

metabolomic profiling.(21) A total of 1,194 serum metabolites were profiled. Moreover, 

“in-silico” follow-up of the HKOS participants were performed using the electronic medical 

records available in the Clinical Data Analysis and Reporting System managed by the Hong 

Kong Hospital Authority.

Statistical analyses

The clinical characteristics of participants are described by mean (SD) or count (%) in 

Table 1. Measurements of 209 plasma metabolites were natural logarithmically transformed 

and standardized. The flow-chart of analysis of this study is shown in Fig. 1. We first 

randomly split the entire sample into a testing dataset and a training dataset at a ratio 

of 4:6 by individuals’ family identification code to ensure that participants in the training 

dataset were unrelated to those in the testing dataset. For the training dataset, we then 

implemented a least absolute shrinkage and selection operator (LASSO) to select BMD­

associated metabolites with tenfold cross validation, while the regularized parameter of 

LASSO with minimum mean cross-validated error was chosen.(22) We compared three 

models, including a model with conventional risk factors, consisting of age, sex, BMI, 

current smoking status, and menopausal status, a model with selected metabolites alone, and 

a model with both conventional risk factors and selected metabolites, on the testing dataset 

using adjusted R-squared. We repeated the process described above 100 times and selected 
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the metabolites with cumulative selection frequency greater or equal to 50. We conducted 

the analysis for both FN-BMD and LS-BMD individually and estimated the variation of 

BMD explained by the selected metabolites. We also performed a sex-stratified analysis 

as a secondary analysis. We calculated the average of the adjusted R-squared using the 

testing dataset for 100 iterations and the overall adjusted R-squared using the entire dataset 

based on the final selected metabolites to determine whether incorporation of the selected 

metabolites improved model fitting for BMD. We used the F-test to test whether two nested 

models (model with conventional risk factors alone vs model with conventional risk factors 

+ selected metabolites) were significantly different. Finally, we compiled a list of overall 

selected metabolites which were selected by either FN-BMD or LS-BMD analyses.

In order to investigate whether the overall selected metabolites improved the prediction 

accuracy of osteoporotic fracture, we fitted a logistic regression model for osteoporotic 

fracture (outcome) on conventional risk factors and conventional risk factors plus overall 

selected metabolites (predictor variables) separately and then compared their performance 

for predicting the risk of fractures using the areas under the receiver-operating-characteristic 

(ROC) curve (AUC) on the entire dataset. Nonparametric test (DeLong’s test) was used to 

compare the discriminative capability of two correlated ROC curves.(23) Net reclassification 

index (NRI) and integrated discrimination improvement (IDI) were also estimated to 

evaluate the improvement in model performance introduced by the inclusion of selected 

metabolites.(24) Reclassification tables for subjects who do and do not experience major 

osteoporotic fracture during the follow-up were constructed into two categories using [0, 

20%), [20%, 1] of predicted probability of fracture as the proxy of fracture risk based 

on the guideline of the National Osteoporosis Foundation of the United States.(25) All 

p-values are two-sided and the level of significance was set to 0.05. We also added either 

FN-BMD or LS-BMD to the above two models and compared their fracture risk prediction 

and classification using ROC curves, NRI, and IDI. As a sensitivity analysis, we included 

diabetes status, drinking status, and calcium intake as additional covariates in the model and 

repeated the same statistical strategies described above.

Pathway enrichment analysis was performed on the selected metabolites using 

MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/).(26) The false discovery rate (FDR) of 

0.05 was set as the significance level for pathway enrichment analysis. Next, we conducted 

a two-sample Mendelian randomization for causal inference for selected metabolites 

associated with BMD. We considered genetic variants associated with each selected 

metabolite at a genome-wide significant level (p<5×10−8) from a genome-wide association 

study (GWAS).(27) We then conducted linkage disequilibrium (LD) pruning at a threshold of 

0.6 with minor allele frequency (MAF)>0.01 to exclude the genetic variants with high LD 

(https://ldlink.nci.nih.gov/?tab=snpclip). For each remaining genetic variant, we extracted 

the association results with FN-BMD and LS-BMD from the GWAS results reported by 

Estrada K. et al.(28) Inverse-variance weighted (IVW) estimators then can be calculated 

to make causal inference between selected metabolites and FN-BMD or LS-BMD.(29) 

We also calculated the weighted median estimator.(30) We assessed the instrumental 

heterogeneity through the Q statistic and horizontal pleiotropy by Egger regression.(31) 

IVW p-value less than 0.05 while both Q-statistic p-value and Egger regression intercept 

p-value greater than 0.05 was set as significance level. Significant outliers of instrumental 
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variables can be detected by MR-PRESSO(32). We conduct the power analysis according 

to Deng et al.(33) We used the information about sample size of exposure and outcome, 

and proportion of exposure variance explained by the instrumental variables (r2) from the 

GWAS papers.(27,28) We estimated the variance of exposure and outcome from our study 

data. Since we only selected a subset of variants which were genome-wide significant, 

we also included two other settings for r2: 80% of the given proportion from the GWAS 

paper; assumed that each genome-wide significant variant explained 0.01% of the variance. 

All analyses were conducted using R v3.5.3 program (https://cran.r-project.org/) except 

pathway enrichment analysis. Glmnet, pROC, PredictABEL and MendelianRandomization, 

four packages implemented in R, were used for the analysis of LASSO, risk prediction 

evaluation, and Mendelian randomization.

Results

Conventional risk factors and osteoporosis-associated variables are shown in Table 1. In the 

discovery cohort, a total of 1,552 individuals were included in this analysis. The average 

age of participants was 55.4 years old. The proportion of women was 54.2% and 66% 

were post-menopausal. During a median follow-up period of 14 years (range 4–27) after the 

measurement of the plasma metabolites (i.e., baseline), 188 participants experienced at least 

one osteoporotic fracture. In the replication cohort, during a median of follow-up period 

of 10 years (range 0–22), 36 out of 634 participants experienced at least one osteoporotic 

fracture.

A total of 13 and 19 metabolites were selected at least 50 times out of 100 iterations 

to be associated with FN-BMD and LS-BMD in the discovery cohort, respectively 

(Supplementary Tables 1 & 2). The selected metabolites explained 17% variation of 

FN-BMD and 19% variation of LS-BMD, respectively. Overall, 27 metabolites were 

identified by their associations with either FN-BMD or LS-BMD (Table 2). Among 

them, five metabolites (glycine, leucine, pyridoxate, sphingomyelin [SM] C22:0, and 

xanthurenate) were associated with both FN-BMD and LS-BMD. One selected metabolite, 

fruc_gluc_galac, was a complex of fructose, glucose, and galactose, which cannot be 

grouped into any one category. Thus, there was no corresponding Human Metabolome 

Database (HMDB) ID for it. We also associated BMD with selected metabolites either 

altogether or individually in a model after adjusting all conventional risk factors. We refer 

interested readers to Supplementary Table 3 for detail. One thing to mention is that only 

18 out of 27 selected metabolites were available in the replication cohort. Therefore, 

all the results using replication cohort were based on those 18 available metabolites. 

Additionally, our secondary sex-stratified analysis in the discovery cohort identified more 

BMD-associated metabolites in female (15 and 10) than in male (1 and 2) associated with 

FN- and LS-BMD, respectively (Supplementary Table 4). Majority of them overlapped with 

above selected metabolites using the combined dataset.

We present the adjusted R-squared results for the model comparisons in Table 3. Model 3 

with conventional risk factors plus selected metabolites fit the data best with the highest 

adjusted R-squared for both discovery and replication cohorts (FN-BMD: overall adjusted 

R2 = 0.36 in the discovery cohort, and 0.39 in the replication cohort; LS-BMD: 0.28 for 
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overall adjusted R2 in the discovery cohort, and 0.35 in the replication cohort) compared 

to model 1 with conventional risk factors alone (FN-BMD: 0.33 in the discovery cohort, 

and 0.36 in the replication cohort; LS-BMD: 0.23 in the discovery cohort, and 0.30 in 

the replication cohort) and model 2 with selected metabolites alone (FN-BMD: 0.16 in the 

discovery cohort, and; LS-BMD: 0.18 in the discovery cohort, and 0.13 in the replication 

cohort). Meanwhile, model 3 was significantly different from model 1 by F-test with overall 

p-value less than 0.001 for FN-BMD and LS-BMD in both discovery and replication 

cohorts. In the sensitivity analysis, additionally adjusting for diabetes status, drinking status, 

and calcium intake in the model 3, the model with clinical risk factors plus selected 

metabolites still fit the data best with the highest adjusted R2 and was significantly different 

from model 1 with p-value less than 0.001 for both FN-BMD and LS-BMD in the discovery 

cohort (Supplementary Table 5).

In terms of fracture risk prediction, 27 selected metabolites significantly improved 

osteoporotic fracture risk prediction when added to conventional risk factors using the entire 

dataset (AUC = 0.74 [95% CI 0.70, 0.77] for model 2 with conventional risk factors + 

selected metabolites vs AUC = 0.70 [95% CI 0.66, 0.74] for model 1 with conventional 

risk factors alone, p=0.001) (Fig. 2A). The difference in average predicted risks between 

the individuals with and without fracture increased by 3.1% in the model 2 (IDI=0.031, 

p<0.001). Besides, when additionally accounting for FN-BMD or LS-BMD, the models with 

selected metabolites in addition to conventional risk factors still performed significantly 

better than the models with conventional risk factors alone (AUC = 0.75 [95% CI 0.72, 0.79] 

for model 2 with conventional risk factors + FN-BMD + selected metabolites vs AUC = 0.72 

[95% CI 0.68, 0.76] for model 1 with conventional risk factors + FN-BMD, p=0.002; AUC 

= 0.74 [95% CI 0.71, 0.78] for model 2 with conventional risk factors + LS-BMD + selected 

metabolites vs AUC = 0.71 [95% CI 0.67, 0.75] for model 1 with conventional risk factors 

+ LS -BMD, p=0.003 ) (Fig. 2B & 2C). The IDI=0.029 with p<0.001 and IDI=0.032 with 

p<0.001 for models additionally accounting for FN-BMD and LS-BMD, respectively. These 

results were replicated in the HKOS (Table 4).

Reclassification table for subjects with and without a major osteoporotic fracture event 

during follow-up are summarized in Table 5. Take model 1 with conventional risk factor 

alone vs model 2 with conventional risk factor + selected metabolites as an example. For 

23 individuals who experience a fracture event, model 2 with selected metabolites improved 

the classification (i.e. 23 individuals with events moved from the low-risk group [0, 20%) 

in model 1 to the high-risk group [20%, 1] in model 2). For 11 people with fracture 

event, the model 2 classification became worse (i.e. 11 individuals with events moved from 

the high-risk group [20%, 1] in model 1 to the low-risk group [0, 20%) in model 2). 

Similarly, for people who do not experience a fracture event, classification improved for 78 

individuals and got worse for 70 individuals using the model 2 with selected metabolites. 

Overall, model 2 significantly improved classification of fracture risk with the NRI=0.07 (p­

value=0.03). When additionally accounting for either FN-BMD or LS-BMD, model 2 with 

selected metabolites still significantly improved classification of fracture risk (FN-BMD: 

NRI=0.08, p-value < 0.001; LS-BMD: NRI=0.12, p-value < 0.001). These results were 

also replicated in the HKOS except for model 2 + FN-BMD vs model 1 + FN-BMD with 

p-value=0.16 (Table 4). In the sensitivity analysis with additional clinical risk factors in 
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the model using the discovery cohort, incorporating selected metabolites still significantly 

improved osteoporotic fracture prediction (AUC=0.75 [95% CI 0.71, 0.78] for model 2 

vs AUC=0.71 [95% CI 0.67, 0.75] for model 1, p=0.002) although model 2 no longer 

significantly improved classification of fracture risk with the NRI=0.056 (p-value=0.14) 

(Supplementary Table 6).

Based on the selected 27 metabolites, the glycine, serine, and threonine metabolism 

pathway including four identified metabolites (creatine, dimethylglycine, glycine, and 

serine) was significantly enriched with an FDR adjusted p-value=0.028. We also performed 

two-sample Mendelian randomization to investigate the causal effect of these selected 

metabolites on BMD. We focused on six selected metabolites (leucine, glycine, creatinine, 

phosphatidylcholine [PC], sphingomyelin [SM], and triacylglycerol [TAG]) since the genetic 

association data for the other selected metabolites were not available in the GWAS (27). 

Three selected metabolites (glycine, PC, and TAG) had a causally negative association 

with FN-BMD and two (PC and TAG) had a causally negative association with LS-BMD 

at a significance level of 0.05 based on IVW p-value while heterogeneity and horizontal 

pleiotropy were not observed (i.e. neither p-value of Q statistic nor p-value of Egger 

regression intercept was less than 0.05) (Table 6). In particular, for every 1 standard 

deviation increase in glycine, the value of FN-BMD decreases 0.033 in g/cm2. Similarly, 

LS-BMD decreased by 0.136 g/cm2 for each standard deviation increase in PC. Note that 

PC with FN-BMD as outcome and TAG with either FN- or LS-BMD as outcome are no 

longer significant based on the weighted median method (Table 6). We did not observe 

any significant outliers through MR-PRESSO. All the related genetic variants are available 

in Supplementary Table 7. The power analysis under type I error (α=0.05) demonstrates 

insufficient power (estimated power < 0.4) to detect the significant association between 

leucine and creatinine with either FN- or LS-BMD, glycine with LS-BMD, and SM with 

FN-BMD for all three settings of r2 (Supplementary Table 8). Therefore, those insignificant 

associations between selected metabolites and BMD could be due to limited statistical 

power.

Discussion

We performed an association study among FHS Offspring participants relating plasma 

metabolites to both FN-BMD and LS-BMD, and we assessed the use of metabolites for 

predicting the risk of major osteoporotic fractures over a follow-up period exceeding two 

decades. We identified 27 metabolites that were associated with FN-BMD or LS-BMD. 

Incorporating these metabolites into a prediction model for fractures significantly improved 

the prediction of osteoporotic fracture risk beyond the conventional clinical risk factors 

including sex, age, BMI, current smoking status, and menopausal status. These results were 

replicated in an independent study and showed the potential of metabolites in the prediction 

of fracture. Additionally, the glycine, serine, and threonine metabolism pathway (including 

four identified metabolites: creatine, dimethylglycine, glycine, and serine) was significantly 

enriched. Among six selected metabolites, using Mendelian randomization, three (glycine, 

PC, and TAG) were found to be causally negatively associated with FN-BMD. Two of these 

metabolites (PC and TAG) were causally negatively associated with LS-BMD. It suggested 
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that those metabolites may contribute to alterations in BMD and may relate to osteoporosis 

pathogenesis.

A major clinical implication of our study is that incorporating selected metabolites 

can help improve osteoporotic fracture risk prediction beyond conventional clinical risk 

factors. Previous studies have only shown that incorporating metabolites can improve the 

classification of people with different levels of BMD, but not directly on osteoporotic 

fracture risk prediction.(9–11) Our study additionally demonstrated that lipid profiles 

(11 out of 27 selected metabolites are lipid-related) and amino acids (six out of 27 

selected metabolites belong to amino acids) might involve in bone metabolism, which 

was consistent with previous studies (Table 2).(11,34) We not only confirmed previous 

reports of associations between two selected plasma metabolite (dimethylglycine, creatinine) 

and BMD,(9,13) we also identified many novel metabolites compared to other studies. 

One possible reason could be that different types of metabolites were measured across 

different studies without a uniform standard, which suggests that a harmonized platform for 

metabolomic analysis is needed for future studies.

The glycine, serine and threonine metabolism pathway was enriched based on the selected 

metabolites in our study, which was consistent with a recent association analysis finding 

reported by Zhao Q. and colleagues.(10) While there is no known direct mechanism 

to explain our pathway enrichment results related to osteoporosis, three (creatine, 

dimethylglycine, and glycine) out of the four selected metabolites involved in this pathway 

have been reported to be associated with bone health in various ways. The creatine/

phosphorylcreatine system is involved in bioenergetic processes, especially in tissues with 

high metabolic demand such as skeletal muscle and bone.(35) A recent review suggested 

that creatine may affect the bone remodeling process and have beneficial effects on 

lean mass and muscle for older individuals.(35) Dimethylglycine belongs to the choline 

oxidation pathway and is demethylated in the mitochondria, leading to the subsequent 

formation of glycine, which is a non-essential amino acid.(36) Low plasma dimethylglycine 

was found to be associated with low BMD and an increased risk of hip fractures by 

Øyen J et al.(37) Men with idiopathic osteoporosis had a higher plasma glycine.(38) 

Our Mendelian randomization results (Table 6) also supported that glycine was causally 

negatively associated with FN-BMD. In other words, higher plasma glycine may result 

in lower FN-BMD and osteoporosis. In addition, our Mendelian randomization analysis 

found that PC and TAG may causally result in lower FN- and LS-BMD (Table 6). PC 

and TAG are both lipids. Several studies suggest that lipid profiles are associated with 

BMD and might be useful for osteoporosis prediction.(11,12) One study reported that higher 

concentrations of phosphatidylcholine docosahexaenoic acid (PC DHA) was associated with 

loss of FN-BMD over 4 years in women, where PC is the backbone of PC DHA.(39) Overall, 

though our identified metabolites may be of potential clinical value for the early detection 

of osteoporosis, further experimental validation and clinical replication are required. We 

anticipate that based on studies like ours and those of others, these data will guide future 

hypothesis-driven analyses for better understanding of the relationship between metabolites 

and skeletal traits.
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Due to the difficulties in harmonizing metabolite platforms, one potential limitation of this 

study was the external validation. While our results were in general replicated, not all of 

our selected metabolites were available in our replication cohort. A second limitation of our 

investigation was that only 209 metabolites were measured. As technology advances, the 

number of identifiable metabolites increases. We believe that including more metabolites in 

a future association study is meaningful to get a more comprehensive understanding of the 

relationship between metabolites and osteoporosis. Third, BMD were measured two to ten 

years later after metabolites measured and the storage time for metabolites were about 15–20 

years in our discovery and require more validations even though we had replicated our 

results in an independent study. Lastly, we did not conduct the analysis to account for time­

varying covariates. Such analysis also be of interest because the metabolite’s measurements 

may change over time. This would be a potential future direction with newly generated data.

In conclusion, we identified 27 metabolites that were associated BMD and helpful in 

osteoporotic fracture risk prediction. The glycine, serine and threonine metabolism pathway 

was significantly enriched based on our selected metabolites. Three selected metabolites 

(glycine, PC, and TAG) had causally negative associations with BMD. These identified 

metabolites may have a role in the early stages of osteoporosis and may provide novel 

insights into the mechanisms underlying this disease. Our findings raise the possibility of 

using metabolite profiling to improve the prediction of osteoporotic fracture if confirmed by 

other studies.
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Fig. 1. Flow-chart illustrating the main steps of the analysis.
First, the entire sample was randomly split into a testing dataset and a training dataset at a 

ratio of 4:6 by individuals’ family id. For the training dataset, we then implemented a least 

absolute shrinkage and selection operator (LASSO) to select bone mineral density (BMD)­

associated metabolites with ten-fold cross validation, while the regularized parameter of 

LASSO with minimum mean cross-validated error was chosen. Models with conventional 

risk factors alone, selected metabolites alone, and both conventional risk factors and selected 

metabolites were compared on the testing dataset through adjusted R-squared. We iterated 

the process (red dashed line) for 100 times and selected the metabolites with cumulative 

selection frequency greater or equal to 50. We conducted the analysis using both femoral 

neck (FN)-BMD and (LS)-BMD individually. Finally, we got a list of overall selected 

metabolites which were selected by either FN-BMD or LS-BMD. Next, we evaluated 

the fracture prediction accuracy and fracture risk classification using the overall selected 

metabolites on the entire dataset by the receiver-operating-characteristic (ROC) curve and 

net reclassification index (NRI). Pathway enrichment analysis was performed on the selected 

metabolites. We also conducted a two-sample Mendelian randomization for causal inference 

between selected metabolites and BMD.
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Fig. 2. ROC curves of models for predicting osteoporotic fracture incidence with and without 
selected metabolites.
(A) Blue line, model 1 with conventional risk factors alone: AUC = 0.70 (95% CI 0.66, 

0.74); red line, model 2 with conventional risk factors + selected metabolites: AUC = 0.74 

(95% CI 0.70, 0.77), with p-value=0.001. (B) Blue line, model 1 with conventional risk 

factors + FN-BMD: AUC = 0.72 (95% CI 0.68 0.76); red line, model 2 with conventional 

risk factors + FN-BMD + selected metabolites: AUC = 0.75 (95% CI 0.72, 0.79), with 

p-value=0.002. (C) Blue line, model 1 with conventional risk factors + LS-BMD: AUC 

= 0.71 (95% CI 0.67 0.75); red line, model 2 with conventional risk factors + LS-BMD 

+ selected metabolites: AUC = 0.74 (95% CI 0.71, 0.78), with p-value=0.003. The p­

value, calculated from DeLong’s test, less than 0.05 suggests the significant difference 

between two ROC curves. AUC=Area under curve. ROC=Receiver Operating Characteristic. 

BMD=bone mineral density. FN=femoral neck. LS=lumbar spine.
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Table 1.

Clinical characteristics of participants in discovery and replication cohorts. Continuous variables are 

summarized as mean (SD=standard deviation) and categorical variables are summarized as count (percentage).

Discovery cohort Replication cohort

Characteristic Mean (SD) or Count (percentage) Mean (SD) or Count (percentage)

Number of participants 1552 634

Age, years 55.4 (9.5) 52.1 (14.2)

Women 841 (54.2%) 525 (82.8%)

BMI, kg/m2 27.5 (4.9) 22.8 (3.8)

Postmenopausal 555 (66%) 293 (55.8%)

Current smoking 246 (15.9%) 26 (4.1%)

Femoral neck BMD, g/cm2 0.9 (0.2) 0.7 (0.2)

Lumbar spine BMD, g/cm2 1.2 (0.2) 0.9 (0.2)

BMI=body mass index. BMD=bone mineral density.
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Table 2.

Twenty-seven metabolites were repeatedly selected ≥ 50 times in 100 iterations based on either FN-BMD or 

LS-BMD analysis.

Name Trait Chemical class Name Trait Chemical class

aconitate FN BMD Carboxylic acids and derivatives PC C36:2 FN BMD Glycerophospholipids

ADP LS BMD Purine nucleotides pyridoxate FN & LS BMD Pyridines and derivatives

creatine LS BMD Amino acids serine LS BMD Amino acids

creatinine LS BMD Amino acids serotonin LS BMD Indoles and derivatives

dimethylglycine FN BMD Amino acids SM C16:1 FN BMD Organonitrogen compounds

fruc_gluc_galac LS BMD N.A. SM C18:1 LS BMD Sphingolipids

glycine FN & LS BMD Amino acids SM C22:0 FN & LS BMD Sphingolipids

hydroxyglutarate FN BMD Hydroxy acids and derivatives sucrose FN BMD
Carbohydrates and 
carbohydrate conjugates

hypoxanthine LS BMD Imidazopyrimidines TAG C48:0 LS BMD Glycerolipids

leucine FN & LS BMD Amino acids TAG C50:1 LS BMD Glycerolipids

LPC C18:1 LS BMD Glycerophospholipids TAG C54:4 LS BMD Glycerolipids

LPE C18:2 FN BMD Glycerophospholipids TAG C58:10 LS BMD Glycerolipids

pantothenate FN BMD Organooxygen compounds xanthurenate FN & LS BMD Quinolines and derivatives

PC C36:1 LS BMD Glycerophospholipids

BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. SM=Sphingomyelin. LPE=Lysophosphatidylethanolamine. 
PC=Phosphatidylcholine. LPC=Lysophosphatidylcholine. TAG=Triacylglycerol. fruc_gluc_galac=Fructose+glucose+galactose. N.A.=not available
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Table 3.

Average and overall results of model comparisons

Average results on 
the testing dataset 
over 100 iterations

Overall results on the 
entire discovery cohort

Results on the 
replication cohort

Models Average adjusted 
R 2 

Overall adjusted R 2 Overall adjusted R 2 

FN-
BMD

Model 1: conventional risk factors alone (sex, age, 
BMI, current smoking status, menopausal status)

0.33 0.33 0.36

Model 2: selected metabolites alone 0.15 0.16 0.09

Model 3: conventional risk factors + selected 
metabolites

0.34 0.36 0.39

Overall p-value Overall p-value

Comparison of model 1 and model 3 by F-test < 0.001 <0.001

LS-
BMD

Model 1: conventional risk factors alone (sex, age, 
BMI, current smoking status, menopausal status)

0.23 0.23 0.30

Model 2: selected metabolites alone 0.15 0.18 0.13

Model 3: conventional risk factors + selected 
metabolites

0.25 0.28 0.35

Overall p-value Overall p-value

Comparison of model 1 and model 3 by F-test < 0.001 <0.001

Average adjusted R2 calculates the mean of adjusted R2 over 100 iterations using the testing dataset. Overall adjusted R2 is the adjusted R2 based 
on the final selected metabolites whose cumulative selection frequency ≥ 50 over 100 iterations using the entire dataset. Overall p-value calculated 
the p-value from the F-test between model 1 and model 3 on the entire dataset. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine.
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Table 4.

Model evaluation for fracture risk prediction

Models AUC 95% CI of 
AUC

Delong’s test 
p-value

IDI IDI p-value NRI NRI p-
value

Discovery 
cohort

Model 1: conventional risk 
factors alone

0.70 0.66, 0.74 N.A. N.A. N.A. N.A. N.A.

Model 2: conventional risk 
factors + 27 selected metabolites

0.74 0.70, 0.77 0.001 0.031 <0.001 0.07 0.03

Model 1+ FN-BMD 0.72 0.68, 0.76 N.A. N.A. N.A. N.A. N.A.

Model 2+ FN-BMD 0.75 0.72, 0.79 0.002 0.029 <0.001 0.08 <0.001

Model 1+ LS-BMD 0.71 0.67, 0.75 N.A. N.A. N.A. N.A. N.A.

Model 2+ LS-BMD 0.74 0.71, 0.78 0.003 0.032 <0.001 0.12 <0.001

Replication 
cohort

Model 1: conventional risk 
factors alone

0.81 0.73, 0.89 N.A. N.A. N.A. N.A. N.A.

Model 2: conventional risk 
factors + 18 selected metabolites

0.87 0.81, 0.94 0.013 0.110 <0.001 0.23 0.03

Model 1+ FN-BMD 0.87 0.80, 0.93 N.A. N.A. N.A. N.A. N.A.

Model 2+ FN-BMD 0.91 0.86, 0.96 0.015 0.079 0.003 0.09 0.16

Model 1+ LS-BMD 0.85 0.78, 0.92 N.A. N.A. N.A. N.A. N.A.

Model 2+ LS-BMD 0.89 0.83, 0.95 0.022 0.089 0.001 0.26 0.01

Model 1: conventional risk factors includes sex, age, BMI, current smoking status, menopausal status. Model 2: conventional risk factors which 
includes sex, age, BMI, current smoking status, menopausal status plus 27 or 18 selected metabolites. Participants were grouped into two 
categories, [0, 20%) and [20%, 1], based on their fracture risk for NRI. Delong’s test, IDI, and NRI were used to compare model 2 and model 
1, and additionally accounting for FN-BMD or LS-BMD for both model 2 and model 1. AUC=Area under curve. IDI=Integrated discrimination 
improvement. NRI=Net reclassification index. CI=confidence interval. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. N.A.=not 
applicable
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Table 5.

Reclassification table among people with and without a major osteoporotic fracture event during follow-up

Models without selected metabolites Models with selected metabolites

Model 1: Conventional risk factors alone Model 2: Conventional risk factors + selected metabolites

Individuals who experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 102 23 125

[20 %, 1] 11 52 63

Total 113 75 188

Individuals who do not experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 1092 70 1162

[20 %, 1] 78 124 202

Total 1170 194 1364

Overall NRI=0.07 NRI p-value=0.03

Model 1 + FN-BMD Model 2 + FN-BMD

Individuals who experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 94 23 117

[20 %, 1] 9 62 71

Total 103 85 188

Individuals who do not experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 1104 60 1164

[20 %, 1] 71 129 200

Total 1175 189 1364

Overall NRI=0.08 NRI p-value < 0.001

Model 1 + LS-BMD Model 2 + LS-BMD

Individuals who experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 95 27 122

[20 %, 1] 8 58 66

Total 103 85 188

Individuals who do not experience a major osteoporotic fracture event

Fracture risk [0, 20%) [20 %, 1] Total

[0, 20%) 1103 57 1160

[20 %, 1] 76 128 204

Total 1179 185 1364

Overall NRI=0.12 NRI p-value < 0.001
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Model 1: conventional risk factors includes sex, age, BMI, current smoking status, menopausal status. Model 2: conventional risk factors which 
includes sex, age, BMI, current smoking status, menopausal status plus 27 selected metabolites. Logistic regression was fitted to get the predicted 
probability of fracture as fracture risk here for all models. Participants were grouped into two categories, [0, 20%) and [20%, 1], based on their 
fracture risk. NRI=Net reclassification index. CI=confidence interval. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine.
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Table 6.

Two-sample Mendelian randomization results for FN-BMD and LS-BMD

Exposure 
(Metabolite)

Outcome
(BMD)

IVW beta IVW p-value Weighted 
median beta

Weighted 
median p-value

Q statistic p-
value

Egger regression 
intercept p-value

leucine FN BMD −0.028 0.63 −0.057 0.34 0.22 0.75

LS BMD 0.071 0.19 0.074 0.24 0.35 0.72

glycine FN BMD −0.033 2.51×10−5 −0.040 6.82×10−4 0.98 0.87

LS BMD −0.013 0.14 −0.017 0.16 0.89 0.71

creatinine FN BMD 0.074 0.39 0.169 0.03 0.01 1.08×10−4

LS BMD 0.146 0.02 0.164 0.04 0.16 3.90×10−3

PC FN BMD −0.066 6.89×10−3 −0.043 0.19 0.84 0.05

LS BMD −0.136 1.84×10−7 −0.106 2.96×10−3 0.57 0.30

SM FN BMD −0.017 0.75 −0.011 0.84 0.06 0.21

LS BMD −0.145 0.01 −0.164 7.41×10−3 0.05 0.03

TAG FN BMD −0.065 7.46×10−3 −0.033 0.35 0.78 0.59

LS BMD −0.070 0.02 −0.039 0.35 0.18 0.54

Genetic information of above six metabolites (exposure) and two outcomes, FN-BMD and LS-BMD, are available from the summary statistics of 

GWAS.23,24 IVW (inverse variance weighted) beta estimates the causal effect of each selected metabolite on BMD, either FN-BMD or LS-BMD. 
Q statistic p-value less than 0.05 indicates the instrumental heterogeneity for each selected metabolite. Egger regression intercept p-value less 
than 0.05 implicates the horizontal pleiotropy for the instrumental variants of each selected metabolite. IVW p-value less than 0.05 while both 
Q-statistics p-value and Egger regression intercept p-value greater than 0.05 was set as the significance level. Bold ones are the metabolites with 
significant causal effect on either FN-BMD or LS-BMD. BMD=bone mineral density. FN=femoral neck. LS=lumbar spine. IVW=inverse-variance 
weighted. PC=phosphatidylcholine. SM=Sphingomyelin. TAG=Triacylglycerol.
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