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Abstract

Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficul-
ties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion char-
acteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal
period are associated with socio-emotional development in 151 very preterm children previously enrolled into
the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor
imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), in-
ferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus
(SLF). Children’s socio-emotional development was evaluated at preschool age (median=4.63years).
Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent
constructs summarized as: “emotion moderation,” “social function,” and “empathy.” Results of linear regres-
sion analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association
between lower FA in the right UF and higher “emotion moderation” scores (8 = —0.280; p < 0.001), which was
mainly driven by negative affectivity scores (8 = —0.281; p=0.001). Results further showed an association be-
tween higher full-scale 1Q and better social functioning (8 = —0.334, p <0.001). Girls had higher empathy
scores than boys (8 = —0.341, p =0.006). These findings suggest that early alterations of diffusion characteris-
tics of the UF could represent a biological substrate underlying the link between very preterm birth and emo-
tional dysregulation in childhood and beyond.
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Significance Statement

Children born very preterm are at a higher risk of developing socio-emotional difficulties compared with
those born at term. Our study showed that early alterations of diffusion characteristics of the uncinate fasci-
culus (UF) in very preterm infants assessed at term-equivalent age were associated with emotional dysregu-
lation in childhood. The identification of early biological substrates linked to emotional development could
create opportunities for the prevention and targeting of emerging emotional problems to enhance children’s
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Introduction

Children who were born very preterm (<33 weeks of
gestation) are at heightened risk of experiencing socio-
emotional difficulties, which include diminished social
competence and reduced ability to self-regulate their
emotions and behaviors (Spittle et al., 2009; Jones et al.,
2013; Witt et al.,, 2014; Montagna and Nosarti, 2016).
Socio-emotional difficulties in childhood have been asso-
ciated with the later emergence of psychiatric symptoms
(Woodward et al., 2017; Thomson et al., 2019).

Our current understanding of the etiology of socio-emo-
tional difficulties associated with very preterm birth is limited.
Possible underlying causes include altered neurodevelop-
ment, implicating brain structural and functional connectivity
(Counsell et al., 2014; Duerden et al., 2015; Keunen et al.,
2017; Dimitrova et al., 2020). However, studies directly inves-
tigating the association between brain alterations and child-
ren’s socio-emotional outcomes following very preterm birth
are scarce (Fischi-Gémez et al., 2015; Mossad et al., 2017;
Urbain et al., 2019). Only a few investigations to date have
used a longitudinal design to identify neural features present
in the neonatal period that are associated with later socio-
emotional problems (Rogers et al., 2012), and studies have
predominantly focused on resting state functional connectiv-
ity. These studies have suggested associations between al-
terations in neonatal functional amygdala connectivity and
internalizing symptoms, and between alterations in ventral at-
tention-default mode network connectivity and behavioral in-
hibition in preterm born toddlers (Rogers et al., 2017;
Sylvester et al., 2018). Given that functional connectivity is
constrained by the anatomic structure of the human cerebral
cortex (Honey et al., 2009), investigating relationships be-
tween neonatal white matter (WM) diffusion characteristics
and later socio-emotional outcomes may further add to our
understanding of how the brain’s emerging architecture con-
tributes to shaping very preterm children’s development.

Socio-emotional processing is underpinned by inte-
grated activity across an extended socio-emotional
network (Catani et al., 2013). Therefore, structural con-
nectivity alterations within this system may represent
a neural substrate of social-emotional impairments.
Emotional disorders have been characterized by WM
diffusion characteristic alterations in several tracts, in-
cluding the uncinate fasciculus (UF), which connects
the temporo-amygdala-orbitofrontal network, the infe-
rior fronto-occipital fasciculus (IFOF), which connects
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the dorsolateral and inferolateral frontal cortex with
the occipital and posterior temporal cortex, the inferior
longitudinal fasciculus (ILF), which links occipital and
temporal lobes, and the superior longitudinal fascicu-
lus (SLF), which connects parietal to frontal cortical re-
gions (Jenkins et al., 2016; Wang et al., 2016).

These different tracts have been studied in relation to
various behavioral outcomes, such as memory and cogni-
tion (Riley et al., 2010; Chen et al., 2020; Koshiyama et al.,
2020), but also to specific aspects of socio-emotional
processing: the UF with emotion regulation (Von Der
Heide et al., 2013; Eden et al., 2015), the IFOF and ILF
with the ability to decode human facial emotions (Philippi
et al., 2009; Unger et al., 2016), and the SLF with emotion-
al empathy (Parkinson and Wheatley, 2014).

Differences in the diffusion characteristics of these
tracts between very preterm and term-born individuals
have also been investigated, with previous studies show-
ing inconsistent results, such as reduced fractional ani-
sotropy (FA) values in the UF (Mullen et al., 2011; Travis et
al., 2015; Vollmer et al., 2017; Young et al., 2018), both in-
creased (Dodson et al., 2017) and decreased FA values in
the IFOF (Salvan et al., 2014; Vollmer et al., 2017; Young
et al., 2018), decreased FA values in the ILF (Travis et al.,
2015; Vollmer et al., 2017; Young et al., 2018) and SLF
(Young et al., 2018), and no group differences in the SLF
(Vollmer et al., 2017). Further, very preterm infants and
children also display increased diffusivities when com-
pared with term-born controls, including mean diffusivity
(MD), radial diffusivity (RD), and axial diffusivity (AD;
Young et al., 2018; Lautarescu et al., 2020; Brenner et al.,
2021).

The current longitudinal investigation aimed to test the
hypothesis that diffusion characteristics of WM tracts im-
plicated in socio-emotional processing assessed at term
equivalent age are associated with socio-emotional de-
velopment during the preschool years in children who
were born very preterm.

Materials and Methods

Participants

A total of 511 participants were enrolled into the
Evaluation of Preterm Imaging study (ePrime, (EudraCT
2009-011602-42); Edwards et al., 2018). They were re-
cruited at birth in 2010-2013 from hospitals within the North
and Southwest London Perinatal Network. Inclusion criteria
were birth before 33 weeks of gestational age (GA) and ma-
ternal age over 16years. Exclusion criteria included the
presence of major congenital malformation, prior magnetic
resonance imaging (MRI), metallic implants, parents unable
to speak English, or being subject to child protection pro-
ceedings. Infants underwent MRI at term-equivalent age,
defined as 38-44 weeks of GA (mean=42.24; SD=1.41). At
four to seven years of age, children were invited to the
Centre for the Developing Brain, St Thomas’ Hospital,
London, for a neurodevelopmental assessment. Invitations
for follow-up were sent in chronological order of birth to all
children who were past their fourth birthday. The study
closed on September 1, 2019. Written informed consent
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151 children in final analyses

Figure 1. Recruitment flowchart. TEA, term-equivalent age; PMA, postmenstrual age.

was obtained from participants’ carer(s) following procedures
approved by the Stanmore Research Ethics Committee (14/
LO/0677). The study was conducted in accordance with the
Code of Ethics of the World Medical Association (Declaration
of Helsinki).

Figure 1 provides detailed recruitment information. To
summarize, 55 children invited for follow-up study were
not assessed at four to seven years for the reasons listed
in Figure 1. A further one hundred children were excluded
from the final analyses, because of incomplete assess-
ment data (n = 46), motion artefacts on MRI (n = 38) or sig-
nificant focal perinatal brain injury (n=16), defined as
periventricular leukomalacia, hemorrhagic parenchymal
infarction and other ischemic or hemorrhagic lesions
(Barnett et al., 2018), but not including punctate lesions or
diffuse excessive high signal in WM on T2-weighted im-
ages. The final sample consisted of 151 very preterm born
participants who had T1-weighted and T2-weighted MRI
and diffusion MRI (dMRI) at 38-44 weeks of term-equiva-
lent and subsequently participated in the follow-up as-
sessment at four to seven years.

Procedure
Perinatal clinical and socio-demographic data

Perinatal clinical and socio-demographic data were col-
lected, with permission, from the Standardized Electronic
Neonatal Database. Index of Multiple Deprivation (IMD)
score was computed from the postcode of the parent at
the time of infant birth (Department for Communities and
Local Government, 2011; https://tools.npeu.ox.ac.uk/
imd/) and provided a proxy for family socio-economic sta-
tus. The IMD measures social risk by comparing each
neighborhood to all others in the country and is based on
seven domains of deprivation (with varying weighting, as
follows): income (22.5%), employment (22.5%), education
skills and training (13.5%), health and disability (13.5%),
barriers to housing and services (9.3%), living environ-
ment (9.3%), and crime (9.3%). Maternal education was
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defined as age on leaving full-time education, split into
two groups (1) at or before 19years; (2) after 19years
(Kleine et al., 2020).

MRI acquisition and analysis

A pediatrician experienced in MRI procedures super-
vised all MR imaging. Pulse oximetry, temperature, and
electrocardiography data were monitored throughout the
session. Silicone-based putty (President Putty, Coltene
Whaledent), as well as neonatal earmuffs (MiniMuffs,
Natus Medical Inc.), were used for ear protection. Oral
chloral hydrate (25-50mg kg~ ') was administered to in-
fants whose parents chose sedation for the procedure.

MR imaging was performed on a 3-Tesla system
(Philips Medical Systems) sited on the neonatal intensive
care unit using an eight-channel phased array head coil.
High-resolution anatomic images were acquired with
pulse sequence parameters: T2-weighted fast-spin echo
imaging: TR=8670ms, TE=160ms, flip angle 90°, slice
thickness 2 mm with 1-mm overlapping slices, in-plane
resolution 0.86 x 0.86 mm. dMRI data were acquired in
the transverse plane in 32 non-collinear directions with
the following parameters: TR =8000 ms, TE =49 ms, voxel
size: 2 mm isotropic, b value: 750 s/mm?, sense factor of
2, 1 non-diffusion-weighted image, b =0.

Diffusion-weighted images were visually inspected in
three orthogonal planes for the presence of motion arti-
fact and corrupt diffusion-weighted volumes were ex-
cluded before tensor fitting. All participants included in
analyses had five or fewer excluded volumes. Non-brain
tissue was removed using BET (version 2.1; http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/BET; Smith, 2002; Jenkinson et
al., 2012), images were corrected for eddy current arte-
facts using eddy_correct (Andersson and Sotiropoulos,
2016), and tensor model was fitted using dtifit from FSL
(FMRIB; http://fsl.fmrib.ox.ac.uk).

Tract-specific analysis (TSA; Yushkevich et al., 2008)
was used to derive dMRI measures for selected WM
tracts, as described in detail in Pecheva et al. (2017). TSA
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Table 1: Definitions of ROls drawn manually to delineate WM tracts

Tract Inclusion ROI 1

Inclusion ROI 2

Exclusion ROI

UF  Entire temporal lobe identified in coronal plane
at level where frontal and temporal lobe are no
longer connected

IFOF Occipital lobe selected in coronal plane identi-
fied halfway between posterior edge of cingu-
lum and posterior of the brain

ILF  Entire hemisphere selected in coronal plane at
posterior edge of cingulum identified at mid-
sagittal slice

which fornix can be identified as a single
structure

All projections into frontal lobe

Entire temporal lobe identified in the coronal
plane at level where frontal and temporal lobe
are no longer connected

SLF Identified in coronal plane at lowest axial level in  Projections passing through coronal plane at

level of splenium of CC identified in mid-sagit-

tal slice

Fibers which project into
anterior limb of external
capsule and posteriorly

Entire hemisphere in coronal plane at level of the Fibers crossing medially
genu of CC identified in mid-sagittal slice

through anterior
commissure

Fibers that track medially
into fornix and CC

Fiber that project into ex-
ternal capsule

UF, uncinate fasciculus; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; CC, corpus callosum.

is a WM analysis method that creates skeleton models of
individual WM tracts onto which diffusion data can be
projected for statistical analysis. All subjects were regis-
tered to a study-specific template using a tensor-based
algorithm (Zhang et al., 2006). Following registration,
tracts of interest were delineated from the template using
deterministic tractography based on the FACT approach
(Mori et al., 1999). Whole-brain tractography was seeded
from a WM mask, defined by thresholding the template
FA map at 0.1, and regions of interest were drawn man-
ually according to the protocol described previously
(Wakana et al., 2007), by a single rater (D.P.; Table 1). The
following tracking parameters were used: maximum angle
threshold of 45°, step size of 0.5 mm and minimum FA
threshold of 0.1. From the tractography, a surface skele-
ton representation with clearly-defined tract boundaries
was derived for each WM pathway. TSA samples data to
be projected onto each point of the skeleton by searching
for the maximum FA value along the unit normal from that
point to the tract boundary. This is done for each subject.
The data projection step serves two main purposes. First,
it is a dimensionality reduction step which increases sen-
sitivity, similar to smoothing (Yushkevich et al., 2008).
Furthermore, as tract FA values tend to be higher in the
center of a tract, projecting the maximum FA value
accounts for residual misalignments and improves inter-
subject correspondence by forcing a comparison be-
tween tract centers across subjects (Smith et al., 2006).
From the tractography results, a medial surface was de-
termined for the UF, IFOF, ILF, and SLF. The medial sur-
face simultaneously defined the tract skeleton and
boundary (Yushkevich and Zhang, 2013). Diffusion data
from every subject was then projected onto the skeleton.
TSA sampled data to be projected onto each point of the
skeleton by searching along the unit normal from that
point to the tract boundary (Pecheva et al., 2017). FA val-
ues were calculated for each tract. Examples of surface
representation of tracts are shown in Figure 2.

Neurodevelopmental outcomes

The Wechsler Preschool and Primary Scale of
Intelligence (WPPSI-IV; Wechsler, 2012) was used to
estimate children’s full-scale 1Q. Parents completed
the Strengths and Difficulties Questionnaire (SDQ;
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Goodman, 1997), a behavioral screening measure for gen-
eral childhood psychopathology, comprising 25 items cate-
gorized into five subscales: emotional symptoms, conduct
problems, hyperactivity/inattention, peer relationship prob-
lems and prosocial behavior.; the Children’s Behaviour
Questionnaire-Very Short Form (CBQ; Putnam and
Rothbart, 2006) which assesses the child’s temperament
using 36 items summarized into three broad scales (nega-
tive affectivity, effortful control and surgency); the
Empathy Questionnaire (EmQue; Rieffe et al., 2010), a
20 item questionnaire which measures empathy-re-
lated behaviors in young children, summarized into
three scales: emotion contagion, attention to others’
emotions and prosocial responses to others’ emotions;
and the Social Responsiveness Scale (SRS-2; Constantino
and Gruber, 2012), an assessment of social impairments as-
sociated with autism-spectrum behaviors, which provides
subscale scores for social awareness, social cognition, so-
cial communication, social motivation, restricted interests
and repetitive behaviors.

To measure facial emotion recognition abilities, a new
task was created based on (Gao and Maurer, 2009),
which used static stimuli from the validated Dartmouth
database of children’s faces (Dalrymple et al., 2013). Four
boys and four girls were chosen from the database and 6
emotions (happy, surprise, fear, anger, disgust and sad-
ness) plus neutral faces were used. The task consisted of
two testing blocks, whereby the first of these included
pictures showing happy, surprised and fearful expres-
sions, and the second contained pictures showing sad,
disgusted and angry expressions, with both blocks in-
cluding neutral faces. Stimuli were presented singly, and
participants were asked to identify which emotion each
image was representing. Accuracy was measured based
on the correct identification of emotions. Male and female
models were allocated evenly between the emotion and
neutral expressions. For every emotion, two levels of in-
tensity were created by morphing a neutral face with the
emotional face of the same model, to create, for example,
50% and 100% happy faces. The use of different inten-
sities has been shown to promote the detection of subtle
differences in abilities to recognize emotions (Horning et
al., 2012; Kessels et al., 2014). Fantamorph software was
used to create these morphed images (http://www.
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Figure 2. Example of right sagittal and bilateral axial surface representation of tracts. A, UF. B, IFOF. C, ILF. D, SLF.

fantamorph.com/index.html), by manually positioning
points on the anatomic landmarks in the photograph of
each face. Distortions caused by the morphing process in
the eye and mouth regions were edited using Photoshop.
In total, there were 56 stimuli [(2 intensity levels x 6 emo-
tions x 4 models) + (2 neutral expressions x 4 models)].
The task created here has no working memory load, and
therefore only participant’s accuracy is measured. The
total number of correct responses the child made was
added to produce an emotion recognition score.

Lower accuracy scores on the emotion recognition task
correlated with higher SRS-2 T-scores, indicating in-
creased social difficulties [social information processing
(r = —0.261; p < 0.001), social communication (- = —0.201;
p =0.003), social motivation (- = —0.201; p =0.003), restricted
interests and repetitive behavior (r= —0.228; p =0.001), social
communication index (SCI; r = —0.234; p=0.001), and total

September/October 2021, 8(5) ENEURO.0546-20.2021

score (r = —0.237; p < 0.001)]. Crucially, the task was most
strongly associated with social information processing, sug-
gesting it successfully measured the key construct it was de-
signed to, in pediatric samples.

Statistical analyses

Twenty-eight perinatal clinical variables obtained from
all ePrime participants (n=511) were summarized
using principal component analysis (PCA) applying
Promax rotation, using SPSS 26. Maternal variables
were: preeclampsia and pregnancy induced hyperten-
sion, antenatal hypertension, placental abruption or
antenatal hemorrhage, premature rupture of mem-
branes, urinary tract infection, gestational diabetes,
oligohydramnios, polyhydramnios, drug abuse, in vitro
fertilization, bacterial infection (all y/n), and mode of
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Table 2: Participants’ clinical and socio-demographic characteristics

GA at birth (weeks), median (IQR) 30.29 (28.79-31.79)

Birth weight (g), median (IQR) 1275 (980-1570)

PMA at MRI (weeks), mean (=SD) 42.22 (0.79)

CA at assessment, median (IQR) 4.63 (4.1-5.16)

Female, number (percentage) 71 (47%)

I1Q score, mean (=SD) 108.03 (17.00)

IMD score quintiles 1 (least deprived) 36 23.8%
2 26 17.2%
3 37 24.5%
4 35 23.2%
5 (most deprived) 17 11.3%

Maternal education >19 years, number (percentage)

117 (77.5%)

CA, corrected age at assessment; GA, gestational age; IMD, index of multiple deprivation; IQR, interquartile range; MRI, magnetic resonance imaging; PMA,

postmenstrual age at neonatal MRI.

delivery (vaginal/elective/emergency). Infant variables
were: sex, GA (weeks and days), birth weight (grams), multi-
ple pregnancy (singleton/multiple), antenatal steroid admin-
istration (no/partial/full course), twin-to-twin transfusion,
chorioamnionitis, intrauterine growth restriction, surfactant
administration, treatment for patent ductus arteriosus, surgi-
cal treatment for necrotizing enterocolitis, formula feeding,
feeding on maternal expressed breast milk (all y/n), days on
mechanical ventilation, days on continuous positive airway
pressure (CPAP), and days on parenteral nutrition (TPN). All
variables were coded so that higher values reflected greater
clinical risk. Communalities were checked, and as all were
above 0.2, no items were removed (Costello and Osborne,
2005).

R using R studio was used to perform all following analy-
ses, using a non-random experimental design. Maximum-
likelihood factor analysis with Varimax rotation was per-
formed using the stats v3.6.2 package. Factor analysis in-
cluded the following outcome variables: four SDQ subscales
(emotional symptoms, conduct problems, peer relationship
problems and prosocial behavior), three CBQ subscales
(negative affectivity, surgency and effortful control), three
EmQue subscales (emotion contagion, attention to others’
feelings and prosocial actions); the SRS-2 SCI and accuracy
on the emotion recognition task. All neurodevelopmental sub-
scale scores were standardized. Factors were extracted
based on the criterion of having eigenvalues >1 and exami-
nation of scree plots. Factor scores were then used in subse-
quent analyses.

In order to find the best predictors of children’s socio-
emotional outcomes, best-fit linear models were selected
using an automated model selection process, using the
glmulti package (Calcagno and de Mazancourt, 2010).
Before model selection, multicollinearity between the
chosen tracts was assessed by calculating a variance in-
flation factor (VIF) for each tract, which consists of com-
paring the overall model variance to the variance of a
model that includes only that single independent tract.
Two variables with VIF>10 were excluded from subse-
quent analyses (Hair, 2009), i.e., FA values of the left and
right IFOF. For each socio-emotional outcome (emotion
moderation, social function, and empathy), model com-
parison was performed using Akaike Information Criterion
(AIC; Akaike, 1974) and 8450 models were compared.
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Variables included in each model were: FA values of the
left UF, ILF and SLF; right UF, ILF and SLF; postmenstrual
age at scan (PMA), corrected age at follow-up assess-
ment, 1Q, IMD, maternal education, sex, and neonatal
sickness index. Linear regression was then performed to
study the association between predictor variables in-
cluded in the best-fit model and socio-emotional factor
scores.

Results

Participants’ characteristics are summarized in Table 2.
Results of PCA performed to summarize perinatal clinical
variables showed one factor that explained 72% of their
variance. The Kaiser-Meyer-Olkin measure of sampling
adequacy was 0.73, Bartlett’s test of sphericity was sig-
nificant (y?=3597.79, p <0.01), and all factor loadings
were above 0.2. Factor weights were between 0.767 and
0.898 for GA, days on TPN, days on cPAP, days on me-
chanical ventilation and surfactant administration. This
factor was labeled as “neonatal sickness index.” Internal
reliability assessed using Cronbach’s « was good (a =
0.86).

Children who were included in the final analyses had
lower neonatal sickness index scores (t=2.721, p =0.007)
and higher 1Q scores (t = —3.449, p=0.001) compared
with those who were not included. Results were similar
after exclusion of non-participating children with signifi-
cant focal perinatal brain injury on neonatal MRI (neonatal
sickness index score: t=2.903, p=0.004; 1Q: t = —2.752,
p =0.006).

Socio-emotional outcomes

Descriptive statistics for children’s socio-emotional out-
come measures are shown in Table 3.

Exploratory factor analysis conducted on the 12 socio-
emotional outcomes showed a three-factor structure. The
Kaiser-Meyer-Olkin measure of sampling adequacy was
0.76, Bartlett’s test of sphericity was significant (y?=
469.977, p <0.001), and all factor loadings were above
0.4. The three latent constructs accounted for 42% of the
variance in socio-emotional outcomes and are graphically
displayed in Figure 3. These are summarized as: factor
1 or “emotion moderation,” characterized by positive
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Table 3: Descriptive statistics for children’s outcome

measures

SDQ emotional symptoms, median (IQR)

SDQ conduct problems, median (IQR)

SDQ peer relationship problems, median (IQR)
SDQ prosocial behavior, median (IQR)

CBAQ negative affectivity, mean (=SD)

CBQ surgency, mean (+SD)

CBQ effortful control, mean (=SD)

EmQue emotion contagion, median (IQR)

EmQue attention to others’ feelings, mean (=SD)

EmQue prosocial, mean (+=SD)
SRS SCI, mean (+SD)

1 (0-
1 (0-
1 (0-
8 (6-
4.284 (0.659)
5.133 (0.641)
4.494 (0.485)
0.17 (0-0.5)
1.299 (0.381)
1.076 (0.399)
47.037 (8.169)

3)
3)
2)
9)
4 (
(

Raw values are shown. CBQ, children’s behavior questionnaire; EmQue, em-
pathy questionnaire; IQR, interquartile range; SDQ, strengths and difficulties
questionnaire; SRS, social responsiveness scale.

loadings (between 0.48 and 0.93) for CBQ negative affec-
tivity and CBQ effortful control scores. Factor 2 or “social
function,” which loads onto higher SDQ emotional symp-
toms, SDQ conduct problems, SDQ peer relationship
problems scores and SRS-2 SCI; as well as lower scores
on SDQ prosocial behavior, EmQue prosocial actions and
CBQ surgency (between —-0.67 and 0.74), indicating more
emotional and behavior problems, heightened antisocial
behavior and more socializing difficulties. Factor 3 or “em
pathy” is defined by positive loadings for EmQue emotion
contagion and EmQue attention to others’ scores (both
0.56), indicating a higher degree of empathic displays.
Emotion recognition scores did not substantially load
onto any of the factors.

Diffusion properties of WM tracts
Mean FA values of the UF, IFOF,
shown in Table 4.

ILF and SLF, are

Best-fit predictors of socio-emotional outcomes

Best-fit predictors of emotion moderation were right UF
FA values and full-scale 1Q (AIC value =387.387). Lower
FA values in the right UF were associated with higher
emotion moderation scores (8 = —0.280, p <0.001; Fig.
4). In order to aid interpretation, post hoc analyses de-
composed the emotion moderation factor into the two
variables that loaded onto it (CBQ negative affectivity and
CBQ effortful control scores). Results showed that the as-
sociation between right UF FA values and emotion mod-
eration was mainly driven by their relationship to negative
affectivity scores (8 = —0.281; p=0.001). UF FA values
were not significantly associated with effortful control
scores (B = —0.126; p =0.150).

Best-fit predictors of social function were sex, cor-
rected age at assessment and full-scale 1Q (AIC
value =407.210). Higher full-scale 1Q was associated
with better social functioning (i.e., lower social func-
tion factor scores; B = —0.334, p <0.001). Best-fit
predictor of empathy was sex and IMD (AIC value=
346.983). Girls had higher empathy scores than boys (8 =
—0.319, p=0.006). FA values of the WM tracts implicated in
emotion processing were not associated with social function
and empathy.
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Figure 3. A, Scree plot representing eigenvalues, used to de-
termine number of factors to retain. B, Heatmap indicating fac-
tor loadings on emotion moderation, social function, and
empathy.

Table 4: Descriptive statistics for diffusion properties of
WM tracts implicated in emotion processing

Tract Left FA, mean (=SD) Right FA, mean (=SD)
UF 0.165 (0.015) 0.169 (0.015)
IFOF 0.209 (0.019) 0.207 (0.017)
ILF 0.207 (0.021) 0.198 (0.019)
SLF 0.162 (0.014) 0.188 (0.016)

UF, uncinate fasciculus; IFOF, inferior fronto-occipital fasciculus; ILF, inferior
longitudinal fasciculus; SLF, superior longitudinal fasciculus.
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Cc

Empathy

sex

Figure 4. A, Scatterplot showing negative relationship between right UF FA values and emotion moderation scores (one outlier re-
moved, total n=150). B, Scatterplot showing negative relationship between 1Q scores and social function scores (one outlier re-
moved, total n=150). C, Boxplot showing sex differences in empathy scores. Outliers were defined as values >1.5 times the value
of the interquartile range beyond the quartiles. All values were scaled prior to analyses.

Results of regression analyses for the three outcome
models (emotion moderation, social function, and empa-
thy) including best-fit predictors remained significant after
applying Bonferroni correction, correcting for the six WM
tracts (adjusted p value for significance = 0.008; Table 5).

Discussion

This study found that WM diffusion characteristics in
the UF assessed at term equivalent age in very preterm in-
fants were associated with childhood emotion modera-
tion scores, which summarize a latent factor reflecting
both increased negative affectivity and enhanced ef-
fortful control. Negative affectivity refers to a reactive
temperamental trait that is characterized by an overall
negative outlook of oneself and the surrounding world
(e.g., frustration, anger, sadness). Effortful control is
conceptualized as an umbrella term referring to a
child’s capacity to focus and shift attention, intention-
ally inhibit a response, and respond to low-intensity
stimulation and reward (Rothbart et al., 2003). The two
traits, negative affectivity and effortful control, could
be compared with constructs used to describe adult per-
sonality, neuroticism and constraint/conscientiousness,
respectively (Digman, 1990). Summary scores for nega-
tive affectivity and effortful control tend to be negatively

correlated in community samples (Putnam et al., 2006),
hence the factor described here as emotion moderation,
which combines high negative affectivity and enhanced
effortful control, may look unintuitive at first. This factor
could be interpreted as reflecting an adaptive strategy,
whereby children use regulatory skills to moderate the
impact of reactive systems, i.e., negative emotionality
(Rothbart and Bates, 1998; Nigg, 2006). In line with this
hypothesis, Eisenberg and colleagues showed that neg-
ative emotionality and low regulation were maladaptive,
(Eisenberg et al., 2001) while Belsky et al. (2001) found
that high levels of orienting/effortful control moderated
the impact of children’s negative affectivity on behavioral
outcomes.

Lower FA values in the right UF assessed at term were
associated with higher emotion moderation scores in
childhood. When this factor was decomposed into the
two variables that loaded onto it (negative affectivity and
effortful control) we found that this association was driven
by the relationship between right UF FA values and nega-
tive affectivity. Anatomically, the UF is sited withing the
limbic system, and connects the “temporo-amygdala-or-
bitofrontal network” (Catani et al., 2013), which has been
suggested to play a pivotal role in “affective tagging” (Von
Der Heide et al., 2013), i.e., the assignment of emotional
tone, such as positive and negative feelings, to the

Table 5: Results from regression analyses for socio-emotional factors including best-fit predictors

Outcome Data structure Predicting variable B p value

Emotion moderation Normal distribution Right UF FA —0.280 <0.001
Full-scale 1Q —-0.129 0.104

Social function Normal distribution Sex 0.279 0.048
Corrected age at assessment —0.103 0.138
Full-scale 1Q —-0.334 <0.001"

Empathy Normal distribution Sex —0.341 0.006"
IMD -0.110 0.083

* Analyses significant after applying Bonferroni correction (adjusted p value for significance = 0.008).
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representations stored in the anterior temporal lobe
(Olson et al., 2013). Diffusion characteristics of the UF
have been previously implicated in a variety of psychiatric
disorders (Von Der Heide et al., 2013) including anxiety
disorder (Phan et al., 2009) and major depression (Cullen
et al., 2010) and have also been associated with early ad-
versity and future psychological vulnerability to stress
(Hanson et al., 2015). A study in major depression investi-
gating diffusion characteristics and resting state function-
al connectivity of the UF showed structural alterations
together with functional orbitofrontal cortex-amygdala in-
hibition, suggesting this dysconnectivity pattern was
mediated by “top-down” influences from the frontal cor-
tex to the amygdala (Zheng et al., 2018). We speculate
that early diffusion characteristics of the UF may be asso-
ciated with difficulties in top-down regulation, leading to
children’s inability to down-regulate amygdalar activity,
resulting in the tendency to attribute negative feelings to
certain contexts and situations, and in the overexpression
of negative affect.

Furthermore, although our results did not show a direct
association between UF FA values and effortful control,
and the UF has not been selectively implicated in effortful/
cognitive control in the published literature (Noble et al.,
2013), it may nevertheless be relevant to effortful control
in the context of emotions, with a previous study showing
an association between UF integrity and emotional con-
trol in children with traumatic brain injury (Johnson et al.,
2011).

Results indicated a laterality effect, with only the right
UF FA values being associated with emotion moderation
scores. These findings are in line with previous research,
which demonstrated lateralization of emotional proc-
esses. According to the valence hypothesis (Hellige,
2001), the processing of negative emotions preferentially
engages the right side of the brain, whereas positive emo-
tions are preferentially processed by the left side. This hy-
pothesis is supported by functional MRI results showing
participants are better at discriminating sad faces when
visual stimuli are displayed in the left visual field (i.e., right
hemisphere) and better at discriminating happy faces
when displayed in the right visual field (i.e., left hemi-
sphere; Adolphs et al., 2001; Rodway et al., 2003). The va-
lence hypothesis is also supported by research showing
that direct stimulation of the right amygdala induced un-
pleasant emotions, whereas stimulation of the left amyg-
dala induced both pleasant and unpleasant emotions
(Lanteaume et al., 2007). Further, differences between the
two hemispheres in terms of volume and number of
streamlines for UF subcomponents have been previously
observed (Park et al., 2004; Hau et al., 2017), suggesting
left-lateralized dorsolateral and right-lateralized ventro-
medial UF subcomponents.

Diffusion characteristics of any of the neonatal WM
tracts studied here were not associated with social
function and empathy factor scores. Social function
was characterized by higher factor loadings for sub-
scales evaluating social problems, and lower factor load-
ings for prosocial behavior, therefore higher social function
scores reflected increased overall social difficulties. Better
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social function was associated with higher full-scale 1Q,
supporting previous literature highlighting the impor-
tance of cognitive development for successful social
adaptation (Watson et al., 1999; Adolphs, 2001). These
results could be important for translational research, as
they suggest that an enhancement of children’s cogni-
tive abilities could increase their understanding of social
interactions (Soto-Icaza et al., 2015), leading to a more suc-
cessful psychosocial adjustment. Furthermore, both social
and emotional skills are thought to be intertwined with cog-
nitive processes, with theoretical models postulating that
emotions arise from evaluations of the goal relevance of a
stimulus, and that other people are the most goal-relevant
stimuli in one’s life (Olsson and Ochsner, 2008). Such frame-
work could explain the inclusion of “SDQ emotional prob-
lems” in our social function factor.

Girls had higher empathy scores than boys, indicating a
better ability to empathize with the experiences of others.
Sex differences in empathy have been widely docu-
mented in previous research (Auyeung et al., 2009), and
are thought to be reinforced by gender-based expecta-
tions of parents, teachers, and caregivers (Stern and
Karraker, 1989).

Caveats of the present study include a lack of full-term
control participants, which limits the generalizability of our
findings only to those children born very preterm. In addi-
tion, the very preterm preschoolers who were followed-up
in our study came from a relatively high socio-economic
background (23.8% belonged to the least deprived IMD
quintile) and had a higher mean full-scale 1Q and lower
“neonatal sickness index” scores compared with non-re-
turners. Therefore, the current sample includes those chil-
dren with a more favorable outcome and may not be
representative of the overall ePrime sample and the wider
very preterm population. Taking this into consideration,
our results may be generalizable only to relatively high
functioning very preterm children.

An added limitation of the current study is that dMRI
was acquired using a b value of 750 s/mm? with 32 non-
collinear directions. Further, the diffusion metric FA is not
suitable for modeling crossing fibers and is more suscep-
tible to partial volume effects, limiting our ability to delin-
eate the SLF in its entirety.

Another limitation is the omission of the cingulum in our
analyses, as this tract has been associated with emotion
processing and psychiatric symptomatology (Bubb et al.,
2018). Cingulum tractography was not performed be-
cause TSA determines the tract skeleton by thinning the
tract down to a medial surface, and therefore tube-like
structures (such as the cingulum) are ill-suited for this
methodology.

Results linking neonatal WM alterations with the tend-
ency to overexpress negative emotions about oneself and
the surrounding world in childhood, contributes to the
growing body of research attempting to use an infant’s
connectivity profile to predict its function in the future.
This has been recently demonstrated by a study that used
children’s connectivity fingerprints before they could read
to predict their functional responses in a brain region hy-
pothesized to be implicated in word recognition (i.e., the
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visual word form area) after they had learnt to read
three years later (Saygin et al., 2016). The ability to predict
typical and atypical patterns of emotional development
would create opportunities for the early targeting of
emerging emotional problems and their downstream con-
sequences, including emotional disorders. This could be
achieved through preventative therapies, such as emotion
regulation training, that would help children to deal with
potential stressors and enhance their mental health
(World Health Organization, 2004; Brown et al., 2012).
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