Skip to main content
. 2021 Sep 3;12(21):6473–6483. doi: 10.7150/jca.63879

Table 1.

The performance of several object detection models

Models Feature extraction network Object detection mAP LAMR F1 Precision Recall
MobileNet-SSD MobileNet SSD 85.73% 2.6×10-1 0.76 93.55% 64.44%
VGG16-SSD VGG16 SSD 77.99% 3.5×10-1 0.74 77.78% 70.00%
YOLO-V3 Darknet53 YOLO-V3 74.90% 3.1×10-1 0.75 100.00% 60.00%
YOLO-V4 CSPDarknet53 YOLO-V4 85.36% 2.4×10-1 0.88 97.22% 79.55%
YOLO-V4-tiny CSPDarknet53 YOLO-V4-tiny 81.00% 2.9×10-1 0.75 100.00% 60.00%
RFB-SSD VGG-RFB SSD 96.36% 2.9×10-6 0.90 90.00% 90.00%
Retinanet ResNet50 Retinanet 89.28% 2.9×10-3 0.86 81.82% 90.00%
M2det VGG16 M2det 71.54% 3.0×10-1 0.82 100.00% 70.00%
CenterNet ResNet50 CenterNet 73.47% 3.6×10-1 0.63 95.45% 46.67%
EfficientDet D0 EfficientNetD0 EfficientDet 94.08% 1.2×10-1 0.85 90.00% 80.00%
EfficientDet D1 EfficientNetD1 EfficientDet 94.34% 1.2×10-1 0.86 90.24% 82.22%
Faster RCNN ResNet50 Faster RCNN 88.18% 2.1×10-1 0.72 60.00% 90.00%