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Abstract

Arterial stiffness is an important biomarker for many cardiovascular diseases. Shear wave 

elastography is a recent technique aimed at estimating local arterial stiffness using guided wave 

inversion (GWI), i.e. matching the computed and measured wave dispersion. This paper develops 

and validates a new GWI approach by synthesizing various recent observations and algorithms: 

(a) refinements to signal processing to obtain more accurate experimental dispersion curves; (b) 

an efficient forward model to compute theoretical dispersion curves for immersed, incompressible 

cylindrical waveguides; (c) an optimization framework based on the recent observation that the 

measured dispersion curve is multimodal, i.e. it matches for not one but two different wave 

modes in two different frequency ranges. The resulting inversion approach is validated using 

extensive experimental data from rubber tube phantoms, not only for modulus estimation but 

also to simultaneously estimate modulus and wall thickness. The observations indicate that the 

modulus estimates are best performed with the information on wall thickness. The approach, 

which takes less than half a minute to run, is shown to be accurate, with the modulus estimated 

with less than 4% error for 70% of the experiments.

Introduction

Arterial stiffness is a well-known biomarker of early cardiovascular diseases (Palombo and 

Kozakova 2016, Chirinos et al 2019, Sun 2015). The pulse wave velocity (PWV) is a widely 

used biomarker for arterial stiffness (Vlachopoulos et al 2010, Laurent et al 2006, Chirinos 

et al 2019, McGarry et al 2016, Segers et al 2020). The PWV is currently measured by 

evaluating the time delay between the pressure waveforms measured using tonometry at the 

carotid and femoral arteries and using an estimated travel distance (Kullo and Malik 2007). 

However, given the approximate and average nature of the resulting PWV estimation, there 

is a concerted effort to estimate localized arterial stiffness, e.g. that of the carotid artery. 

This has been done using measurements of vessel distension with high frame rate ultrasound 
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imaging (Luo et al 2009, Vappou et al 2010, Luo et al 2012, Parameswaran et al 2019, 

Marais et al 2019).

Shear wave elastography (SWE) of the arterial stiffness using acoustic radiation force (ARF) 

has shown to be a promising tool to estimate the stiffness of carotid artery (Couade et al 
2010, Bernal et al 2011, Pruijssen et al 2020). The main idea of arterial SWE is to use ARF 

excitation to generate waves propagating within the arterial walls, and use the characteristics 

of the propagating waves to estimate the arterial stiffness.

The main approach to estimate arterial stiffness from the measured response is through 

inversion, i.e. iteratively changing the properties of a model to minimize the difference 

between simulated and measured dispersion curves that represent the variation of phase 

velocity as a function of frequency. These curves reflect how the time-domain waveform 

distorts as it propagates along the artery. The measured dispersion curve is obtained 

from processing the wall motion data acquired using high frame rate ultrasound imaging. 

The simulated dispersion curve is obtained through a forward model, i.e. analytical or 

computational model that can predict the wave dispersion given the arterial material and 

geometric properties.

Various forward models have been developed to compute wave dispersion in arteries. Early 

models were focused on the simplification of geometric complexities leading to analytical 

solutions, with later models focused on both analytical and computational techniques. Some 

of the existing analytical models include, plate (Couade et al 2010, Bernal et al 2011, 

Nguyen et al 2011, Widman et al 2015, Jang et al 2015, Widman et al 2016, Maksuti et al 
2016, Li et al 2017a), hollow tube (Zhang et al 2005, Flamini et al 2015), and fluid-filled 

tube (Flamini et al 2015, Lin et al 2015). A more detailed three-dimensional finite element 

model is utilized in (Dutta et al 2015). In (Astaneh et al 2017) and (Roy and Guddati 2021), 

a waveguide model based on semi-analytical finite element (SAFE) methods was developed 

to capture the fully three-dimensional wave propagation in a fluid-filled immersed tube, 

but with a significantly reduced computational cost without sacrificing accuracy. Through 

a validation exercise in (Astaneh et al 2017), we found that the experimental dispersion 

curve matches not with a single simulated curve, but multiple curves depending on the 

frequency range. The goal of this paper is to build on this observation and develop and 

validate inversion approaches to estimate the arterial modulus.

Most of the existing work focused on estimating the shear modulus to characterize the 

arterial stiffness (Couade et al 2010, Bernal et al 2011, Nguyen et al 2011, Widman et al 
2015, 2016, Maksuti et al 2016, Li et al 2017a). However, it is known that thickness also 

significantly contributes towards artery stiffness estimation (Maksuti et al 2017, Astaneh 

et al 2017, Dutta et al 2015). Because it is small, the thickness, which is often measured 

using ultrasound B-mode images, may not always be accurate. Thus, if possible, it would 

be desirable to estimate the thickness in addition to modulus, from the wave dispersion 

properties. Exploring this possibility is a secondary goal of the current study.

The outline of the paper is as follows. After summarizing the basic idea of shear wave 

elastography for arteries, we describe the data acquisition and processing to obtain the 

Roy et al. Page 2

Phys Med Biol. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experimental dispersion curve, which includes a summary of recent signal processing 

refinements. We then focus on the forward model to compute the simulated dispersion 

curves. In the following section, we discuss the necessary details related to inversion, i.e. 

parametrization, objective function, and optimization algorithms. The validation study is 

then presented followed by concluding remarks.

Shear Wave Elastography of Arteries

Given that arterial wall modulus is much higher than the surrounding tissue, a high

frequency pulse from the acoustic radiation force generates waves that are guided along 

the arterial wall. The dispersion characteristics of the guided waves are used to estimate the 

arterial modulus and thus the stiffness (Couade et al 2010, Bernal et al 2011). The schematic 

of the methodology for phantom experiments is shown in Figure 1. The procedure involves 

two major steps:

1. Data Acquisition and Signal Processing: The shear waves are generated 

inside the tube and the resulting wave propagation response is measured 

on the top surface along the axis of the tube as shown in Fig. 1(a). 

The recorded spatiotemporal response (Fig. 1(b)) is transformed into the 

frequency-wavenumber (f-k) domain through a two-dimensional Fast Fourier 

Transformation (2D FFT), as shown in Fig. 1(c). The peaks in the f-k data are 

identified and plotted as a dispersion curve, i.e. plot of phase velocity (cp = 

2πf/k)vs. f (Fig. 1(d)).

2. Inversion through Optimization: The last major step is to back-calculate the 

properties of the tube through matching the measured dispersion curve with the 

simulated dispersion curve by iteratively changing the properties of the tube 

(Fig. 1(e)). The simulated dispersion curves are calculated using an analytical 

or computational forward model (Fig. 1(f)). The back-calculation (inversion) 

is performed through optimization, i.e. minimizing the difference between the 

measured and simulated dispersion curves.

Data Acquisition and Signal Processing

Experimental set-up

Shear wave elastography experiments using Acoustic Radiation Force (ARF) were 

performed on ten artery mimicking urethane rubber tubes (VytaFlex 10, Smooth-On, Inc., 

Macungie, PA). The tubes were made in a custom-made mold that could accommodate 3 

tubes for a given batch of the rubber. To obtain 10 tubes, four different batches were made as 

two tubes were damaged in removal from the mold. The tubes are filled with and submerged 

in water, to simulate blood and surrounding tissue respectively. The inner radius of the 

tubes is 3 mm and the wall thickness is 1 mm. The schematic of the ARF experimental 

setup is shown in Figure 2. In these experiments a Verasonics V1 system (Verasonics, Inc., 

Kirkland, WA) was used equipped with a linear array transducer (L7-4, Philips Healthcare, 

Andover, MA). The 128 element transducer has elements with 0.283 mm width, 0.025 mm 

kerf, 7 mm height, and an elevation focus near 25 mm. An ARF push is applied at the 

x = 10 mm location in Fig. 2(a), and the vertical motion of the wall is measured at the 
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top of the tube along the axis, from x = 10–40 mm. A 400 μs toneburst at 4.09 MHz was 

used. The push beam used 64 elements of an ultrasound transducer and was focused at 20 

mm (F-number = 1, where F-number is the ratio of the focal depth to the aperture width). 

Plane wave imaging with 5 MHz pulses was used at a pulse repetition period of 80 μs for 

a pulse repetition frequency of 12.5 kHz. The particle velocity of the wall was estimated 

from the acquired in-phase/quadrature (IQ) data using an autocorrelation method (Kasai et al 
1985). To average the inhomogeneity associated with fabrication, a total of 6 configurations 

are tested (by performing 60° rotations around the axis). The response is obtained for 10 

separate ARF excitations for each of the 6 configurations, leading to 60 data sets for each 

tube.

To facilitate the validation of the proposed inversion procedure, the material for each tube 

was tested mechanically, with of Hyper-Frequency Viscoelastic Spectroscopy (Hadj Henni 

et al 2011) (Rheospectris C500+, Rheolution, Inc., Montreal, Quebec, Canada), resulting in 

the storage, Gs(ω), and loss, Gl(ω), moduli for each of the tubes. The moduli were measured 

from 10–2000 Hz in 10 Hz increments. For each batch of rubber, three cylindrical samples 

for testing were created when making the tubes. The mean of 3 or 4 acquisitions for each 

sample were calculated for validation. These results are shown in Figure 3, which will be 

utilized later in the validation section.

Data processing

Data processing is performed on the wall motion data first in the spatial-temporal domain. 

The standard approach is to isolate the right propagating wave as shown in Figure 4. In the 

proposed approach, we consider only the dominating part of the right propagating region 

as shown in Figure 5. Specifically, we added a few windowing boundaries to obtain the 

dispersion curves that are important for inversion. The first windowing boundary, which 

we call the lower-cut, sets the lower limit on the phase velocity. The second boundary is 

called the upper cut, as it sets the upper limit on the phase velocity. These lower and upper 

cuts partially remove the high frequency noise, especially farther from the load at early 

times, as well as addresses the low signal-to-noise ratio at later times. Finally, the signal is 

truncated after a maximum time (T-max) to avoid any reflections from the edges of the tube. 

We consider the resulting trapezoidal region after applying a gradual Gaussian windowing 

outside these boundaries. The smooth change in the signal amplitude to zero eliminates the 

spurious Gibbs ringing in the f-k domain. To this end, a Gaussian smoothing function of the 

following form is used.

W = e−α2 x − x
xmax

2
+ t − t

tmax
2

. (1)

In the above, the parameter α controls the smoothing rate. The parameters xmax and tmax 

are the maximum values of x and t in the data, and are utilized essentially as normalization 

constants. The values of x and t  are determined based on the slopes of the upper and lower 

cuts and are given by,
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x = st + xsℎift, t = x − xsℎift
s , (2)

where s is the slope of the cuts. The xshift is the shift value along the x direction as shown in 

Figure 4. The resulting filter is shown in Figure 5(a).

The data processing parameters that describe the windowing are chosen based on the 

observed phase velocity ranges from the phantom experiments. We observe the phase 

velocity ranges between 4 to 10 m/s, therefore we choose the lower-cut slope as 3 m/s and 

upper-cut slope as 15 m/s. Both lower and upper cuts are originated from the starting point 

in the space-time domain. For the truncation time (T-max), we examine the time when the 

response is sufficiently attenuated, and well before any boundary reflections are observed. 

We also confirmed that perturbation of the signal-processing parameters has minimal effect 

on the dispersion curves (results are not presented for brevity). The remaining steps for 

either the standard or modified approach are the following: (a) applying the 2D FFT to 

transfer the space-time data into the wavenumber-frequency domain and (b) picking the peak 

values to obtain the phase-velocity dispersion with phase-velocity cp = 2πf/k plotted against 

frequency f.

Figure 6 illustrates the effect of data processing on the dispersion curve, where the 

experimental dispersion curves are compared with the expected dispersion curves from 

the model that will be described below, using the material parameters from Rheospectris 

measurements (shown in Fig. 3). Figure 6 compares experimental dispersion curves 

from both regular and modified data processing approaches. Clearly, the data processing 

modifications bring the experimental dispersion curves much closer to the expected 

dispersion curves. This improvement in the dispersion curves leads to significant change 

in the inverted parameters, as discussed in the Validation section.

While other, non-Fourier, methods may be more effective in separating multiple modes with 

higher fidelity (Tran et al 2014, Kijanka et al 2018, Kijanka and Urban 2021a, 2021b), we 

emphasize that the current objective is to obtain the most dominant mode in a particular 

frequency range. The proposed approach is sufficient to this end and alternative methods 

are not considered at this time; they may be explored in the future, e.g. if the inversion is 

performed to match multiple modes at the same frequency.

Estimation of Modulus and Thickness

Forward model

To obtain the simulated dispersion curves, the rubber tube is modeled as a cylindrical prism 

made up of an incompressible elastic material, submerged in an inviscid and incompressible 

fluid. The idealization of incompressibility is adopted for both the arterial wall and the 

surrounding fluid because the pressure wave velocity is two orders of magnitude larger than 

the shear wave velocity; explicit inclusion of compressibility does not change the results 

much and can lead to unnecessary numerical complications. Further, the tube is assumed 

to be infinite in length because the experimental data is truncated before any reflections 

from the tube ends are recorded. Such an assumption facilitates the use of a Semi-Analytical 

Roy et al. Page 5

Phys Med Biol. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finite Element (SAFE) formulation, where the discretization is performed in the radial 

direction, while the analytical expansion is utilized in the axial and azimuthal directions (the 

reader is referred to (Rose 2014) for detailed explanation and (Nelson et al 1971, Kausel 

and Peek 1982, Datta et al 1988) for some early work on this topic). The schematic of the 

geometry is shown in Figure 7 (a), and the summary of the formulation is presented in the 

remainder of the section.

The tube deformation is governed by the elastodynamic equation,

−Lσ
Tσ + ρS

d2u
dt2 = 0,  in ΩS, (3)

where, ΩS is the solid domain, σ is the stress, u is the displacement, and ρS is the density of 

the solid. The operator Lσ is a differential operator representing the symmetric gradient; the 

details can be found in (Astaneh et al 2017).

Given the incompressible and inviscid nature, the Laplace equation governs the response of 

the fluid

∇2p = 0 in ΩF (4)

where ΩF is the fluid domain that encompasses the interior and exterior fluid, p is the fluid 

pressure, and ρF is the fluid density.

The interface conditions at the solid-fluid interface ΓFS that couples the solid surfaces with 

both inside and outside fluid regions are,

σ ⋅ ns − pnF = 0,  on ΓFS, (5)

ρF
d2u
dt2 ⋅ ns − ∂p

∂nF
= 0,  on ΓFS . (6)

Here, ns and nF are the unit vectors in the solid and fluid domain respectively, which are 

in opposite directions. By following the formulation in (Astaneh et al 2017), noting that the 

geometry and material properties are invariant in the horizontal and azimuthal directions, 

we consider the SAFE formulation in which the radial direction is discretized with finite 

elements while analytical expansion is employed for the remaining directions. Specifically, 

we write the solution in terms of wave modes that are harmonic in time, axial direction, 

z, and azimuthal direction, θ. Linear finite element discretization is utilized in the radial 

direction as shown in Fig. 7 (b). Putting these ideas together, given the symmetry of the load 

and thus the response about the r-z plane, the solid displacement and fluid pressures can be 

written as,
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ur(r, θ, z, t) = NS(r)ur n, kz, ω e−iωt + ikzzcos(nθ)
uθ(r, θ, z, t) = NS(r)uθ n, kz, ω e−iωt + ikzzsin(nθ)
uz(r, θ, z, t) = NS(r)uz n, kz, ω e−iωt + ikzzcos(nθ)

(7)

p(r, θ, z, t) = NF(r)p n, kz, ω e−iωt + ikzzcos(nθ) (8)

where NS and NF are the finite element shape functions along the radial direction for the 

solid and fluid domain respectively, n is the index of the azimuthal harmonic, kz is the 

wavenumber along the axial direction, ω = 2πf is the temporal frequency, and i = −1. 

Substituting (7) and (8) in governing equations (3) and (4), and interface conditions (5) and 

(6), results in an eigenvalue problem,

kz
2 K2

S 0

0 κK2
F +

K0
S − ω2MS −κCSF

−ω2CSF
T κK0

F
ϕS
ϕF

= 0
0 , (9)

where κ is the normalization factor to improve the conditioning of the system. The solid

domain contribution matrices, K2
s, K0

s, Ms the fluid-domain contribution matrices, K2
F , K0

F , 

and the fluid-structure interaction matrix, CSF are defined in (Astaneh et al 2017); they 

depend on the geometry (inner radius and thickness) and the material properties (densities 

and shear modulus). The quadratic eigenvalue problem is solved for each frequency ω, 

to result in the wavenumber kz, resulting in the dispersion relationship. The dispersion 

curves can either be plotted in kz −ω space, or a plot of phase velocity (cp = ω/kz) vs. 

cyclic frequency (f = ω/2π). Consistent with the convention followed in experimental data 

processing (Figure 5), we follow the latter approach.

The intricacies of the forward modeling include (a) treating incompressibility related linear 

finite element locking through selective reduced integration (Hughes 2000), (b) simulating 

the unbounded exterior with perfectly matched discrete layers (Savadatti and Guddati 2010), 

and (c) normalization to improve the conditioning in the limit of incompressibility (Roy 

and Guddati 2021). Further details can be found in (Roy and Guddati 2021), where the 

results from the forward model are compared with the reference solution obtained through 

convergence analysis (the reference solution is obtained using discretization with highly 

accurate 5-noded finite elements (Astaneh et al 2017).

Before moving on to inversion, we emphasize that the forward model captures fully three

dimensional wave propagation in the artery. The simulation is simplified mainly due to 

the simplicity of the tube geometry, allowing the use of SAFE formulation to reduce 

the computational effort significantly, thus enabling us to use the existing in-house code 

(Vaziri Astaneh and Guddati 2017) with the minor modifications for the incompressible 

waveguides and then the off-the-shelf iterative optimization algorithms to estimate the 

material properties, which is described in the next section.
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Inversion through Optimization

Our main goal is to estimate the shear modulus of the artery given the radius and wall 

thickness. Looking ahead to in vivo application of methodology, we observe that the wall 

thickness, which is obtained from B-mode images, may not be accurately measured (because 

the thickness is just a few pixels wide). Given this, we add to our objective the case of 

simultaneous estimation of shear modulus and wall thickness for known radius of the tube. 

It is expected from wave physics that the phase velocity will be influenced by both the shear 

modulus and thickness, making this a plausible goal (we also confirmed that thickness is an 

influential parameter through sensitivity analysis presented later). Further, at this stage, we 

assume that the time/frequency dependence of viscoelasticity of the wall is known, and only 

the scalar measure of the shear modulus is not known. Specifically, we express viscoelastic 

(complex-valued) shear modulus G(ω) as,

G(ω) = Gs(ω) + iGl(ω) = G0 × Gω(ω), (10)

where Gs and Gl are the (real-valued) storage and loss moduli, respectively. Complex-valued 

F(ω) captures the frequency-dependence of G(ω), while G0 captures the overall magnitude. 

Without loss of generality, we assume G0 = |G(ω = 20π)|, because ω = 20π is the first 

frequency point in Rheospectris data (note that this is arbitrary). In our inversion framework, 

we assume that G0 is the unknown to be determined, while F(ω) is assumed to be known 

(obtained from the Rheospectris measurements). Inverting for frequency dependency is 

indeed of interest, but beyond the scope of the current study. Thus, the parameters for our 

inversion is the wall thickness (h) and the single shear modulus parameter (G0).

The thickness and modulus are estimated by minimizing the difference between the 

experimentally measured dispersion curves and theoretical dispersion curves computed from 

the model. Note that there exists a single measured dispersion curve, which is obtained from 

a single peak in the f-k plot for each frequency (obtaining multiple peaks is not practical 

due to the low signal-to-noise ratio, especially for in vivo data). As highlighted in (Astaneh 

et al 2017), this measured dispersion curve does not coincide with a single mode of the 

simulated dispersion curve, but matches with different modes for different frequency ranges. 

Specifically, as discussed in (Astaneh et al 2017) and highlighted in Figure 6, the measured 

dispersion curve matches with flexural mode 2, F(2,1), for 300–500 Hz, while it matches 

with flexural mode 1, F(1,1), for 900–1200 Hz frequency range. Here, we follow the work of 

Gazis (Gazis 1959a, 1959b) for the mode numbers notation. In addition, we confirmed this 

match by comparing with the theoretical dispersion curves of other wave modes that lie in 

the vicinity (see Figure 8; note that modes with significant evanescence are filtered at low 

frequencies). As seen in the figure, the L(0,1) mode asymptotically merges with the F(1,1) 

in the higher frequency range; it is possible that this mode may contribute significantly 

to the measured dispersion curve for some geometries, material properties and frequency 

ranges. However, our focus is on frequencies below 1000 Hz, and given that the measured 

dispersion curve more closely matches with F(2,1) and F(1,1) in this range, we chose to 

invert by matching with F(2,1) and F(1,1).

In the inversion analysis, we consider the 900–1000 Hz frequency band for the mode 1 due 

to the fact that we will not have necessary data beyond 1000 Hz for the in vivo case. Given 
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this observation, we define the objective function as the relative least-squares difference 

between the dispersion curves:

Fobjective =
∑fi = f1

f2 c2
s fi, q − cm fi

2 + ∑fi = f3
f4 c1

s fi, q − cm fi
2

∑fi = f1
f2 c2

s fi, q 2 + ∑fi = f3
f4 c1

s fi, q 2 , q

= ℎ, G0

(11)

where, c1
s and c2

s are the simulated phase velocities corresponding to the modes 1 and 2, 

respectively, and cm is the phase velocity from the measured data. Consistent with the 

discussion above, f1 = 300 Hz, f2 = 500 Hz, f3 = 900 Hz, and f4 = 1000 Hz. These frequency 

ranges may change depending on the geometry and may need to be revisited for in vivo 
experiments. Note that in the objective function, we consider the phase velocity dispersion 

instead of the k(ω) dispersion. The reason is that the phase velocity is fairly constant in the 

considered frequency range unlike the k(ω) dispersion case; matching k(ω) curves will give 

higher weights to higher-frequency data which is undesirable.

The inverse problem thus involves estimating the parameters G0 and h, given the measured 

dispersion curve, radius of the tube, and the viscoelastic time-dependency F(ω). This can 

be performed, e.g. by formulating in a robust PDE constrained optimization framework 

with explicit formulation of gradient and Hessian, potential with adjoint operators. Such an 

approach is beneficial for a large parameter space and expensive forward models. However, 

given that we are inverting for just two parameters and have an extremely efficient forward 

model, we resort to the black-box optimization algorithms implemented in MATLAB, some 

of them based on finite-difference gradients.

Inversion Models: To minimize the objective function in Equation (11), we consider 

both local and global optimization approaches. While the local optimization gives a 

minimizer, global optimization removes the possibilities of obtaining a spurious local 

minimizer. In the local optimization framework, we consider (a) interior point method 

with the BFGS Hessian (Waltz et al 2006), (b) Nelder-Mead algorithm (Lagarias et al 
1998), (c) Non-linear Optimization Mesh Adaptive Direct Search (NOMADS) algorithm 

(Currie and Wilson 2012). The global optimization algorithms that we consider include (d) 

Particle-Swarm (Kennedy and Eberhart 1995). Note that except the Nelder-Mead algorithm, 

all other considered models are constrained optimization and in these cases, we impose 

box constraints, limiting each parameter to be within ±30% of the mean value. For all the 

above-mentioned inversion models, we employ the MATLAB optimization toolbox except 

for the NOMADS algorithm for which we use the available function in (Anon n.d.).

Results and Discussion

Parameter sensitivity

Before embarking on the actual inversion process, we perform formal sensitivity analysis 

to ensure that the modulus and thickness are identifiable and influential. We perform the 

local sensitivity analysis by forming the Fisher matrix (Smith 2013). The Fisher matrix is 

computed using the finite difference method with a step size of 10−5. The parameters are 
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scaled with respect to their mean values to avoid any potential numerical issues. The rank 

of the resulting Fisher matrix is 2 and the condition number approximately 187, indicating 

that both thickness h and modulus parameter G0 are identifiable parameters. The global 

sensitivity study is performed using the Saltelli Sobol analysis (Saltelli et al 2007) with 4500 

randomly generated points within a ±45% rectangular range in the parameter space around 

the mean value of each parameter h, G0. The resulting first-order Sobol indices are [0.66, 

0.27] and the total Sobol indices are [0.63, 0.50], indicating sensitivity to both parameters, 

with higher sensitivity to thickness.

Validation

We perform validation of the proposed inversion procedure using the experimental data in 

two different ways: (a) estimate the modulus with known (directly measured) thickness, 

and (b) simultaneous inversion of the thickness and modulus. The results are compared 

with the actual values to assess the effectiveness of the proposed technique. The results 

from one-parameter (modulus) inversion are shown in Figure 9(a), which indicates that 

the proposed inversion approach results in high accuracy, irrespective of the optimization 

technique used (the error is less than 4% for 70% of the cases). The computational cost 

is presented in Figure 9(b), which indicates that all the optimization algorithms converge 

fairly quickly. Because the interior point method with the BFGS Hessian is consistently 

more efficient, this method is advocated for inverting for the tube modulus. The number of 

function evaluations for the BFGS method is between 10 and 15. This, combined with the 

efficiency of the forward model, results in a highly efficient and practical inversion of the 

modulus, with a runtime of around 20 seconds, for the BFGS method, on a standard desktop 

computer (Intel® Core(TM) i7-6700 CPU, 3.40GHz with 32.0 GB RAM and 64-bit OS), as 

shown in Figure 9(b). Here, we highlight that the inversion analysis is carried out for all 60 

measurements for each tube simultaneously, i.e. we minimize the total error by combining 

the difference between each of the 60 measured dispersion curves with a single theoretical 

dispersion curve. Thus, the result would be a single estimate of the modulus parameter.

The results from two-parameter inversion for modulus and thickness are shown in Figure 

10. As expected, the results are not as accurate as those from single-parameter inversion. 

For only 40% of the cases, both parameters have an error of less than 10%. Based on 

this, at this time, we advocate the use of single-parameter inversion by relying on the 

measured thickness, which may have some error for in vivo cases. The computational cost 

for two-parameter inversion is shown in Figure 11. Again, as expected, the convergence is 

not as fast as the single-parameter inversion, but the number of function evaluations is still 

fairly small. The interior-point method with the BFGS Hessian required 40–50 iterations 

with a total computational cost of around a minute on the same standard desktop computer.

As we observe for tube 2, both inversion analyses (modulus as well as modulus-thickness 

inversion), the percent difference is quite high compared to the other tubes. This can be 

justified by looking at the measured dispersion curves for this tube as shown in Figure 12 

(a). Recall that we apply the acoustic radiation force individually at six angular positions 

and repeat the acquisition ten times for each of the six angular positions. In the case of 

tube 2, we notice good correlation within each set of ten acquisitions, but low correlation 
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across the six angular cases. This indicates the tube may not be homogeneous due to 

imperfect fabrication. On the other hand, tube 5, which has yielded lower error in the 

inversion analysis, has tight correlation across all acquisitions and angular cases as presented 

in Figure 12 (b). With respect to the significantly high error for tube 2 with the Nelder-Mead 

algorithm (inversion for both modulus and thickness), the solution seemed to have converged 

to a local minima far from the solution as the underlying optimization framework does not 

allow any constraints. This is a reason, in addition to computational cost, that we propose to 

use BFGS approach as the method of choice.

Effect of data processing: Earlier in the paper, we illustrated that data processing 

details are critical to obtaining accurate dispersion curves. However, dispersion curves are 

only of intermediate interest, with the final objective being the modulus estimation. The 

natural question then is, what if the inversion is performed without the data processing 

refinements? We performed this exercise and observed that standard data processing resulted 

in an average modulus error of 22.4% compared to a significantly reduced error of 5% when 

the data processing refinements are employed.

Effect of multimodal inversion: Another important question that may arise is: how 

important is it to match with different simulated curves for the two frequency ranges 

(multi-modal inversion)? What if the inversion is performed by matching with a single, 

fundamental dispersion curve for both frequency ranges (single-mode inversion)? For 

example, when applied to tube 1, it turns out that single-mode inversion (with the first 

mode, n = 1) results in higher errors in the estimated modulus (10.6%) compared to that 

from multi-modal inversion (0.6%), confirming the benefit of multimodal inversion.

The proposed study is only a step towards estimation of arterial stiffness using ARF 

excitation. The issues that require attention before applying it to in vivo data from human 

arteries include: (a) automatic determination of signal processing parameters (they are 

currently determined manually); (b) estimating the frequency dependence directly from 

ARF measurements instead of using the information from Rheospectris measurements; (c) 

validation studies for differing thicknesses (we validated the model with single thickness 

of 1 mm as dictated by the mold and it would be useful to validate for other thicknesses); 

(d) optimizing the experimental setup including the number of acquisitions (the number of 

acquisitions and orientations are chosen arbitrarily in this paper, erring on the conservative 

side), (e) validation using ex vivo data, e.g. using porcine aortas; and (f) examining the 

effect of surrounding tissues as well as physiological motion. Further research is underway 

in several of these directions and will be reported in the future.

Conclusions

This paper presents a new shear wave elastography (SWE) approach to estimate the 

arterial stiffness from acoustic radiation force measurements. The methodology is built on 

various refinements in different steps of SWE: (a) signal processing refinements through 

simple windowing informed by physical understanding, (b) efficient forward model for 

incompressible viscoelastic tubes, and (c) inversion by matching the measured dispersion 

curve with not one, but two separate dispersion curves (multimodal inversion). Through 
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validation studies using extensive ARF experimental data, we observed that the proposed 

inversion approach results in high accuracy in estimating the shear modulus (less than 4% 

in 70% of the cases). We also observed that not using signal processing improvements or 

multimodal inversion degrades the accuracy of the modulus estimates. Finally, owing to the 

computational efficiency of the underlying forward model, the inversion procedure is highly 

efficient, taking less than 20 seconds on a regular computer.

In addition to inverting for just shear modulus, we also explored the possibility of 

simultaneous inversion of both shear modulus and wall thickness. The resulting accuracy 

is not as good as the accuracy of inverting for just shear modulus. Given this, at this 

time, we suggest measuring the wall thickness and then estimating the modulus from the 

proposed inversion framework. For in vivo settings, the thickness measured from ultrasound 

images may not be accurate, but will be close to the actual value, with some level of 

known error variance based on the transducer. Thus, the measured thickness can be used as 

prior information in a simultaneous probabilistic inversion for shear modulus and thickness. 

On the other hand, the radius, which is not as small as the thickness, can reliably be 

measured through ultrasound. Moreover, the dispersion curves are not as sensitive to radius 

perturbations as to thickness perturbations (Astaneh et al 2017). To address imperfect 

thickness measurements, fortunately, probabilistic inversion is feasible due to the efficiency 

of the forward model; this is the subject of ongoing research. In the current work, we 

fix the time/frequency dependency of the modulus and estimated the overall magnitude of 

the modulus. In reality, the complex viscoelastic modulus (both the amplitude and time 

dependency) needs to be estimated, which is also the subject of ongoing research. Finally, 

our study assumes isotropic elasticity, which is valid for phantom experiments. For real 

arteries, further beneficial enhancements would include: tissue anisotropy (Li et al 2017b, 

Shcherbakova et al 2017) and non-prismatic geometry (Karageorgos et al 2020, Wang and 

Lee 2020); these are subjects of future research.
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Figure 1. 
(a) Data Acquisition, (b) Data processing, (c) Frequency-wavenumber plot, (d) Measured 

dispersion curve, (e) Matching of measured and simulated dispersion curves to back

calculate material and geometric properties, (f) Forward model.
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Figure 2. 
Schematic of experimental setup for measuring wall motion. (a) shows the longitudinal view 

of the tube and ARF transducer, while (b) shows the cross-section of the tube and the six 

angles used for ARF excitation and acquisition.
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Figure 3. 
Material properties from Rheospectris experiments.
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Figure 4. 
Standard approach for data processing: (a) is the actual measured data in space-time, which 

is curtailed on the left to focus on the right-propagating waves (b).
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Figure 5. 
Proposed approach for data processing: In addition to the standard approach in the previous 

figure, additional windowing is applied to ensure that the dispersion curves are best captured 

within the range of expected phase velocity. The upper cut sets the upper limit to the phase 

velocity, the lower cut sets a lower limit, while curtailing in time ensures that the reflections 

from the boundary does not pollute the dispersion curves.
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Figure 6. 
Comparison between simulated and measured dispersion curves with standard processing 

(a) and refined processing (b). In the two highlighted frequency ranges, the processing 

refinements result in a better match between measured and simulated dispersion curves.
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Figure 7. 
Geometry of the immersed tube (a), and finite element discretization in the radial direction 

(b). Fourier expansion is used in the axial (x3) and azimuthal (x2) directions.
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Figure 8. 
Comparison of the theoretical and measured dispersion curves for the viscoelastic tube
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Figure 9. 
(a) Error in the inverted shear-modulus parameter, G0; (b) CPU time for modulus inversion

Roy et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2022 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. 
Error in the inverted shear-modulus parameter, G0 (a) and thicknesses, h (b).
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Figure 11. 
CPU time for combined inversion for modulus and thickness.
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Figure 12. 
Measured dispersion curves for Tube-2 (a) and Tube-5 (b)
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