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Abstract

Purpose of Review—Childhood obesity, with persistent chronic inflammation, is a worldwide 

epidemic. Obesity causes dysregulation throughout the immune system, affecting the balance 

and levels of cytokines, adipokines and innate and adaptive immune cells. This review focuses 

on the impact of obesity on immune function in children: altering the baseline activation state 

of immune cells and affecting the ability of the host to combat pathogens and malignancy and 

respond appropriately to vaccination.

Recent Findings—Obesity causes dysregulation of the immune system. Single cell RNA­

sequencing of adipose tissue and resident immune cells is quantifying the impact of obesity on the 

frequency of immune cell subsets and their states. The system-wide alterations in immune function 

in obesity are most evident upon perturbation, including the response to infection (e.g. increased 

risk of severe COVID-19 in the ongoing pandemic), vaccination and malignancy. However, 

mechanistic research in pediatric obesity is limited and this impacts our ability to care for these 

children.

Summary—We must better understand baseline and perturbed immune health in obese children 

to determine how to account for altered frequency and function of humoral and cellular immune 

components in acute infection, during vaccine design and when considering therapeutic options 

for this complex, medically vulnerable group.
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Introduction

We are experiencing a worldwide pediatric obesity epidemic, stretching from birth through 

adolescence and continuing through adulthood[1,2]. In the United States, there have been 

significant increases in childhood obesity over the last 40 years, with more than 13 million 

obese children and adolescents and with continued increases in the last decade in certain 

age groups[3]. Black and Hispanic children have increased prevalence of obesity compared 

to white and Asian American children[3,4]. Worldwide, more than 40 million children 

under five years of age were overweight or obese in 2016[1] and the continued increase in 

prevalence of childhood obesity continues, especially in resource limited settings [2]. Obese 

children experience early onset of obesity related comorbidities[5], the majority will go on 

to become obese adults (most likely in the most severely obese[6]), and they will experience 

early mortality[7]. It is not clear how obesity leads to these outcomes and here we will focus 

on immune dysregulation in the setting of obesity.

Immune health and the effect of childhood obesity

How can we define what is altered or dysfunctional in childhood obesity? We must first 

measure immune health, which is a challenge. While most organ systems have evidence­

based monitoring tests and strategies to assess function (e.g. the EKG or echocardiogram in 

cardiology and the EEG in neurology), the immune system remains stubbornly challenging 

to encompass with a single or set of functional tests. The most basic immune evaluation 

of cellular and humoral immune function includes a complete blood count (CBC) and 

immunoglobulin levels and vaccine titers, but unless there are deficiencies in cells or 

antibody levels, this has limited utility. In clinical immunology we frequently enumerate 

rare immune cell subsets via flow cytometry and test immune cell function, but this has 

not yielded metrics for the healthy child or adult that synthesizes their “immune health”, 

simply tables of acceptable levels of each cell type (or function). Without this synthetic 

understanding, the quantitation of the impact of disease (on that baseline) is complicated.

It is also clear that there is significant variation among “healthy” participants[8] and that 

variation includes effects of age[9], gender, race and ethnicity and environment on immune 

cell subset frequency and immune function[9,10]. With regards to environment, early life 

events affect immune function. Before birth, maternal high fat diet in pregnancy has been 

linked to increased risk of infant obesity[11], altered infant microbiome[12] and altered 

cord blood immune components and function including reduced eosinophils and CD4T cells 

(especially CD4 naïve T cells) altered cytokine[13]. In addition, our diet and microbiome 

are deeply connected to our immune state. Connections among gut microbiota, serum 

metabolites and adiposity are the focus of intense research in mice and humans[14,15]. 

Historically, childhood obesity was linked to alterations in individual metabolites[16], and 

now across a wide breadth of metabolites [17]. For example, a recent study from our groups 

showed that gut microbiota produced tryptophan-pathway derivatives, leading to altered 

miR-181 expression and affecting white adipose tissue (WAT) metabolism in both mice and 

obese children[18]. This is reviewed in depth elsewhere [19].
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Once a population is selected, choosing tissues and cells to measure and compare is 

also challenging. In mouse studies the routine collection of multiple tissues for deep 

immunoprofiling is routine, while in human studies we generally study peripheral blood 

and perhaps one target tissue (if easily accessible). It is important to note that given 

the challenges in pediatric translational research, there is limited data from healthy (or 

obese) children to support evidence-based analysis of pediatric immune components and 

function[20]. In the study of obesity, adipose tissue is frequently studied in adults or mice. 

There are multiple sources of adipose tissue, including subcutaneous adipose tissue (SAT) 

and visceral adipose tissue (VAT). However, these studies are challenging to control in 

humans as it is challenging to obtain adipose tissue from lean adults or to obtain longitudinal 

samples of human adipose tissue from the same patient. Studying adipose tissue in children 

is complex as there are limited programs for pediatric bariatric surgery, which limits both 

clinical care and research. Recent guidelines from the American Association of Pediatrics 

argue for increased bariatric surgery access [21].

We have used two strategies to synthesize our current understanding of immune function 

and dysregulation in childhood obesity. First, when discussing the quantity of immune cells 

and humoral factors, we have supplemented our knowledge from pediatric human studies 

with adult human and mouse studies (Table 1). Second, we included the outcomes of 

clinical perturbations on immune status to deepen our understanding of (limited) multimodal 

research data; using the response to severe infection, vaccination and malignancy (and 

immunotherapy), among others, to reveal the degree of dysfunction in childhood obesity 

(Figure 1).

Immune Health: Quantity of Immune Cell Subsets and Humoral Factors

There are increases in pro-inflammatory cytokines and obese adipose tissue is infiltrated by 

increased numbers of adipose tissue macrophages (ATM), B cells, T cells and mast cells 

with decreased numbers of regulatory T cells (Tregs), MAIT cells, ILC2 and invariant NKT 

cells (iNKT) and accompanied by changes in immune cell frequencies in peripheral blood 

(Table 1). Of note, throughout our discussions of mouse models of obesity, we will focus on 

diet induced obesity (DIO) wherein wildtype mice receive a high fat diet (HFD).

Cytokines and Adipokines—In adults, both baseline TNF-α[22] and LPS stimulated 

TNF-α release are elevated[23], and improve with weight loss[22,23]. In obese children, a 

similar pattern was seen with elevated IL-6 and TNF-α [24–26].

Leptin is elevated in obesity and it has been shown to directly alter immune function 

[27,28]. Beyond key roles in hunger, leptin receptors are expressed on T cells and leptin 

increased IFN-γ secretion and decreased IL-4 secretion[29,30]. Leptin stimulated key 

cytokine pathways (e.g. JAK-STAT) and enhanced proliferation of PBMCs generally[27], 

and T cells specifically[29,30]. Leptin has been shown to be increased in obese children[31], 

correlated with adipose tissue mass and improving with physical training[32] or weight 

loss[33,34]. In addition to leptin, CRP is elevated and adiponectin is decreased [9,35–37]

Innate Immune Cells—The innate immune system, along with the physical barriers 

of our skin and mucous membranes, represents our front-line defenses against pathogen 
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invasion and the site of our interactions with commensal microorganisms. This component 

of the immune response shows significant alterations in frequency of key cell subsets in 

adult obesity, including increased VAT mast cells and ATM and decreased VAT innate 

lymphocyte cells (ILC) type 2, invariant NKT cells (iNKT) and mucosal associated invariant 

T cells (MAIT). Circulating innate immune cells are complex in their alterations.

Mast Cells, Neutrophils and Eosinophils: In both mice[38] and adult obese humans[39] 

there is an increased frequency of mast cells in adipose tissue. There are decreased 

eosinophils in DIO mouse visceral adipose tissue (VAT) [40], while eosinophils are 

increased in obese adult human SAT[41]. Neutrophils are increased in childhood obesity, 

ANC and waist circumference more correlated in girls than in boys[9].

Type 2 Innate Lymphoid Cells (ILC2): Obese adults have been shown to have decreased 

ILC2 in white adipose tissue (WAT)[42]. Depletion of ILC2 in T and B cell deficient 

(RAG deficient) DIO mice led to increased weight gain, all implying a role for ILC2 in 

obesity[43].

gdT cells: In obese adult humans there is a decreased frequency of circulating γδT cells 

and reduced secretion of IFNγ [44]. Mouse models of obesity demonstrate a decreased 

frequency and reduced function of circulating γδT cells[45], and suggest gdT in AT may 

provide significant fraction of total IL-17[46].

NKT cells: Levels of circulating NKT cells (CD3+ CD56+) are variable, with some 

studies showing decrease in adult obesity[47], with others showing no change[48,49]. 

Circulating invariant NKT (iNKT), identified by their canonical invariant TCR and activated 

by glycolipid antigens presented by CD1d, are capable of quickly secreting cytokines 

characteristic of both type 1 and type 2 CD4 T helper responses. Circulating iNKT are 

also decreased in adult obesity[50,51], but improved in frequency after bariatric surgery and 

with subsequent weight loss[50]. iNKT are enriched in lean human adult adipose tissue but 

reduced in frequency in obese adipose tissue[52]. In mouse DIO, NKT cells are reduced 

in frequency in WAT[40] and depletion of iNKT cells leads to increased weight gain and 

increased IL-6 and TNF-a. Increasing the frequency of iNKT cells protects DIO mice from 

gaining weight[50], and activation of iNKT with alpha-galactosylceramide leads to weight 

loss in DIO mice[50].

In a study of obese children there is no statistical difference in circulating NKT counts at 

baseline or after a lifestyle intervention [53].

MAIT cells: Circulating MAIT cells are generally decreased in obese human 

adults[51,54,55] (though not significant different in one study[49]), and they increase after 

bariatric surgery[51]. In adult obesity, there is a reduced frequency of VAT MAIT cells 

and obesity increases the relative likelihood of MAIT cells secreting IL-17[51] rather than 

IFN−γ[54]. The underlying mechanism has been recently clarified; glycolytic metabolism 

is dysfunctional in obese MAIT cells, in the setting of altered mTORC1 signaling which in 

turns impairs IFN-γ secretion[55]. There is new evidence in mice that MAIT may increase 
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pro-inflammatory M1 macrophage differentiation as well as increasing the leakiness of the 

gut barrier[56].

In one study, childhood human obesity was associated with expanded circulating MAIT cells 

(rather than decreased as in adults), which were more likely to secrete IL-17 (consistent with 

adults)[54].

Monocytes: Monocytes are generally not significantly affected by obesity [48,57,58] though 

they were elevated in some studies[59,60] and in separate studies classical monocytes 

(CD14++ CD16-) and non-classical monocytes (CD14+ CD16++) are elevated in the blood 

of obese children respectively[9,35]. Stepping into the complexity of age and race and 

ethnicity on immune cell frequency, in participants over 12, hemoglobin A1c (an integrated 

measure of hyperglycemia) had a negative association with intermediate monocytes (CD14+

+ CD16+) and a positive association with elevated HDL levels[9]. In addition, race and 

ethnicity impact inflammatory cell subsets; Black children, who have an increased risk of 

obesity, lack the correlation of classical monocytes with fasting insulin seen in whites and 

“other races” (a diverse group in this study including Asian Americans and participants 

who identify with multiple races) highlighting the need to focusing investigations into 

mechanisms of immune dysregulation in this understudied (though common) disease and 

this highly affected population[9].

Adipose Tissue Macrophages: Adipose tissue macrophages (ATM) in mice and adult 

humans increase in frequency in obesity and are directly responsible for significant secretion 

of inflammatory cytokines (e.g. TNF-α and IL-6)[61]. Beyond their numbers, there are 

also effects on the nature of ATM in obesity. Historically, there was a dichotomy drawn 

between two phenotypes of macrophages: a lower frequency of pro-inflammatory M1 

macrophages (e.g. secreting IL-6 and TNF-a) and a marked increase in anti-inflammatory 

(or ‘alternatively activated’) M2 macrophages[62], reliant in part on PPARγ signaling, in 

lean VAT[62]. While the source of IL-4 and IL-13 for the initiation of PPARγ signaling was 

initially attributed to Th2 cells, there is now evidence that eosinophils and iNKT may play 

a key role. Where eosinophils are reduced in VAT, this dysregulation of PPARγ signaling 

may impact macrophages[63]. More recently, there have been studies in mice demonstrating 

more nuanced strategies for dividing ATMs, one using three groups in mice: Ly6C+, CD9+ 

and CD9- Ly6C-[64], with evidence of both CD9+ and CD9- ATMs in human adipose tissue 

as well, with CD9+ ATMs increased in frequency in obese human VAT[64] and a key role 

for TREM2[65].

NK cells: NK cells bridge the innate and adaptive immune systems and can directly lyse 

infected and malignant cells. In adult obesity there is variability in peripheral NK cells with 

evidence of decreased [59,66,67] or increased[60] levels, and studies without statistically 

significant alterations[47,48,57]). In obese mice and humans there is also variable evidence 

of NK cell metabolic dysregulation and cytotoxic dysfunction[47,66]. It is important to note 

that some studies use different markers to define NK cells (CD56+ alone or CD56+ CD16+) 

and that the impact of obesity on NK cell subsets and function in blood and AT has also 

been deeply interrogated with variability in outcome[47,48,60,68]. This field is reviewed in 
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detail in a recent paper[69]. NK cells have been shown to play a role in regulating Adipose 

Tissue Macrophages (ATM), including increasing insulin resistance [70].

In children, peripheral NK cells (CD56+ CD3-)[71,72] were decreased, with an reduction 

in CD56dim and increased CD56bright NK cells[71]. NK cells had increased levels of CD69 

(an activation marker) at baseline and higher PD-1 after cytokine stimulation. PD-1 at 

later timepoints in an infection or malignancy is associated with exhaustion in T cells and 

with impaired NK function[73]. Functionally, NK cells from obese children had impaired 

proliferation and effector function, and metabolic derangement with increased rates of 

glycolysis[71].

Adaptive Immune Cells—Synergistic with pattern-based innate immune responses, T 

and B cells are antigen-specific lymphocytes which are fundamental to immune function, 

providing for the nature of the immune response (CD4 T cells) and direct cytotoxicity 

(primarily CD8 T cells) as well as antibody production (B cells), which are all affected 

by obesity (Table 1). VAT demonstrates increased infiltration by B cells and CD4 and 

CD8 T cells in obesity, and circulating cells are more complex in their alterations, with an 

intriguing finding that obesity yields increased expression of inhibitory receptors (e.g. PD-1) 

at baseline.

B cells: B cells play important roles in both humoral immunity, by generating antibodies, 

as well as serving as antigen presenting cells and thus contributing to T cell activation. 

Circulating B cell levels are variable in obese adults, with studies demonstrating stable 

levels[48,57,60] or elevated levels[59]. There may be increased infiltration by B cells of SAT 

in obese humans[60]. In DIO mice, B cells have been noted to infiltrate obese VAT in greater 

frequency than lean VAT where they contribute to the development of insulin resistance 

(IR). Depletion of B cells leads to improved metabolic state in DIO mice and, conversely, 

transferring IgG from a DIO mouse yields IR in recipients [74].

In obese children there was no difference in overall peripheral B cell frequency[72] and 

no significant increase in peripheral memory B cells, but increased naïve B cells (CD10- 

CD27-) and immature transitional B cells (CD10+ CD27+) [53].

CD3T cells: Obese adults show a wide range of peripheral total CD3T cells versus non­

obese controls, from elevated[59], to not significantly different[57] and less frequent [23,48]. 

Obese children did not show significant change in peripheral CD3T cell counts versus lean 

children[72].

Peripheral CD4 T cells were generally stable in obese adults versus non-obese 

adults[48,51,52,58,60], though increased levels have also been seen[59]. Some studies 

showed a decrease in memory CD4T cells[23], one showed an increase in CD4T effector 

memory (TEM) [75,76], another with increased naïve T cell (TN), central memory T cell 

(TCM) and effector memory re-expressing CD45RA (TEMRA) subsets[77]. Obese children 

showed no significant change in total peripheral CD4 T cell frequency[72].
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Peripheral CD8 T cells were generally stable in obese adults versus non-obese 

adults[48,51,52,57,58,60], though decreased [23] and increased [59] levels have also been 

seen. Obese children showed no significant change in peripheral CD8 T cell frequency[72].

In obese adults, SAT contained more CD4 and CD8 T cells[78].

In DIO mice, there was decreased level of naïve CD3T cells in subcutaneous adipose 

tissue with increase in effector memory T cells (Tem) in visceral adipose tissue (VAT) 

[78] with reduced TCR-Vβ diversity[78–80] . VAT is a niche for memory T cells which 

provide antigen specific protection to infection when transferred to naïve mice[81]. 

There is evidence in DIO mice that effector CD8T cells [28] infiltrate the VAT before 

macrophages[82] and that depletion of CD8 T cells reduced M1 macrophages and 

inflammatory cytokines[82]. In addition, STAT3 is elevated in DIO mice VAT T cells, with 

significant reductions in amount of AT in Stat3−/− mice and increased VAT CD4 TN and Th2 

cells and reduction in Th17 and Th1, with improved frequency of M2 macrophages, partially 

correcting DIO immune dysregulation [83].

Altered balance of CD4 T cell subsets: CD4T cell subsets include those involved in 

tolerance (regulatory T cells, Tregs), helping B cells (T follicular helper cells, Tfh), 

combating helminths and contributing to allergy (T helper type 2, Th2), combating viral 

and intracellular pathogens (T helper type 1, Th1) and combating extracellular pathogens 

and contributing to autoimmunity (T helper type 17, Th17).

Regulatory T cells (Tregs) are variable in human adult obese blood including increased[77] 

and decreased levels[76], as well as settings with no detectable change[51,60]. In obese 

children, peripheral Treg levels were not significantly changed[53]. Tregs are decreased in 

obese adult VAT[84,85].

The balance between Th1 v. Th2, between anti-viral and anti-helminth/allergic immune 

tone, has been studied in adults and children. There is some evidence that CD4 T helper 

type 2 (Th2) were increased in adult obese peripheral blood[77], though they are not 

significantly altered in obese children[72]. Th1 cells were not significantly altered in obese 

adults, but were increased in obese children in one study (based on IFNg+)[72] and not 

significantly altered in another (based on CXCR3+ CD45RO+)[53]. In separate studies there 

no significant increase in frequency of Th1 between obese and non-obese children who are 

non-asthmatic [86,87]. In a study of VAT and SAT in adult obesity, there was significant Th1 

and Th2 infiltration (but no comparison to healthy or post-surgical AT), simply enriched Th1 

and Th17 in VAT v. SAT[88]. Of note, Th1 cells correlated with CRP and IL-6 and Th2 were 

inversely correlated CRP[88].

In obese adults increased[89] or not significantly altered circulating Th17[77] have been 

found. In childhood obesity, circulating Th17 cells were increased [90,91]. VAT from adult 

obese patients with insulin resistance VAT was enriched for Th17 and Th22 cells[92]. A 

mouse DIO study demonstrated that IL-17, which can also be secreted by γδ T cells, is an 

inhibitory factor in obesity[46].
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Tfh directly assist B cells in activation and one study of pre/post bariatric surgery obese 

adults demonstrated more IL-10 and less pro-inflammatory cytokines from circulating Tfh 

post-bariatric surgery[93].

Altered states of CD8 T cells: In the presence of chronic antigen exposure and inflammation 

(e.g. malignancy and chronic infection) an immune process known as exhaustion takes 

place, which leads to upregulation of inhibitory receptors (IR), altered transcription and 

epigenetic state and poor function of the affected cells[94]. In DIO mice, non-human 

primate obesity and obese adults there is increased expression of PD-1 on CD8 T cells 

(a key IR in exhaustion) and evidence of reduced effector function in each species[95]. It 

remains unclear if there is truly exhaustion, and much work remains to be done. In addition, 

while the presence of inflammation is clear, it remains unclear what the antigenic stimulus is 

(or whether other pathways are active that remove this need).

Beyond altered circulating T cell subset and functional alterations, in DIO VAT the 

frequency of senescent T cells (CD153+ PD-1+ CD44hi CD4T, able to secrete osteopontin) 

is increased and those cells demonstrated poor IL-2 and IFN-γ secretion[96]. A recent 

strategy targeted those cells for depletion in DIO mice using a CD153 vaccine and improved 

insulin tolerance[97].

Immune Health: Quality of Immune function

Beyond enumerating altered immune components, there is clear evidence of the broad 

impact of obesity on the core mechanisms of immune function and here we will focus on 

evidence of impaired function in obesity and how this impacts the health of obese children 

(Figure 1).

Response to Vaccination—The effect of obesity on vaccine response is mixed as there 

are only a handful of studies which are generally small and focused on adult patients 

with minimal evidence in children. In adults, responses to Hepatitis B vaccine have been 

shown to be reduced in obesity[98–102]. There has been conflicting evidence of efficacy 

of influenza vaccine response, with higher initial influenza IgG antibody titers, followed 

by a more pronounced decline over 12 months[103] and another study without impact 

of obesity [104]. In addition, there was decreased CD8+ T cell activation with influenza 

vaccination and subsequent restimulation with influenza protein[103] and increased risk of 

influenza infection in vaccinated obese adults[105]. Most recently, obese adult recipients of 

the 23-valent pneumococcal vaccine demonstrated improved responses[106].

Decreased response to Hepatitis B vaccine has also been seen in adolescents[107]. Tetanus 

titers have been shown to be reduced in overweight adolescents compared to healthy weight 

children[108]. In children, there was no effect of BMI on influenza vaccine response after 

two doses (though there was not a 12 month assessment)[109]. While obese children 

who had received influenza infection missed more days of school, the influenza vaccine 

protected obese children from becoming infected with influenza given consistent frequency 

of influenza in vaccinated obese and non-obese children (of note, rates of influenza infection 

were also consistent between obese and non-obese unvaccinated children)[110].

Fang et al. Page 8

Curr Opin Pediatr. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Overall, the impact of obesity on vaccine response is unclear, especially in children, and 

requires further study.

Response to acute infection, including both the COVID-19 and H1N1 
pandemics—The data in pediatric ICU outcomes is somewhat mixed, with some data 

showing increased mortality in PICU admissions [111], and some not[112]. In adults, 

NHANES data was assessed from 1971–2000 and found no evidence of excess deaths in 

obesity in the context of infections[113]. However, there is evidence in obese adults and 

children[114] of increased surgical site infections and evidence of increased morbidity from 

lower respiratory tract infections[115].

In obese adults there is clearly increased morbidity and mortality for certain 

respiratory infections including H1N1 influenza[116,117] and the current COVID-19 

pandemic[2,118,119]. The mechanism for this increase is unclear, and an active area of 

study. Given how rare the cases of severely affected children and young adults are, there is 

active international collaboration to study whether there are novel or yet undiagnosed inborn 

errors of immunity in severely affected children and young adults with COVID-19[120]. 

Childhood obesity also may increase the risk of severe COVID-19[121]. Interestingly, we 

have learned from primary immune deficient patients who lack B cells (and have survived 

COVID-19) that B cells may be expendable[122], and the T cell immune dysregulation 

discussed above (e.g. increased PD-1 levels on CD8 T cells, altered CD4 T helper subsets, 

altered cytokines and adipokines, etc) may increase the risk of severe infection with viral 

infection.

Exhaustion in obesity with improved response to immune checkpoint 

inhibition

Childhood obesity increases the risk of cancer in early adulthood[123,124], much like 

the increased risk of malignancy in obese adults[125]. However, there is recent evidence 

of altered response to novel oncologic therapy in obesity [126]. This type of therapy, 

used for some forms of malignancy, is known as immune checkpoint inhibition and uses 

monoclonal antibodies to target elevated inhibitory receptors (e.g. PD-1) to reinvigorate 

stalled anti-tumor CD8 T cell immunity[94]. In obese adults there is evidence of both 

increased expression of PD-1 (a key inhibitory receptor and a target of immune checkpoint 

inhibition) on CD8 T cells in the tumor microenvironment (TME) and better outcomes with 

checkpoint inhibitor therapy (monoclonal antibodies directed towards inhibitory receptors)

[95,127]. There is not yet published evidence on PD-1 in obese children and checkpoint 

inhibition in pediatric oncology has been less effective than in adult cancer[128–130] to this 

point, so there is no current evidence as to the impact of pediatric obesity on checkpoint 

inhibition response.

Effect of weight loss on immune function

Supporting the evidence of obesity in altering immune function, there is evidence across 

multiple studies of adult humans that weight reduction can improve immune function, as 

well as evidence of overall improvement in mortality. CD3T cells (specifically CD4 T 
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cells and the CD4+ CD45RO+ memory T cell subset) were decreased in obese adults as 

was the T cell proliferative response to PHA [23], post-diet induced weight loss there was 

improvement in T and NK cell counts and response of T cells to PHA and concanavalin 

A[23]. In the same study, prior to weight loss, both baseline TNF-α and LPS stimulated 

TNF-α release were elevated[23], and the latter improved with weight loss. In obese 

adults there was improved cytokine production by T cells [131], as well as from bulk 

PBMCs stimulated with PHA (phytohemagglutinin)[132] after bariatric surgery. PBMC 

cytotoxicity was decreased in some studies of obese adults[132], with improvement in 

effector mechanisms after bariatric surgery [132]. Finally, in obese adolescents there was 

elevated IL-6 and leptin that improved with bariatric surgery, along with a resulting increase 

in adiponectin[133], with a similar reduction in leptin in adults post-surgically [132].

Conclusion

Childhood obesity is one of the most common non-communicable inflammatory diseases 

worldwide. However, while extremely common and with significant effects on the balance 

of the components of the immune response and concern for significant impact on immune 

function (given the alterations in response to some pathogens, concern for impact on 

vaccination responses and evidence of immune dysregulation), this is an understudied 

disease. More work must be done both to understand immune health at baseline in 

pediatrics, the alterations imposed by pediatric obesity, as well as response to perturbations 

(including infection, vaccination and weight loss, specifically bariatric surgery) to better care 

for this medically complex and fragile population.

Acknowledgments:

Thanks to the Henrickson lab for helpful discussions around these issues.

Financial support: SEH: NIH K08AI135091 (SEH), the Burroughs Wellcome Fund Career Award for Medical 
Scientists, Chan Zuckerberg Initiative and CHOP Research Institute Developmental Awards. JH-M: NIH 
R21DK111755, R01HL136572, the PEW Biomedical Scholars award, Chan Zuckerberg Initiative and the 
Burroughs Wellcome Fund investigator in the pathogenesis of infectious diseases award.

Abbreviations:

ATM Adipose Tissue Macrophages

DIO Diet induced obesity

HFD high‐fat diet

ILC2 Innate lymphoid cells, type 2

NK Natural Killer cells

iNKT invariant NK T cells

MAIT mucosal associated invariant T cells

SAT subcutaneous adipose tissue
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scRNA-seq single cell RNA sequencing

TCM central memory T cells

TEM effector memory T cells

TEMRA effector memory T cells re-expressing CD45RA

Texh T cell exhaustion

TMEM memory T cells

TN naïve T cells

TLR Toll-like receptor

Th2 type 2 CD4 T helper cells

Th17 type 17 CD4 T helper cells

VAT visceral adipose tissue
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Key points

• There are significant alterations in childhood and adult obesity in both the 

quantity and activation state of both peripheral and target tissue immune cells

• Obese children and adults experience increased morbidity with some types 

of pathogens, including COVID-19, consistent with the concern for immune 

dysfunction based on altered immune cell components and function

• There is a dearth of investigation into pediatric immune health generally and 

the impact of childhood obesity on immune function specifically
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Figure 1: Impact of childhood obesity on immune function.
In order to measure the impact of childhood obesity on immune function it is necessary 

to start by quantifying levels of cytokines and adipokines as well as key immune cell 

subsets. To measure impacts on function we examine the effects of obesity on response 

to vaccination, acute infection, malignancy and oncologic therapy as well as weight loss. 

“©2020, The Children’s Hospital of Philadelphia, All Rights Reserved”
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Table 1:
Impact of obesity on key human immune cell subsets.

Within AT, alterations are in VAT if not listed as SAT. Up arrows indicate enriched populations, down arrows 

indicate less prevalent populations and sideways arrow indicates no significant difference measured. AT = 

adipose tissue, PB = peripheral blood.

Cell type Adult Child

AT PB AT PB

B cells →VAT p = 0.055 ↑SAT [60] →[23,48] ↑[59] ↑Bnaive [53]
→Bmemory [53]

Vaccine Responses n/a ↓Hepatitis B [98–102]
→Influenza [103–105]
↑PPSV23 [106]

n/a ↓Hepatitis B [107]
↓Tetanus [108]
→Influenza [109,110]

CD4 T cells ↑[78] ↑[59,77] ↓[23]
→[48,51,52,58,60]

→[72]

Naïve CD4 T cells ↑[77]↓[57] →[23]

Non-naïve CD4 T cells ↑[75,76] TEM, ↓[23] TMEM, ↑[77] TN, 
TCM, TEMRA

Th1 cells →[92] →[77] →↑[53,72]

Th2 cells →[92] ↑[77] →[72]

Th17 cells ↑[92] in insulin resistant ptx

Th22 cells ↑[92] in insulin resistant ptx

Tregs ↓ [84] →[51,60] ↑[77] ↓[75] →[53]

CD8 T cells ↑[78] ↓[23] ↑[59] →[48]

Naïve CD8 T cells →[77]

Non-naïve CD8 T cells →[77]

NK cells variable[69] ↓[59,67,68] →[47,48,57]
↑[60]

↓[71]

NKT cells ↓[52] ↓[47,50,52]
→[48,49]

→[53]

Monocytes n/a →[48,57,58] ↑[59] →[53] ↑[26]

Classical n/a ↑[60] ↑[9] ↑[26]

Non-classical n/a ↑[60] ↑[35]

Adipose Tissue Macrophages 
(ATM)

↑[134] n/a

Pro-inflammatory (M1) (v. Anti­
inflammatory (M2) ATM

↑[60,62]

CD9+ ATMs ↑[64,65]

Eosinophil ↑[41] in SAT

Neutrophil ↑[59] ↑[26]

Mast cell ↑[38,39]

MAIT cell ↓[51,54] ↓[51,54]
→[49]

↑[54]
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