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MRI often involves applying several acquisition sequenc-
es that together comprise an MRI protocol. Each se-

quence is chosen for specific tissue contrast, such as T1- or 
T2-weighted, to add information provided by the exami-
nation. A purely quantitative T2 contrast, showing the ab-
solute value of T2 relaxation at each pixel, has been found 
to have clinical value in knee imaging. A T2 measurement 
can help assess cartilage matrix integrity, particularly that 
of collagen, potentially indicating early tissue degradation 
in osteoarthritis (OA) (1–4). Articular cartilage contains 
type II collagen fibrils that have different orientations at 
different cartilage depths (5). Previous studies suggest that 
cartilage T2 is affected by changes in the orientation and 
anisotropy of the collagen matrix and in the water content 
from tissue degradation (6–8). As the MRI signal decays 
exponentially with the inverse of T2 in a spin-echo experi-
ment, a “T2 map” can be estimated by fitting signals from 
a multiecho spin-echo (MESE) scan at several echo times 
to an exponential curve (2).

MESE MRI examinations can be time-consuming 
and are not performed routinely in knee MRI. In the 

Osteoarthritis Initiative (OAI), however, in which MRI 
scans were obtained in both knees of 4796 patients 
(across four imaging centers and at five annual time 
points), MESE scans were acquired (9), and, thus, this 
dataset is of value for machine learning applications. In 
the OAI, several anatomic (nonquantitative) MRI exami-
nations, including double-echo in steady-state (DESS) 
and turbo spin-echo (TSE, with and without fat suppres-
sion) sequences, were performed in both knees. However, 
because MESE MRI involved acquiring seven echoes and 
took almost 11 minutes (more than twice as long as some 
anatomic sequences), it was performed in only one knee 
(usually the right) (10). As such, there would be a clear 
benefit in obtaining T2 maps without an MESE acquisi-
tion, potentially by estimating them from anatomic se-
quences such as DESS and sagittal and coronal TSE se-
quences. Such anatomic T2 estimation could potentially 
enable its more widespread use in clinical practice, pro-
viding imaging features to discriminate between healthy 
individuals and those with degenerative joint disease 
(11). The anatomic contrast dependency on T2 is more 
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Purpose: To develop a proof-of-concept convolutional neural network (CNN) to synthesize T2 maps in right lateral femoral condyle 
articular cartilage from anatomic MR images by using a conditional generative adversarial network (cGAN).

Materials and Methods: In this retrospective study, anatomic images (from turbo spin-echo and double-echo in steady-state scans) of the 
right knee of 4621 patients included in the 2004–2006 Osteoarthritis Initiative were used as input to a cGAN-based CNN, and a 
predicted CNN T2 was generated as output. These patients included men and women of all ethnicities, aged 45–79 years, with or at 
high risk for knee osteoarthritis incidence or progression who were recruited at four separate centers in the United States. These data 
were split into 3703 (80%) for training, 462 (10%) for validation, and 456 (10%) for testing. Linear regression analysis was performed 
between the multiecho spin-echo (MESE) and CNN T2 in the test dataset. A more detailed analysis was performed in 30 randomly 
selected patients by means of evaluation by two musculoskeletal radiologists and quantification of cartilage subregions. Radiologist as-
sessments were compared by using two-sided t tests.

Results: The readers were moderately accurate in distinguishing CNN T2 from MESE T2, with one reader having random-chance 
categorization. CNN T2 values were correlated to the MESE values in the subregions of 30 patients and in the bulk analysis of all pa-
tients, with best-fit line slopes between 0.55 and 0.83.

Conclusion: With use of a neural network–based cGAN approach, it is feasible to synthesize T2 maps in femoral cartilage from ana-
tomic MRI sequences, giving good agreement with MESE scans.

© RSNA, 2021

Synthesizing Quantitative T2 Maps in Right Lateral Knee 
Femoral Condyles from Multicontrast Anatomic Data with 
a Conditional Generative Adversarial Network
Bragi Sveinsson, PhD • Akshay S. Chaudhari, PhD • Bo Zhu, PhD • Neha Koonjoo, PhD •  
Martin Torriani, MD, MMSc • Garry E. Gold, MD • Matthew S. Rosen, PhD

From the Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 149 13th St, Suite 
2301, Boston, MA 02129 (B.S., B.Z., N.K., M.S.R.); Division of Musculoskeletal Imaging and Intervention, Department of Radiology, Massachusetts General Hospital, Har-
vard Medical School, Boston, Mass (M.T.); Department of Radiology, Stanford University, Stanford, Calif (A.S.C., G.E.G.); and Department of Physics, Harvard University, 
Cambridge, Mass (M.S.R.). Received May 26, 2020; revision requested September 10; revision received April 11, 2021; accepted May 3. Address correspondence to B.S. 
(e-mail: bsveinsson@mgh.harvard.edu).

Supported by DARPA (grant 2016D006054) and the National Institutes of Health (grant K99AG066815).

See also commentary by Yi and Fritz in this issue. 

Conflicts of interest are listed at the end of this article.

Radiology: Artificial Intelligence 2021; 3(5):e200122 • https://doi.org/10.1148/ryai.2021200122 • Content codes:  

mailto:reprints%40rsna.org?subject=
mailto:bsveinsson@mgh.harvard.edu


2 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 5—2021

Synthesizing T2 Maps from Multicontrast Anatomic Data with a cGAN

prediction of knee replacements, and diagnosing OA from ana-
lytical T2 maps. The current study is focused on the feasibility 
of T2 map generation in the lateral femoral condyles with the 
aid of cartilage masks. Participants provided informed consent, 
as required by the institutional review boards of the respec-
tive OAI imaging centers. The study was in compliance with 
Health Insurance Portability and Accountability Act (HIPAA) 
regulations, with language pertaining to the acquisition, use, 
and disclosure of protected health information incorporated 
into consent forms and participants signing all necessary 
HIPAA authorizations prior to the public release of their data. 
We obtained institutional approval for use of these data.

Study Cohort
The OAI was an observational cohort study sponsored jointly 
by the National Institutes of Health and the pharmaceutical in-
dustry to identify imaging and biochemical biomarkers of knee 
OA. A total of 4796 men and women participants between the 
ages of 45 and 79 years who had or were at risk for knee OA 
were enrolled and underwent imaging with Siemens Trio 3T 
MRI scanners (Siemens Healthineers). In addition, clinical and 
radiologic information was collected and included data from 
questionnaires assessing pain and disability. These imaging 
examinations and data collections were performed at baseline 
and at four subsequent annual time points at four centers in 
the United States (The Ohio State University, Columbus; Uni-
versity of Maryland School of Medicine, Baltimore; University 
of Pittsburgh School of Medicine; Brown University and Me-
morial Hospital of Rhode Island, Pawtucket [closed in 2018]), 
with data coordinating centered at the University of Califor-
nia, San Francisco, School of Medicine and the results made 
publicly available (9). Patients were recruited in four stages: 
(a) initial contact through mailing, advertisements, public pre-
sentations, and websites; (b) eligibility telephone interview; (c) 
screening visit; and (d) baseline visit for data collection (22).

Anonymized data were extracted from the baseline OAI data 
point on a per-patient basis to produce CNN T2 maps (synthe-
sized maps) of the right lateral femoral condyles. We chose to fo-
cus on the right knees, as this would include the majority of the 
T2 maps and because expanding the preprocessing and analysis 
to include the few left knees for which T2 maps were available 
would only marginally enlarge the dataset. Patients were referred 
to by their unique identification number that had been assigned 
during initial screening. The mapping of identifiable patient 
data to these numbers is not possible with use of publicly avail-
able information. Information that could unmask a participant’s 
identity, such as clinic location, rare medical condition(s), or un-
common combinations of demographic characteristics, was not 
retrievable from the data (22). 

In our preprocessing, there was only one exclusion criterion: If 
our preprocessing program (described in the Data Preprocessing 
section) could not recognize the sequences from the Digital Imag-
ing and Communications in Medicine (DICOM) image headers, 
as described in Table 1 (TSE, DESS, fast low-angle shot [FLASH]) 
or the full MESE scans for the right knee were not found on the 
basis of sequence names (eg, the sequence name would be checked 
for “DESS” and “RIGHT” to see if the dataset contained a DESS 

complicated than that of MESE; therefore, estimating T2 ana-
lytically from these sequences would be nontrivial.

Recently, neural networks have emerged as an efficient means 
of obtaining models that describe various probabilistically dis-
tributed data. By iteratively adjusting weights in a large neural 
network through back-propagation, the neural network can be 
trained as a nonlinear regression model to produce desired out-
put data from given input data. This approach has been used 
in medical imaging for image reconstruction (12), classification 
(13), and segmentation (14), and for achieving super-resolution 
(15). Furthermore, neural networks have shown that they are 
capable of generating realistic images by using the generative ad-
versarial network (GAN) approach (16), in which two networks, 
the “generator” and the “discriminator,” compete in synthesizing 
data and determining whether data are synthesized or real. In 
a refinement of this methodology, conditional GANs (cGANs) 
can be trained to perform image-to-image translation by condi-
tioning on an input image to generate a corresponding output 
image (17). Such cGANs have previously been used for image 
segmentation (14) and for generating contrast in the spine (18). 
To our knowledge, synthesis of quantitative T2 maps as de-
scribed in this study has not yet been performed.

In this proof-of-concept study, we describe the use of a con-
volutional neural network (CNN) to learn the relationship be-
tween the pixel intensities from anatomic OAI scans and their 
corresponding values on a T2 map, producing what is referred to 
in this work as “CNN T2 maps,” in right lateral femoral condyle 
cartilage. We compare the CNN T2 maps with those produced 
with a ground truth MESE T2-mapping sequence.

Materials and Methods
The images for this retrospective study were collected between 
2004 and 2006 as part of the OAI study. This dataset has been 
used in over 400 publications. The applications of OAI in 
machine learning described in recent publications (19–21) in-
clude automatic classification of OA severity from radiographs, 

Abbreviations
cGAN = conditional GAN, CNN = convolutional neural network, 
DICOM = Digital Imaging and Communications in Medicine, 
DESS = double-echo in steady state, GAN = generative adversarial 
network, KL = Kellgren-Lawrence, MOAKS = MRI OA knee score, 
MESE = multiecho spin echo, OA = osteoarthritis, OAI = Osteo-
arthritis Initiative, ROI = region of interest, SNR = signal-to-noise 
ratio, TSE = turbo spin echo

Summary
A neural network was developed to produce synthetic T2 maps of 
cartilage based on anatomic MRI scans that were not designed for T2 
mapping.

Key Points
 n Two readers assessed the synthetic T2 maps and found them to be 

comparable to multiecho spin-echo T2 maps.
 n Linear regression analysis of synthesized and baseline T2 values re-

vealed a significant correlation, both in the whole cartilage region 
in a section as well as in smaller subregions of the cartilage.

 n The synthetic T2 maps produced by the model were free of image 
artifacts caused by pulsation on the baseline T2 maps.
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a result, the split between training, validation, and testing datas-
ets shown in Table 2 had a similar distribution between the sexes, 
their respective age distributions, and mean Kellgren-Lawrence 
(KL) grades of OA severity.

Data Preprocessing
The data were preprocessed as shown in Figure 1. First, a T2 
map was generated from the MESE data by means of simple 
exponential fitting of the images that corresponded to the seven 
MESE echo times. Such maps can provide information about 
the cartilage microstructure (Fig 1). Next, the anatomic images 
(DESS, sagittal TSE, coronal TSE) were reformatted and resa-
mpled to align with the voxel locations of the MESE T2 map by 
using location information in the DICOM headers so that all of 
the resulting images had the same scanning plane, spatial resolu-
tion, and field of view. As shown in Figure 1C, the reformatted 
coronal TSE data appeared to be more pixelated than the other 
sequence data owing to its different scanning plane; however, 
it was included because it could add information that was not 
available from the other scans. Next, a mask of the femoral car-
tilage was generated from the DESS data by using a previously 
developed automatic segmentation neural network (also trained 
on DESS data) (23). Finally, the images were cropped to focus 
on the femoral condyles, without changing the pixel size. This 
was done to eliminate the edge artifacts observed in some OAI 
data, as well as to prevent the network from focusing on noisy 
regions outside the tissue and reduce the data size. By using an 
iterative process, starting with a small cropping area and increas-
ing that area until it captured the features of about 30 datasets 
well, it was determined that a cropped image size of 240 3 288 
pixels would accomplish this goal. This resulted in a quintuple 

scan for the right knee), then the dataset was omitted. This could 
be for various reasons, including errors in the sequence name or 
the MESE sequence being run in the left knee instead of the right. 
This exclusion resulted in a total of 4621 patient datasets from the 
initial 4796 patients, thus excluding 175 patients or about 3.6% 
of the total. Inspection of two randomly selected patients who 
were omitted revealed that for one patient only four MESE echo 
times were collected instead of the normal seven; we considered 
this an incomplete acquisition. The other patient had metal in the 
right knee, so MESE and FLASH sequences were run on the left 
side. The data were ordered by patient identification numbers, 
and the first 3703 patients were used for training; the next 462 
patients, for validation; and the final 456 patients, for testing. As 

Table 1: Osteoarthritis Initiative Sequences

Parameter DESS TSE TSE FLASH MESE

Scanning plane Sagittal Sagittal Coronal Coronal Sagittal
2D or 3D 3D 2D 2D 3D 2D
Fat suppression WE FS No WE No
Matrix (frequency 3 phase) 384 3  307 448 3  313 384 3  307 512 3  512 384 3  269
Sections 160 37 35 80 21
Section thickness (mm) 0.7 3 3 1.5 3
Section gap (mm) 0 0 0 0 0.5
FOV (mm) 140 160 140 160 120
Scanning time (min) 10.6 4.7 3.4 8.6 10.6
Flip angle (°) 25 180 180 12 NA
TE (msec) 4.7 30 29 7.57 10, 20, …, 70
TR (msec) 16.3 3200 3700 20 2700
Bandwidth (Hz/pixel) 185 248 352 130 250
Echo train length 1 5 7 1 1
Phase encode axis AP AP R-L R-L A-P
One or both knees* Both Both Both One One

Note.—AP = anterior-posterior, DESS = double-echo in steady state, FLASH = fast low-angle shot, FOV = field of view, FS = 
fat saturation, MESE = multiecho SE, NA= not applicable, R-L = right-left, TE = echo time, TR = repetition time, 3D = three-
dimensional, 2D = two-dimensional, TSE = turbo spin echo, WE = water excitation.
*“One knee” normally means the right knee, but it could also mean the left when the right one contained metal hardware.

Table 2: Distribution of 4621 Patients in Training, Vali-
dation, and Testing Datasets

Variable Training Validation Test

No. of patients* 3703 (80%) 462 (10%) 456 (10%)
 Women
  Percentage 58% 57% 66%
  Age (y) 61 6 9 61 6 9 63 6 9
 Men
  Percentage 42% 43% 34%
  Age (y) 61 6 9 62 6 9 63 6 9
KL grade
 Right knee 1.2 6 1.2 1.2 6 1.2 1.4 6 1.2
 Left knee 1.3 6 1.2 1.1 6 1.2 1.4 6 1.2

Note.—Age and Kellgren-Lawrence (KL) grade are cited as mean 
values 6 standard deviations.

http://radiology-ai.rsna.org
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CNN T2 maps from anatomic data, and a patch-based encoder 
discriminator determined whether a T2 map was synthetic or real.

Generator.— Gray-scale 8-bit anatomic images were in-
put into a 16-layer U-Net generator in three separate im-
age channels, scaled to a range between −1 and 1. Because 
the dataset was large, data augmentation was deemed un-
necessary. As in pix2pix, the U-Net consisted of a series of 
4 3 4 two-stride convolutional downsampling layers fol-
lowed by 4 3 4 two-stride deconvolutional upsampling lay-
ers. The first three downsampling layers and the last three 
upsampling layers had 64, 128, and 256 filters, while all 

dataset for each T2 section obtained from the MESE sequence 
and was used as the resampling template for other sequences, as 
shown in Figure 1C. This process was applied to all MESE T2 
sections for every patient in the sample, yielding about 123 000 
datasets with five images each, or about 26 datasets on average 
per patient, with about 99 000 datasets for training and 12 000 
datasets for both validation and testing.

Network Implementation and Training
Figure 2A shows the network structure, based on the pix2pix ap-
proach (24), in which a cGAN is used for image-to-image transla-
tion. As in pix2pix, a U-Net (24,25) (Fig 2B) generator created 

Figure 1: (A, B) Schematic illustrations demonstrate the meaning of the pixel values of a T2 map. (A) Several signals are acquired with different echo times (TEs) by 
using a multiecho spin-echo (MESE) MRI sequence. When plotted as a function of TE, the intensities of each pixel form an exponential decay curve. The shorter the T2, 
the steeper the curve. (B) An exponential fit of the form S(t) = S0exp (−t/T2), where S(t) is the measured signal at time t, S0 is the signal before T2 decay, exp is the natural 
exponential function, and (−t/T2) is the negative ratio of the measurement time t and the T2 relaxation rate, is performed on the data points, resulting in a T2 value for each 
point, here drawn on a colored map. The color mapping of two sample points is shown for illustrative purposes. (C) Preprocessing workflow of image data. T2 maps are 
generated from exponential fitting of the time series MESE data, and the anatomic images are reformatted so that they all have the same spatial resolution, field of view, and 
image plane. Cor = coronal, DESS = double-echo in steady-state, NN = neural network, Sag = sagittal, S/S0 = signal with/before T2 decay, TSE = turbo spin echo.

http://radiology-ai.rsna.org
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Discriminators.— Two encoder discriminators were used, one 
for the whole image and one for the cartilage region, by em-
ploying the cartilage mask (Fig 1C). The whole-image discrim-
inator had three downsampling layers with 64, 128, and 256 
filters, using 4 3 4 convolution kernels, and processed 70 3 
70 image patches, while the discriminator focusing on the car-
tilage was simpler, with one 64-filter downsampling layer with 
a 3 3 3 kernel, and it processed smaller 11 3 11 patches. Both 
the generator and the discriminators used modules of the form 
convolution-batch normalization-rectified linear unit (26).

Training.— The network used a batch size of 16. The generator 
and the discriminators used the Adam optimizer with a learn-
ing rate of 0.0002 and b1 equal to 0.5. As in the original pix-
2pix work, the only noise provided was that in the form of gen-
erator dropout. Training was performed over 20 epochs, with 

other layers had 512 filters. The first three upsampling lay-
ers used dropout with a rate of 0.5. The network used a skip 
connection between the input and the U-Net T2 estimate. 
The concatenated data were then passed through a simple 
convolutional layer with a 4 3 4 kernel. The generator loss 
function was computed as follows:

Ltotal = Limage 1 lROILROI

Limage = Lce,image 1 lL1, imageLL1, image

LROI = Lce,ROI1 lL1, ROILL1, ROI

Here, image refers to the loss function computed over the whole 
image, while ROI refers to the region of interest determined by 
the cartilage mask and ce, to sigmoid cross-entropy loss. The 
weighting parameters were lL1,image = lL1,ROI = 25, and lROI = 3.

Figure 2: (A) Schematic architecture of the neural network. A U-Net–based generator (blue) synthesizes a T2 map estimate from three ana-
tomic scans. Patch-based discriminators (red) compare the synthesized (Synth) map to a true T2 map corresponding to the same anatomy. Loss 
functions (green), consisting of a combination of sigmoid cross-entropy and L1 loss, were computed and used to update the generator and the two 
discriminators. (B) Schematic illustration of the U-Net, taking the double-echo in steady-state (DESS) and turbo spin-echo (TSE) scans as input and 
producing an estimated T2 map as output. Cor = coronal, ReLU = rectified linear unit, Sag = sagittal.

http://radiology-ai.rsna.org
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initially random weights. One hundred twenty models were 
trained, with model performance deemed to be of sufficiently 
high quality for further analysis based quantitatively on the av-
erage L1 error over the cartilage mask not exceeding 5 msec per 
section and 3 msec per patient over the 12 000 validation sec-
tions, and based qualitatively on the image quality of randomly 
selected validation sections, defined as the (nonradiologist) de-
veloper not observing any unrealistic features compared with 
the MESE T2 maps.

Software and Hardware
The network was implemented by using TensorFlow, version 
1.10.0 (27,28), and Keras, version 2.2.2 (29), software with use 
of eager execution. Development took place on a workstation 
with two NVIDIA Pascal-architecture GeForce GTX 1080 
Ti graphics processing units (Nvidia). Coding was performed 
in Python, version 3.5.2 (https://www.python.org/). DICOMs 
were read in preprocessing by using Pydicom (https://pydicom.
github.io/), version 1.2.2, and the preprocessed data were stored 
as JPEGs by using Pillow, version 5.2.0 (https://pypi.org/project/
Pillow/5.2.0/). These JPEGs were then read into the network 
by using the read_file functionality of TensorFlow and saved as 
PNGs, also using Pillow. To be input into the mask-generating 
network, DESS images were converted to h5 files by using 
h5py, version 2.8.0 (https://pypi.org/project/h5py/2.8.0/). Our 
training code, which is based on and builds on the original pix-
2pix code and its implementation on the Google TensorFlow 
website (24,28), and our image preprocessing code are avail-
able at https://github.com/bsvmgh/CNNT2. 

Image Evaluation

Detailed evaluation of limited test dataset.— Of the 456 pa-
tients in the test dataset, 30 were randomly selected for manual 
evaluation. This was considered to be the highest number of 
datasets that is feasible for thorough manual processing while 
ensuring a manageable evaluation workload. The purpose of 
analyzing this smaller dataset was twofold: (a) to perform more 
detailed laminar evaluation of the cartilage, which was not con-
sidered feasible with use of the automatically generated carti-
lage mask, and (b) for board-certified radiologists’ evaluation 
to determine whether the CNN T2 maps were realistic or their 
quality differed from that of MESE T2 maps.

For these 30 patients, a section prominently displaying the 
lateral condyle was selected; this section was defined as being 
visually estimated to have the largest condyle cartilage angular 
span. This section was examined to keep the evaluation workload 
manageable while allowing laminar T2 map analysis, by divid-
ing the femoral cartilage of that section into six regions: deep or 
superficial in the anterior, central, or posterior locations. These 
regions were defined as anterior, covering the cartilage anterior 
to the tibial plateau; posterior, similarly covering the cartilage 
posterior to the tibial plateau; and central, covering the region 
between them, with deep and superficial covering the superior 
and inferior halves of the cartilage thickness, respectively. The 
mean T2 was computed for each region in all 30 patients. This 

was done for both the MESE and the CNN T2 maps, and the 
two estimates were compared by using linear least-squares regres-
sion. The best-fit line through the points, as well as R2 and P 
values, were computed to assess agreement. The data were tested 
for normality by using the Kolmogorov-Smirnov test, with a 
equal to .05. The root-mean-square difference and average abso-
lute difference between the methods, as well as the coefficient of 
variation of each method, were computed in each region.

Two board-certified musculoskeletal radiologists (reader 1 
[M.T.] and reader 2 [G.E.G.], with 23 and 27 years of expe-
rience in reading musculoskeletal MR images, respectively) 
assessed the resulting maps. The readers were provided with 
the MESE and CNN T2 maps from each of the 30 patients 
but were blinded as to which were MESE T2 maps and which 
were CNN T2 maps. These readers were not involved with 
any other aspect of this study, such as the design of the net-
work. They assessed which image was a CNN T2 map and 
which was MESE T2 map, with correct and incorrect assess-
ments assigned scores of 1 and −1, respectively. The readers 
also reported a confidence level of 1 (least confident) to 5 
(most confident) to produce a weighted assessment—for 
example, a correct assessment with a confidence level of 3 
yielded an unweighted score of 1 but a weighted score of 0.6.

After scoring all 30 image sets in this way, the readers were 
made aware of which image was the CNN T2 map and com-
pared it with the MESE T2 map, evaluating the signal-to-noise ra-
tio (SNR), sharpness, artifacts, and overall quality on a five-point 
quality scale, with 1 indicating much worse than the MESE and 
5 being much better. Two-sided t tests with a equal to .05 were 
performed to assess whether the readers distinguished the MESE 
maps from the CNN maps significantly differently than what 
would be expected from random assessment (mean significantly 
different from 0) and whether the CNN T2 map quality was sig-
nificantly different from the MESE T2 map quality (mean sig-
nificantly different from 3). These metrics of similarity and quality 
indicated whether the CNN T2 maps had benefits that were com-
parable to those of the MESE T2 maps for radiologic assessment.

Last, a failure analysis was performed wherein the set of 30 
patients was split into a “success” set, in which the CNN map 
convinced at least one reader that it was the MESE T2 map, 
and a “failure” set, in which it failed to do so. The mean T2 
in the six subregions, as well as the ratio of female to male pa-
tients, mean age, and mean KL grade, were calculated for both 
subsets, and these values were compared by using two-sided t 
tests, with a equal to .05.

Evaluation of full test dataset.— In each of the 456 patients in 
the test dataset, an ROI covering the whole femoral cartilage was 
drawn in a section in the lateral condyle of the MESE and CNN 
T2 maps. This ROI was selected in the same manner as in the 30 
patients who were randomly selected for manual evaluation. The 
ROI was drawn by a technical MRI researcher with 9 years of expe-
rience in drawing and analyzing ROIs in knee cartilage (B.S). The 
mean T2 over the ROI was recorded. As for the laminar analysis of 
the limited test dataset, agreement was estimated with linear least-
squares regression analysis. Data were again tested for normality by 
using the Kolmogorov-Smirnov test, with a equal to .05. The root-

http://radiology-ai.rsna.org
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mean-square difference, average absolute difference, and coeffi-
cient of variation were computed as they were for the 30-patient 
subregional analysis.

Results

Model and Map Overview
Each training epoch took about 1.5 hours, totaling 30 hours 
of training for the 20 epochs. Figure 3 shows sample results in 
three patients with progressively more cartilage loss, which was 
measured by using the MRI OA knee score (MOAKS) (30). 
Reference DESS images, CNN T2 maps, and MESE T2 maps 
are shown in Figure 3A–3C, 3D–3F, and 3G–3I, respectively. 
In some instances, the network was observed to either remove 
artifacts that were present on the MESE images or introduce ar-
tifacts on the CNN maps, as shown in Figure 4.

Detailed Evaluation of Limited Test Dataset
Reader assessments are tabulated in Table 3, which shows re-
sults for the 30 patients randomly chosen for the detailed eval-

uation. One reader could determine which image was created 
by the CNN (mean confidence-weighted score, 0.4 6 0.1 
[standard error]; P , .01). The same reader did not see a sig-
nificant difference in image quality metrics. The other reader 
could not significantly discern which map was created by the 
CNN but found the CNN maps to have a significantly better 
SNR, sharpness, and overall quality. The Cohen k for the non-
weighted classification of the CNN and MESE maps between 
the two readers was 0.03, indicating slight agreement.

Figure 5 shows the subregional analysis in the 30 patients. 
The best-fit line slope was between 0.55 and 0.83, with R2 values 
between 0.55 and 0.77 (P , .001 for all). In all subregions, the 
Kolmogorov-Smirnov test did not reject the null hypothesis of 
the MESE data or CNN data being normal (P . .25).

Figure 6A–6D show the failure analysis, comparing the “suc-
cess” and “failure” subsets. These contained 17 and 13 patients, 
respectively. The failure set had a slightly higher proportion of 
women, higher mean age, and higher KL grade, but these differ-
ences were not significant. Similarly, no clear pattern or signifi-
cance of T2 differences was observed, either for the MESE T2 or 
the CNN T2 values.

Figure 3: (A–C) Double-echo in steady-state (DESS) images for progressive cartilage degeneration, measured on the lateral femur by using the MRI 
osteoarthritis knee score (MOAKS). (D–F) Convolutional neural network (CNN) T2 maps corresponding to images A, B, and C, respectively. (G–I) Mul-
tiecho spin-echo (MESE) T2 maps corresponding to images A, B, and C, respectively. The MOAKS values listed above the top row of images are defined 
as the individual anterior, center, and posterior scores, respectively. The scores show any cartilage loss in the respective region; if the patient had full-depth 
cartilage loss in the region as well, this is added as a separate score after a period. Both scores (the one before the period representing any cartilage loss 
and the one after the period representing full-depth loss) range from 0 to 3, with 0 representing no loss, 1 representing loss of 1%–10% of the area, 2 repre-
senting loss of 10%–75% of the area, and 3 representing loss of more than 75% of the area.
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Figure 6E and 6F show a patient image on which both read-
ers failed to determine which image was the CNN T2 map. Fig-
ure 6G and 6H show a patient image on which both radiologists 
accurately determined which image was the CNN T2 map but 
deemed it to have higher quality than the MESE T2 map. By 
using the metrics in Table 3, reader 1 assigned the scores 3, 4, 
4, and 4 for SNR, sharpness, artifacts, and overall quality of this 
CNN T2 map, respectively, as compared with these parameters 
of the MESE T2 map, while reader 2 assigned the scores 5, 5, 5, 
and 5, respectively, for these parameters.

Evaluation of Full Test Dataset
The comparison of the MESE T2 and CNN T2 maps for the 
456 test dataset patients is shown in Figure 6I–6K. Regres-

sion analysis of the MESE versus CNN estimates showed a 
significant correlation (P , .001) between the two approaches, 
resulting in a line with a slope of 0.61 and an R2 of 0.39. As 
in the subregional analysis, the Kolmogorov-Smirnov test did 
not reject the null hypothesis of the MESE or CNN data being 
normally distributed (P = .62 and P = .22 for MESE data and 
CNN data, respectively).

Discussion
In this study, we investigated whether synthetic T2 maps, of 
comparable utility to T2 maps conventionally acquired with 
MESE, could be estimated in the femoral cartilage of the 
lateral condyles in the right knee from anatomic DESS and 
TSE sequences by using a CNN. Our motivation was that 

Table 3: Reader Assessments of CNN T2 and MESE T2 Maps for 30 Patients

Reader

Classification* Image Quality†

Nonweighted Confidence weighted SNR Sharpness Artifacts Quality

1 0.6 6 0.1‡ 0.4 6 0.1§ 3.0 6 0.0 2.8 6 0.1 2.7 6 0.2 2.9 6 0.1
2 0.1 6 0.2 0.0 6 0.1 3.8 6 0.2§ 3.8 6 0.2‡ 3.4 6 0.2 3.8 6 0.2‡

Note.—Image quality refers to the quality of convolutional neural network (CNN) T2 as compared with multiecho spin-echo (MESE) T2. 
Value are mean scores 6 standard error. SNR = signal-to-noise ratio.
* Scores ranged from −1 for all incorrect to 1 for all correct.
† The following scoring system was used to compare CNN T2 with MESE T2: 1, indicated much worse; 2, worse; 3, same; 4, better; and 5, 
much better.
‡ P , .001.
§ P , .01.

Figure 4: Sample images show artifacts on multiecho spin-echo (MESE) or convolutional neural network (CNN) T2 maps. In patient 1, the CNN T2 map has removed 
pulsation artifacts that were apparent on the MESE T2 map. In patients 2 and 3, the CNN T2 map has visible artifacts.  For patient 2, patient movement is seen along the 
superior-inferior axis on the double-echo in steady-state (DESS) scan, likely causing the artifact, as the discrepancy between the anatomic images confuses the CNN when 
predicting the T2 map. The source of the artifact for patient 3 is less clear, but it could be due to the network picking up incomplete fat suppression in the bone marrow and 
interpreting it as T2 variation. Such artifacts in the bone marrow do not affect the analysis of the femoral condyle cartilage. Cor = coronal, Sag = sagittal, TSE = turbo spin 
echo.
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Figure 5: (A) Mean T2 in a region of interest drawn in the deep or superficial anterior (red), central (blue), or posterior (green) position on the 
femoral cartilage on images from 30 patients. Each point represents a value from a region of interest in a section of the right knee of one patient. The 
plots compare the reference multiecho spin-echo (MESE) T2 estimates of the right knee (x-axis) with the T2 predicted (pred) by the neural network 
(y-axis) of the same knee. Solid lines represent best-fit lines, and dashed lines represent y equal to x. (B) Root-mean-square differences (RMSD), 
average absolute differences (Av abs diff) (top), and coefficients of variation (CV) (bottom) in the cartilage regions. (C) Typical example of the dif-
ferent cartilage regions. CNN = convolutional neural network, DA = deep anterior, DC = deep central, diff = difference, DP = deep posterior, SA = 
superficial anterior, SC = superficial central, SP = superficial posterior.
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such an approach could potentially eliminate the need for a 
specific T2 acquisition in a scan protocol. A more detailed 
comparison with MESE was performed for 30 patients. This 
involved a reader assessment, which showed the CNN T2 
maps to be similar to or better than the MESE maps, and 
a cartilage subregional analysis, which showed a large cor-
relation between the two methods. A larger quantitative 
comparison to the MESE T2 in the whole cartilage of an ex-
amined section was performed in 456 patients in the test da-
tasets (approximately 10% of the included patients), and it 

likewise showed a large correlation but incomplete absolute 
numeric agreement between the two methods. While the re-
sults showed the CNN T2 maps to be visually similar and 
correlated to baseline T2 maps from MESE measurements, 
there is still room for improvement in the quantitative values 
in terms of absolute agreement.

The quality assessment performed by one reader indicated 
a similar or better SNR, sharpness, and overall quality of the 
CNN maps as compared with MESE, while another reader 
found no significant difference in quality. A failure analysis in 

Figure 6: (A–C) Comparison of the subsets of the randomly selected 30 patients evaluated by the radiologists, whereby the convolutional neural network (CNN) 
succeeded in convincing at least one radiologist (17 patients) that it was the multiecho spin-echo (MESE) map and where it did not (13 patients). In B, age is presented 
in years. (D) Comparison between the success and failure sets of multiecho spin-echo (MESE) T2 and CNN T2 in the six different cartilage subregions. (E, F) Sample (E) 
MESE T2 map and (F) CNN T2 map in a patient for which both readers failed to recognize which map was the CNN T2 map. (G, H) Sample (G) MESE T2 map and 
(H) CNN T2 map on which both readers accurately recognized which image was the CNN T2 map but one or both deemed the CNN T2 map to be better in terms of 
signal-to-noise ratio, sharpness, artifacts, and overall quality. (I) Root-mean-square difference (RMSD) and average absolute difference (Av abs diff) between the MESE T2 
and CNN T2 maps. (J) Coefficients of variation (CV) for the MESE and CNN maps. (K) Comparison of average values from the MESE and CNN T2 maps. Plot shows 
the results for all 456 patients in the test dataset. One point represents one patient. The solid line represents the least-squares fit line through the points, while the dashed 
line represents the y equal to x line. DA = deep anterior, DC = deep central, diff = difference, DP = deep posterior, KL = Kellgren-Lawrence, SA = superficial anterior, SC = 
superficial central, SP = superficial posterior.
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which images on which the network succeeded in convincing at 
least one radiologist of having generated MESE T2 maps were 
compared with images on which the network failed to do so did 
not yield significant differences in cartilage region T2 values, sex, 
age, or disease severity measured with KL grades. However, it 
is interesting to note that the largest relative difference in these 
metrics between the two sets was in the KL grade (25%). This 
could indicate a worse performance for patients with more severe 
OA. However, a larger sample would be required to investigate 
this and potentially reach statistical significance, and this could 
be pursued in future studies.

While complete numeric agreement between any two estima-
tion methods is always ideal, even imperfect agreement can be 
valuable if the two sets of results are well correlated. For example, 
if both methods show an increase in measurements with disease 
severity, either method could be used for such estimation if it was 
used consistently throughout the study. Our measurement cor-
relations, both for whole-cartilage areas and subregions, may in-
dicate that CNN T2 maps could be used for such internal assess-
ment. Furthermore, it should be noted that estimation methods 
for MRI parameters such as T2 do not always agree, even under 
the best circumstances. Our detailed evaluation demonstrated 
agreement similar to what was previously reported between dif-
ferent T2 estimation methods in cartilage, where similar regres-
sion analysis comparing different methodologies to spin-echo 
measurements yielded slopes, intercepts, and R2 values in the 
range of 0.41 to 1.31, −2 to 19, and 0.25 to 0.64, respectively, 
for data representing both deep and superficial cartilage (31). 
The T2 in deep cartilage was generally lower than that in superfi-
cial cartilage, in agreement with data in the literature (1).

The ultimate goal of using deep learning for T2 mapping is 
to replace the conventional T2 mapping sequence in a clinical 
scanning protocol. This requires the CNN T2 map to be quanti-
tatively accurate, as well as retain or improve on the image qual-
ity of conventional maps. To assess the quantitative accuracy of 
CNN T2 maps, we performed a quantitative ROI-based com-
parison of CNN T2 maps and MESE T2 maps, and to assess 
the capability of CNN T2 maps to retain or improve on the 
image quality of conventional maps, experienced radiologists 
performed a quality assessment. Figure 6I demonstrates an av-
erage root-mean-square difference of 3.5 msec and an average 
absolute difference of 2.4 msec between the two methods in an 
ROI covering the whole femoral cartilage in a lateral condyle sec-
tion. Larger average differences were observed in the subregions, 
as shown in Figure 5B. Prior studies suggest an average difference 
of 4–5 msec in lateral femur T2 between healthy individuals and 
those with mild or severe OA (32). Other studies suggest a larger 
difference of 12 msec in the lateral condyle between healthy con-
trols and those having cartilage injury damage (33). These data 
indicate that an average CNN T2 map can be accurate enough 
to have radiologic value. However, Figures 5A and 6K demon-
strate substantial variability when looking at individual images.

While large correlation effects can have value in research 
studies, as previously noted, this is not the case for individual 
clinical assessments, in which such false-negative and false-posi-
tive results can lead to inappropriate treatments. Therefore, even 
stronger linearity is desirable to reduce the odds of false-negative 

and false-positive assessments. Future work aimed at obtaining 
such strong linearity could also be used to investigate whether 
internal relationships between cartilage regions are conserved 
on the CNN T2 maps, as compared with the MESE T2 maps, 
within a scaling factor. For example, if the difference between a 
patient’s deep anterior and deep posterior measurements is 10% 
with both the CNN and the MESE approaches, this could have 
clinical value, even if the CNN approach yielded consistently 
higher values. The ratio of the relative differences for the two 
approaches should then be 1 for all cartilage regions. In terms of 
our results, computing this ratio over all patients (using the deep 
anterior region as the baseline) and then computing the average 
value for each patient resulted in a distribution of averages with 
a mean of 0.98 and standard deviation of 0.08.

A study to further investigate the clinical value of our ap-
proach would be an important expansion of this work. In such 
a study, the reader assessment could involve estimating disease 
severity on the basis of the MESE and CNN T2 maps to learn 
which estimate is closer to the baseline estimate included with 
the OAI data. This should take into account the fact that an 
assessment of cartilage damage is not based solely on a T2 map; 
rather, it includes multiple contrasts, including that on proton-
density–weighted TSE images. In addition, the study could in-
volve initial assessment of data from proton-density–weighted 
TSE MRI, and the T2 map could be used to confirm elevated 
areas of T2, indicating lesions. This could be accomplished by 
using a modified Outerbridge classification (34) with multiple 
observers and a consistent scoring system.

In some cases, the CNN maps outperformed the MESE 
maps by removing pulsation artifacts, as shown in patient 1 (Fig 
4). Therefore, the CNN could be used to reduce pulsation ghost-
ing artifacts at T2 mapping. However, image artifacts that were 
not present on the MESE T2 maps were sometimes observed 
on the CNN T2 maps. Examples of such artifacts are shown in 
patients 2 and 3 (Fig 4). In patient 2, the DESS scan shows sub-
stantial motion along the superior-inferior axis. This prevents the 
network from effectively comparing pixel intensities, leading to 
CNN T2 artifacts. In patient 3, the source of a smaller artifact in 
the bone marrow is less clear, but it could be the result of the net-
work interpreting incomplete fat suppression in the bone mar-
row as T2 differences, although pure machine learning sources 
such as hallucinations cannot be ruled out. Such bone marrow 
artifacts would not interfere with the study goal of estimating 
cartilage T2. Recent developments allow the computation of 
quantitative maps in addition to anatomic images directly by 
using DESS (35–38), which has the potential to mitigate pulsa-
tion artifacts and intersequence motion artifacts; however, this 
requires a modified DESS sequence that is not used in the OAI.

This work had certain limitations: As mentioned, the refor-
matted coronal TSE MR images had a pixelated appearance ow-
ing to lower spatial resolution along the anterior-posterior axis. 
While we considered it reasonable to assume that the network 
would set its weights for this data to contribute to the image 
quality and not negatively affect it, we cannot rule out the pos-
sibility that this might have had a detrimental effect on the 
output. While such effects would apply systematically to the 
whole dataset, higher–spatial-resolution or isotropic data could 
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improve the results. Also, although data randomization and aug-
mentation were not deemed to be necessary (owing to the ano-
nymization process and the size of the dataset, respectively), the 
possible benefits of performing such steps could be investigated 
further. Data augmentation in the form used in the original pix-
2pix approach (24,28) was tried in the very early design stages 
of the network and was not observed to yield an improvement, 
so it was skipped in the subsequent design on the basis of that 
preliminary testing. Augmentation was again tried on the final 
design of the network, but it led to increases in average L1 over 
the cartilage mask of 2.2 msec and 2.5 msec per section and 
per patient, respectively, in the validation set. This could have 
occurred because the data were so standardized that augmenta-
tion (altering the field of view and orientation) became unrepre-
sentative. Nonetheless, different types of augmentation applied 
throughout training could possibly yield performance improve-
ments; this application could be investigated in future studies.

It should also be noted that this work was focused on the 
right femoral condyles only and no other cartilage regions. This 
was partly owing to our intention to show proof of concept in 
a commonly examined region and partly because the network 
used to generate the cartilage mask had been validated mainly 
for this cartilage type. In addition, the network is trained to 
produce CNN T2 maps on the basis of sequences and imaging 
parameters in the OAI dataset, and using this approach for other 
datasets would require retraining the network. Furthermore, the 
data used for training, validation, and testing in this work were 
not split according to patient characteristics such as age, sex, or 
disease stage. Grouping patients on the basis of such features po-
tentially could yield more specialized networks. It is important 
to note that the analysis was not substantially focused on disease 
severity, apart from what is reported in Figure 6C. Analyzing 
performance in terms of both the quantitative agreement and 
the reader analysis for different stages of disease (based on scales 
such as KL and MOAKS scales) could yield important informa-
tion about whether the network performs better at certain stages 
of disease and how it performs in diagnosing disease. While 
such analysis would require a larger number of patients than the 
30 patients examined in this work for detailed evaluation, this 
would be an interesting direction of future research.

In conclusion, the results of this proof-of-concept study show 
that a neural network can be trained to produce quantitative 
CNN T2 maps (from anatomic OAI scans) that are comparable to 
MESE T2 maps. This approach represents an important innova-
tion that demonstrates the potential of neural networks to derive 
quantitative data from anatomic images and is a step forward in 
the direction of research on deep learning in medical imaging.
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