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Rib fractures are the most common complication in chest 
trauma, which is mainly caused by external forceful im-

pact on the patient’s chest (1). Although only conserva-
tive treatment is required for most rib fractures, more than 
90% of rib fractures have one or more associated injuries, 
such as the laceration of abdominal organs (the spleen, liv-
er, or kidneys) and the damage of the brachial plexus and 
subclavian vessels (2). Therefore, the location, alignment, 
and quantity of rib fractures could potentially affect the 
clinical treatment of patients. Radiography and CT are two 
common diagnostic modalities for radiologists to investi-
gate rib fractures. Compared with radiography, CT has the 
advantage of higher contrast resolution, which can display 
lesions in all directions and usually has a higher detection 
rate of rib fractures (3). However, radiologists need to in-
vestigate the rib fractures from hundreds of CT images on 
a section-by-section basis, which is a time-consuming pro-
cess with the potential for missed fraction detection. There-
fore, automatic rib fracture detection and labeling methods 

could reduce the number of missed fractures and improve 
the efficiency of clinical diagnosis.

Deep learning–based algorithms have been applied to 
the field of medical image processing, such as image reg-
istration (4,5), detection (6–9), segmentation (10–12), 
and disease prognosis (13,14). However, to the best of our 
knowledge, there are limited studies available on the de-
tection of rib fractures on CT images using deep learning 
methods. Zhou et al (15) proposed a deep learning–based 
method to automatically detect the rib fractures from tho-
racic CT images and classify the rib fractures into three cat-
egories (fresh fractures, healing fractures, and old fractures). 
Weikert et al (16) presented rib fracture detection perfor-
mance of a deep learning algorithm on a per-examination 
level and a per-finding level, as well as an analysis on the 
false-positive findings detected from the model. However, 
both of these studies used relatively small test datasets to 
evaluate the performance of the respective models, and the 
anatomic location of the rib fractures was also not assessed.
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Purpose: To evaluate the performance of a deep learning–based algorithm for automatic detection and labeling of rib fractures from 
multicenter chest CT images.

Materials and Methods: This retrospective study included 10 943 patients (mean age, 55 years; 6418 men) from six hospitals (January 
1, 2017 to December 30, 2019), which consisted of patients with and without rib fractures who underwent CT. The patients were 
separated into one training set (n = 2425), two lesion-level test sets (n = 362 and 105), and one examination-level test set (n = 8051). 
Free-response receiver operating characteristic (FROC) score (mean sensitivity of seven different false-positive rates), precision, sensitiv-
ity, and F1 score were used as metrics to assess rib fracture detection performance. Area under the receiver operating characteristic curve 
(AUC), sensitivity, and specificity were employed to evaluate the classification accuracy. The mean Dice coefficient and accuracy were 
used to assess the performance of rib labeling.

Results: In the detection of rib fractures, the model showed an FROC score of 84.3% on test set 1. For test set 2, the algorithm 
achieved a detection performance (precision, 82.2%; sensitivity, 84.9%; F1 score, 83.3%) comparable to three radiologists (preci-
sion, 81.7%, 98.0%, 92.0%; sensitivity, 91.2%, 78.6%, 69.2%; F1 score, 86.1%, 87.2%, 78.9%). When the radiologists used the 
algorithm, the mean sensitivity of the three radiologists showed an improvement (from 79.7% to 89.2%), with precision achieving 
similar performance (from 90.6% to 88.4%). Furthermore, the model achieved an AUC of 0.93 (95% CI: 0.91, 0.94), sensitivity of 
87.9% (95% CI: 83.7%, 91.4%), and specificity of 85.3% (95% CI: 74.6%, 89.8%) on test set 3. On a subset of test set 1, the model 
achieved a Dice score of 0.827 with an accuracy of 96.0% for rib segmentation.

Conclusion: The developed deep learning algorithm was capable of detecting rib fractures, as well as corresponding anatomic locations 
on CT images.
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Test set 3 was drawn from electronic clinical reports of patients 
who underwent chest CT examinations in hospital A between 
January 2017 and December 2019, which included 313 exami-
nations with positive findings for rib fractures and 7738 control 
examinations. In addition, we randomly selected a subset from 
test set 1 (n = 74) to evaluate the performance of the rib labeling 
algorithm. Figure 1 summarizes the data distribution. Table 1 
details patient characteristics.

CT Acquisition
CT examinations were performed using six different CT 
scanners (Philips Brilliance 16, Philips Medical Systems; SO-
MATOM Definition AS1, SOMATOM Definition Flash, 
Siemens Healthineers; GE Revolution CT, and GE LightSpeed 
VCT, GE Healthcare). The tube voltage was 120 kV, and the 
tube current was performed with an automatic modulation. 
Images have high variations with both section spacing (0.44 to 
5 mm) and thickness (0.625 to 5 mm).

Ground Truth Annotation
The rectangular bounding box and polygon annotation were 
drawn on each CT section for rib fractures and ribs, respec-
tively. For fracture detection, a total of 9590 rib fractures were 
annotated by radiologists, of which 7554 were in the training 
dataset. For rib segmentation, a total of 160 scans and 3792 
ribs were annotated, of which 86 scans and 2046 ribs were 
in the training dataset. ITK-SNAP (version:3.6.0, http://www.
itksnap.org) (17) was used as the labeling tool, and all types of 
rib fractures were included (fresh fracture, healing fracture, and 
healed fracture). The training set and test set 1 were annotated 
by a radiologist (10 years of experience). Test set 2 was anno-
tated by three radiologists (6, 10, and 14 years of experience) 
and checked by one senior radiologist (18 years of experience). 
Test set 3 was collected from the picture archiving and com-
munication system using keyword searching in hospital A from 
January 2017 to December 2019.

Model Overview
The pipeline of the rib fracture detection and location model 
is illustrated in Figure 2. In this study, we first used a two-di-
mensional (2D) detection network to scan the rib fractures and 
segment the ribs section by section. Then a three-dimensional 
(3D) network was selected to improve the accuracy of rib seg-
mentation. The ensemble segmentation result of the 2D net-
work and the 3D network was used to obtain the rib labeling 
results through a postprocessing algorithm. Finally, for each rib 
fracture output from the detection model, we determined the 
anatomic position from the rib labeling mask.

Rib Fracture Detection
The algorithms used for object detection on the basis of deep 
learning can generally be grouped into two categories: two-
stage detection and one-stage detection. The two-stage meth-
ods (18–20) first use a region proposal network to generate 
potential bounding boxes in an image, and then a classifier is 
run to obtain the class probabilities of these proposed boxes, 

Therefore, this study aimed to evaluate the performance of 
a deep learning–based algorithm for automatic detection and 
anatomic location of the rib fractures from multicenter chest 
CT images.

Materials and Methods

Dataset
This retrospective study was approved by our medical ethical 
committee (approval no. YB-2020–445); the requirement to 
obtain informed consent was waived. A total of 11 229 consec-
utive examinations were collected from sites in different centers 
(A, B, C, D, E, and F) in China between January 2017 and 
December 2019. Scans of patients (n = 286; average age, 50 
years; 210 men) with a history of fracture surgery, bone tumor, 
and notable artifacts were excluded, leaving a final dataset of 
10 943 examinations with no further exclusions.

Of the 10 943 scans, we randomly chose 2425 that were posi-
tive for rib fracture as our training data, and the remaining 8518 
scans were divided into three subtest sets (test set 1, 2, and 3), 
in which test set 1 and test set 2 were used for lesion-level assess-
ment and test set 3 was used for examination-level assessment. 
Test set 1 consisted of 245 examinations with positive findings 
for rib fractures and 117 control examinations (without rib frac-
tures) from six centers (A, B, C, D, E, and F), while test set 2 
contained 105 examinations with positive findings for rib frac-
tures from three centers (D [n = 31], E [n = 42], and F [n = 32]). 

Abbreviations
AI = artificial intelligence, AUC = area under the receiver operating 
characteristic curve, FROC = free-response receiver operating char-
acteristic, IoU = intersection over union, 3D = three dimensional, 
2D = two dimensional

Summary
A deep learning algorithm was developed to detect rib fractures and 
anatomic location of each fracture on chest CT images.

Key Points
 n The proposed deep learning–based method was able to detect rib 

fractures on chest CT scans and also indicate the anatomic loca-
tion of each rib fracture.

 n For lesion-level detection, the model achieved a free-response op-
erating characteristic score of 84.3% and a detection performance 
(precision, 82.2%; sensitivity, 84.9%) comparable to that of three 
radiologists (precision, 81.7%, 98.0%, 92.0%; sensitivity, 91.2%, 
78.6%, 69.2%).

 n For examination-level detection, a large clinical dataset was evalu-
ated with the developed model and attained an area under the 
receiver operating characteristic curve of 93% (95% CI: 91%, 
94%), sensitivity of 87.9% (95% CI: 83.7%, 91.4%), and speci-
ficity of 85.3% (95% CI: 74.6%, 89.8%).

 n With the assistance of the deep learning model, the mean sensitiv-
ity of three radiologists increased (from 79.7% to 89.2%), with 
precision achieving similar performance (from 90.6% to 88.4%).

Keywords
CT, Ribs
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feature maps with a fixed size. Finally, joint training of classifica-
tion probabilities and border regressions was implemented using 
softmax cross-entropy loss and smooth L1 loss. For the mask 
head, the feature maps from the last layer of the Feature Pyramid 
Network (26) were refined by several 3 3 3 convolutions and 
obtained the rib segmentation result. Formally, an anchor was 
considered as a positive label if it had an intersection over union 
(IoU) greater than 0.5 with any ground truth box or the high-
est IoU for a given ground truth box, and the anchor that had 
an IoU less than 0.3 for all ground truth boxes was defined as 
a negative label. The sizes of anchors were set as (16 3 16, 32 
3 32, 64 3 64, 128 3 128, 256 3 256) with the multi-aspect 
ratios of (1:2, 1:1, 2:1) at each level.

For data preprocessing, we first clipped the intensities of all 
scans to the range of (−600,1200) HU and normalized them to 
the range of (0,1). Then we conducted random horizontal flip 
augmentation to make models learn invariant features to geo-
metric perturbations.

while the one-stage methods (21–23) use object detection as a 
regression problem and obtain the bounding box coordinates 
and class probabilities from the image pixels directly.

We used the Faster R-CNN (20) model, a two-stage detection 
network, to detect the rib fractures on the chest CT scans. Spe-
cifically, the ResNet50 (24) network pretrained on the ImageNet 
competition dataset (25) was selected as the backbone to speed 
up training and improve the stability of the model. We added 
the Feature Pyramid Network (26) structure into the basic Faster 
R-CNN (20) detector, which consists of top-down architecture 
with lateral connections to fuse multiscale features and substan-
tially improve the performance of the detector. The feature maps 
generated from the Feature Pyramid Network structure were 
then input to two different heads: a detection head for fracture 
detection and a mask head for rib segmentation. For the detec-
tion head, the region proposal network (20) was used to generate 
proposal regions, and the region of interest pooling layer was 
used here to convert the features of different sizes into a series of 

Figure 1: Flowchart of patient inclusion.

Table 1: Patient Characteristics

Characteristic Training Test 1 Test 2 Test 3

Test purpose NA Lesion level Lesion level Examination level
No. of patients 2425 362 105 8051
No. of men/women 1649/776 191/171 70/35 4508/3543
Mean age (y)* 54.0 6 17.0 55.1 6 16.3 54.0 6 17.0 55.3 6 16.8
Positive finding 2425 (100) 245 (67.7) 105 (100) 313 (3.9)
Negative finding (control) 0 (0) 117 (32.3) 0 (0) 7738 (96.1)
Rib fracture 7554 1545 491 NA

Note.—Unless otherwise stated, values are numbers with percentages in parentheses. NA = not applicable.
*Values are shown 6 standard deviation.
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into the interval (−361, 797) HU, and the min-max normal-
ization method was used to normalize the data to (0,1). In the 
training stage, we adopted random rotation (90, 180, 270), scale 
(0.8–1.2), and flipping to alleviate the overfitting problem.

For model training, we adopted Keras (30) to train the model 
using one NVIDIA GeForce GTX 1080 GPU, and the batch size 
was set as 2. The Adam optimizer with a learning rate initialized 
as 0.001 was used to update the parameter of the model.

Assessment of the Algorithms
To evaluate the performance of our detection model, both the 
lesion-level and examination-level assessments were considered. 
For lesion-level assessment, we defined a predicted fracture as 
a true-positive finding if it had an IoU higher than 0.1 on the 
transverse plane and an intersection on z direction for any given 
ground truth. The reason we chose an IoU of higher than 0.1 as 
the hit detection criterion was because IoU tends to be varied for 
elongated objects. We used the free-response receiver operating 
characteristic (FROC), which measures both the detection rate 
and average false-positive rate per scan on test set 1. Seven false-
positive rates (0.125, 0.25, 0.5, 1, 2, 4, 8 false-positive findings 
per scan) were included in this evaluation scheme. In addition, 
we compared the detection performance of our detection model 
with three experienced radiologists using sensitivity, precision, 
and F1 score on test set 2. Specifically, the radiologist’s results 
were annotated by themselves. For the results of the radiologist 
with the artificial intelligence (AI) model, we asked the radiolo-
gists to annotate on the CT sections that were drawn with the 

For model training, each input section image was scaled to 
1024 3 1024. We trained the network with TensorFlow (27) us-
ing four NVIDIA GeForce GTX 1080 GPUs, and the batch size 
was set as 4. Stochastic gradient descent with momentum (b = .9) 
was used to update the weights of the network. The initial learning 
rate was set to 0.001 and multiplied by 0.1 after each epoch.

Rib Segmentation and Labeling
The 2D networks with deep convolutions ignore the spatial 
information along the z dimension and therefore lose the abil-
ity to capture the 3D features of data. In this study, we used a 
3D deep neural network, U-Net (28), which consists of a series 
of 3D convolutions to efficiently capture stereoscopic features 
and a decoder to recover the spatial information, to improve 
the accuracy of rib segmentation. Specifically, we divided the 
image into a series of 3D patches by sliding windows with a 
size of 256 3 256 3 64 and a stride of 32 3 32 3 16 from 
the whole volume data, then the patches were input into the 
neural network to obtain the rib masks. The final binary rib 
mask was the ensemble result of the masks from the Faster R-
CNN (20) mask head and the 3D U-Net (28) model, and the 
ensemble weight was set as 0.5. For rib labeling, we first used 
the connected domain algorithm, which was implemented via 
the Scikit-Image (29) library to distinguish the ribs, then the 
ribs were anatomically labeled (left to right, and superior to 
inferior) according to their centroid coordinates.

For data preprocessing, we resampled the volume data to 3 mm 
on the z direction. Then the intensities of all scans were truncated 

Figure 2: Model development. The framework consists of a two-dimensional detection model (Faster R-CNN) to detect the rib fractures from the 
whole CT images and a three-dimensional segmentation model (U-Net) to segment the ribs. bbox_reg = bounding box regression, cls_prob = clas-
sification probability, FPN = feature pyramid network, ROI = region of interest, RPN = region proposal network.
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of 0.5. The mean sensitivity of the seven false-positive rates 
(0.125, 0.25, 0.5, 1, 2, 4, and 8 per scan) for the different 
subtest sets were all greater than 83%.

Comparison of Detection Performance between Deep 
Learning Model and Radiologists
We evaluated the performance of radiologists for detecting 
fractures with and without the use of the AI model. As shown 
in Figure 3, the points of radiologist 1 and 2 without the as-
sistance of AI were both above the FROC curve on test set 2, 
while radiologist 3 had a lower sensitivity than the model at the 
same false-positive rate. Radiologist 1 achieved a high sensitiv-
ity (91.7% [198 of 216], 91.0% [151 of 166], and 90.8% [99 
of 109]) for the three different test subsets of test set 2 and a 
modest precision (81.0% [209 of 258], 83.3% [155 of 186], 
and 80.7% [96 of 119]), while radiologist 2 had a high preci-
sion (97.8% [179 of 183], 97.6% [120 of 123], and 98.9% 
[92 of 93]) and modest sensitivity (80.1% [173 of 216], 72.3% 
[120 of 166], and 83.5% [91 of 109]). Radiologist 3 had a 
higher precision (95.1% [154 of 162], 88.9% [104 of 117], 
and 91.9% [79 of 86]) than radiologist 1 but a much lower 
sensitivity (69.9% [151 of 216], 63.3% [105 of 166], and 
74.3% [81 of 109]; Table 3).

The sensitivities of the three radiologists on three subsets 
of test set 2 were all higher with the assistance of the deep 
learning model. Radiologist 1 achieved a mean sensitivity of 
92.5% (from 91.2%, P = .36) on the three subsets, while 
radiologist 2 and radiologist 3 attained a mean sensitivity of 
88.3% (from 78.6%, P , .001) and 86.8% (from 69.2%, P 
, .001), respectively. We found no difference in the mean 
precision of radiologist 1 (81.7%–80.6%; P = .69); how-
ever, the precision of radiologist 2 was lower with the model 
(98.1%–91.2%; P , .001). Radiologist 3 attained a slightly 
higher mean precision from 92.0% to 93.4% (P , .001) on 
the three subsets of test set 2. The mean sensitivity and F1 
score of the three radiologists on test set 2 was higher with AI 
assistance (mean sensitivity, 79.7%–89.2%; mean F1 score, 

AI results (a series of bounding boxes). To ensure the fairness of 
the experiment, the AI-aided radiologist portion of the study was 
conducted 3 months after that of the radiologist annotating CT 
images without AI assistance. For examination-level assessment, 
we employed the area under the receiver operating characteristic 
curve (AUC), sensitivity, and specificity to evaluate the classifica-
tion performance on the test set 3.

We defined a true-positive finding as when the algorithm de-
tected a fracture on a positive scan that had at least one rib fracture 
and a false-positive finding as a detection label placed on a scan 
that was negative for a rib fracture. We defined a true-negative 
finding as when there was no model detection result on a negative 
image and a false-negative finding if the model detection label on 
a positive image was absent.

For the rib segmentation and labeling, we first used the Dice 
coefficient to evaluate the segmentation performance of different 
models, then mean Dice score and mean accuracy were selected to 
evaluate the performance of rib labeling. In this study, a rib is con-
sidered as labeled correctly if it has a Dice coefficient higher than 
0.5 for its corresponding rib mask in the ground truth.

Statistical Analysis
We used software (R version 3.5.1; R Foundation for Statis-
tical Computing) for statistical analyses. The nonparametric 
method proposed by DeLong et al (31) was used to calculate 
the AUC and its 95% CIs. The McNemar test was used to 
compare the sensitivity and precision of radiologists with and 
without AI assistance.

Results

Performance of Deep Learning Model on Rib Fracture 
Detection from Multicenter Evaluation
Table 2 lists the detection sensitivities at different false-positive 
rates on the six subsets of test set 1. The sensitivity for the six 
subsets of the model on test dataset 1 were all greater than 
84%, with a mean sensitivity of 85.4% and a false-positive rate 

Table 2: FROC Score of Different Hospitals in Test Set 1

Hospital

Sensitivity

FPs = 0.125 FPs = 0.25 FPs = 0.5 FPs = 1 FPs = 2 FPs = 4 FPs = 8 Mean

Hospital A (n = 157) 0.550 0.729 0.848 0.899 0.928 0.949 0.959 0.837
Hospital B (n = 49) 0.603 0.741 0.871 0.897 0.922 0.922 0.931 0.841
Hospital C (n = 39) 0.781 0.812 0.844 0.891 0.906 0.906 0.906 0.864
Hospital D (n = 40) 0.600 0.773 0.873 0.933 0.953 0.967 0.967 0.867
Hospital E (n = 40) 0.686 0.764 0.848 0.880 0.911 0.937 0.953 0.854
Hospital F (n = 37) 0.712 0.770 0.842 0.849 0.871 0.906 0.921 0.839
Mean* 0.655 6 

0.086
0.765 6 

0.029
0.854 6 

0.014
0.892 6 

0.027
0.915 6 

0.027
0.931 6 

0.024
0.940 6 

0.024
0.850 6 

0.013
Total 
(n = 362)

0.590 0.750 0.850 0.893 0.926 0.940 0.950 0.843

Note.— FP = false-positive finding, FROC = free-response receiver operating characteristic. 
*Values shown 6 standard deviation.

http://radiology-ai.rsna.org
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84.1%–88.6%), while the mean precision was lower with the 
use of the AI model (from 90.6% to 88.4%).

Moreover, we compared the annotation time between the 
radiologists without AI assistance and the radiologists with 
AI assistance. The average time for radiologists without AI 
assistance was about 7 minutes per case, while the time for 
radiologists with AI assistance was about 3 minutes per case, 
which demonstrated the great potential of the deep learning 
method in assistance of rib fracture detection.

Performance of Deep Learning Model on a Per-Examination 
Level
The model produced a total of 275 true-positive findings, 
1138 false-positive findings, 6600 true-negative findings, 
and 38 false-negative findings on a per-examination level on 
test set 3, corresponding to a sensitivity of 87.9% (275 of 
313 with positive findings for rib fractures; 95% CI: 83.7%, 
91.4%) and specificity of 85.3% (6600 of 7738 control 
scans; 95% CI: 74.6%, 89.8%). As shown in Figure 4, the 
algorithm attained an AUC of 0.93 (95% CI: 0.91, 0.94) 
for lesion detection. However, the model had a low positive 
predictive value of 19.5% (275 of 1413) and a high negative 
predictive value of 99.4% (6600 of 6638) with the thresh-
old of 0.5 on test set 3, which was due to the low prevalence 
(3.9%, 313 of 8051) of rib fracture in the clinical setting.

Figure 3: Free-response receiver operating characteristic curve for test set 2. 
The performance of the three experienced radiologists (red circles) and radiolo-
gists with the artificial intelligence (AI)–aided annotation (green circles) are shown. 
FP = false-positive finding.

Table 3: Lesion-level Detection Performance on Test Set 2

Indicator AI

R1 R2 R3 R1–3

Alone With AI Alone With AI Alone With AI Alone With AI

Hospital D 
(n = 31)

 Precision 85.8% 81.0% 82.4% 97.8% 91.9% 95.1% 94.0% 91.3% 89.4%
 Sensitivity 81.0% 91.7% 91.7% 80.1% 88.0% 69.9% 84.7% 80.6% 88.1%
 F1 score 0.833 0.860 0.868 0.881 0.899 0.806 0.891 0.849 0.886
 FPs per scan 0.903 1.581 1.387 0.129 0.548 0.258 0.387 0.656 0.774
Hospital E 

(n = 42)
 Precision 77.5% 83.3% 78.7% 97.6% 89.6% 88.9% 94.2% 89.9% 87.5%
 Sensitivity 89.9% 91.0% 94.0% 72.3% 89.8% 63.3% 90.4% 75.5% 91.4%
 F1 score 0.832 0.870 0.857 0.830 0.897 0.739 0.923 0.813 0.892
 FPs per scan 0.857 0.714 1.000 0.071 0.405 0.310 0.214 0.365 0.540
Hospital F 

(n = 32)
 Precision 83.3% 80.7% 80.8% 98.9% 92.2% 91.9% 92.0% 90.5% 88.3%
 Sensitivity 83.7% 90.8% 91.7% 83.5% 87.2% 74.3% 85.3% 82.9% 88.1%
 F1 score 0.835 0.854 0.859 0.906 0.896 0.822 0.885 0.861 0.880
 FPs per scan 0.531 0.719 0.719 0.031 0.250 0.219 0.250 0.323 0.406
Mean
 Precision 82.2% 81.7% 80.6% 98.1% 91.2% 92.0% 93.4% 90.6% 88.4%
 Sensitivity 84.9% 91.2% 92.5% 78.6% 88.3% 69.2% 86.8% 79.7% 89.2%
 F1 score 0.833 0.861 0.861 0.872 0.897 0.789 0.900 0.841 0.886
 FPs per scan 0.764 1.005 1.035 0.077 0.401 0.262 0.284 0.448 0.573

Note.—AI = artificial intelligence, FP = false-positive finding, R1–3 = radiologists 1, 2, and 3.

http://radiology-ai.rsna.org
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Performance of Rib Segmentation and Labeling
The segmentation performance of the 2D and 3D models 
was assessed next. The 2D Fast D-CNN achieved Dice score 
(0.850 6 0.028) and IoU (0.740 6 0.042) comparable to the 
3D U-Net (0.867 6 0.024 and 0.767 6 0.037, respectively). 
The ensemble model, defined as the weighted average of prob-

abilities predicted by the 2D Faster R-CNN network and the 
3D U-Net network, achieved the highest Dice score (0.872 6 
0.024) and IoU (0.775 6 0.038). We tested the ensemble rib 
mask model on a subset (n = 74) of test dataset 1 and obtained 
a mean Dice score of 0.827 6 0.084 and a mean accuracy of 
0.960 6 0.094. Figure 5 shows an example of detection and la-
beling results from the model on CT images (two true-positive 
findings and one false-positive finding).

Discussion
We developed a deep learning–based method for the automatic 
detection and location of rib fractures by using deep learning 
from a set of 2425 patients to develop our model, and the per-
formance of the algorithm was assessed on a large set of 8518 
patients. The results demonstrated that our model achieved a 
good performance in the detection of rib fractures on both le-
sion level and examination level, as verified by multicenter test 
sets. In addition, we compared the diagnosis accuracy between 
our model and three experienced radiologists, and the model 
had a comparable performance with radiologists.

Despite recent efforts to apply deep learning technology to 
diagnostic imaging, large datasets are still a necessity for models 
to achieve expert-level performance. Our training dataset con-
sisted of 2545 chest CT data from six different hospitals, and 
all fractures were annotated by a radiologist with 10 years of 

Figure 4: Receiver operating characteristic curve for test set 3. AUC = area 
under the receiver operating characteristic curve.

Figure 5: Detection and segmentation examples shown on CT images. The first row images are sections cropped from the raw CT images, and the second row images 
are the corresponding results from the deep learning model, with colored outlines indicating the different ribs. The first two columns successfully detected rib fractures, while 
the last column is a false-positive finding.

http://radiology-ai.rsna.org


8 radiology-ai.rsna.org n Radiology: Artificial Intelligence Volume 3: Number 5—2021

Automatic Rib Segmentation and Fracture Detection from Multicenter Chest CT Images 

diagnostic experience. To validate the performance and gener-
alization of the model, we collected 8517 chest CT scans for 
testing, in which 467 cases were used for lesion-level assessment, 
and the other 8051 cases were for examination-level assessment. 
This large-scale training set and test set, combined with our pre-
processing and network optimization technology, enabled our 
deep learning algorithm to be successfully developed. We com-
pared the performance of the algorithm with three experienced 
radiologists and found that there were certain differences in the 
diagnostic performance among different radiologists. Radiolo-
gist 1 had higher sensitivity but lower specificity, whereas radi-
ologists 2 and 3 achieved higher specificity but lower sensitivity. 
The sensitivities of three radiologists were all consistently higher 
with the use of AI assistance, which demonstrated that the algo-
rithm could assist radiologists in the diagnosis of rib fracture and 
improve the diagnosis efficiency.

To our best knowledge, limited studies have been proposed 
for the detection of rib fractures on CT scans. Zhou et al (15) 
used the original Faster R-CNN model to detect the rib frac-
tures and classify the fracture types. Weikert et al (16) first used a 
3D convolutional deep neural network to provide proposals for 
suspected rib fractures, and then a Fast Region-based CNN was 
used to reduce the false-positive findings. Although the test data 
in the previously mentioned studies were from different centers, 
the datasets were relatively small to validate the performance and 
generalizability of the model. In addition, neither of the previ-
ously mentioned methods outputs the anatomic position of rib 
fractures, which also plays an important role in clinical diagnosis 
and treatment. In this study, we first designed a semantic mask 
head for the Faster R-CNN model so that the model can seg-
ment the ribs from the CT scans while detecting rib fractures. 
Then, we used a 3D U-Net model to further improve the perfor-
mance of rib segmentation.

Our research study had several limitations. First of all, although 
our model can detect the rib fractures on chest CT scans and iden-
tify the anatomic location of each rib fracture, the types of rib frac-
tures (fresh fractures, old fractures, and healing fractures) have not 
been specified. In the future, a 3D convolutional neural network 
can be used as a classification model to further classify the detected 
rib fracture types from the current model. In addition, the per-
formance of the rib segmentation and labeling algorithm requires 
further improvement, especially for the scans in which the ribs are 
seriously misaligned due to rib fractures. We plan to increase the 
data annotations of such cases to help the model better segment 
and label the ribs. Finally, although the performances of the three 
radiologists with the assistance of AI were all improved, whether 
their diagnostic efficiency has been improved needs to be further 
investigated in the clinical environment.

In conclusion, we developed a deep learning algorithm to de-
tect rib fractures on chest CT images, as well as to identify the 
location of each rib fracture. The model had good performance 
on the large-scale test datasets collected from multiple centers 
at both the lesion and examination level, which demonstrates 
generalization of the model. We found that radiologist sensitivity 
was higher with the use of the AI model, and the examination 
time was reduced. Together, these results warrant further inves-
tigation into the use of AI assistance for rib fracture detection.
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