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Abstract

The standard proteomics database search strategy involves searching spectra against a peptide 

database and estimating the false discovery rate (FDR) of the resulting set of peptide-spectrum 

matches. One assumption of this protocol is that all the peptides in the database are relevant to 

the hypothesis being investigated. However, in settings where researchers are interested in a subset 

of peptides, alternative search and FDR control strategies are needed. Recently, two methods 

were proposed to address this problem: subset-search and all-sub. We show that both methods 

fail to control the FDR. For subset-search, this failure is due to the presence of “neighbor” 

peptides, which are defined as irrelevant peptides with a similar precursor mass and fragmentation 

spectrum as a relevant peptide. Not considering neighbors compromises the FDR estimate because 

a spectrum generated by an irrelevant peptide can incorrectly match well to a relevant peptide. 

Therefore, we have developed a new method, “subset-neighbor search” (SNS), that accounts for 

neighbor peptides. We show evidence that SNS controls the FDR when neighbors are present and 

that SNS outperforms group-FDR, the only other method that appears to control the FDR relative 

to a subset of relevant peptides.
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1 Introduction

In a typical proteomics database search, mass spectra are searched against a database 

consisting of peptides reasonably expected to be found in the sample. For example, mass 

spectra generated from human cells would be searched against the human proteome. 

Following the database search, target-decoy competition (TDC) is used to control the false 

discovery rate (FDR) in the reported set of peptide-spectrum matches (PSMs).1, 2 Using 

TDC with an FDR threshold α, typically α = 1%, we can identify a set of detected PSMs for 

which the expected proportion of false discoveries, or FDP, is ≤ α. Although this process is 

standard across the field and is valid for many proteomic analyses, there are situations where 

this FDR control strategy can be problematic.

Specifically, consider the case where researchers are only interested in a subset of “relevant 

peptides” present in the sample. Determining whether a peptide is relevant or not is up to 

the user, but typically it makes sense to define a peptide as relevant when the detection of 

that peptide is pertinent to the hypothesis being asked. Similarly, irrelevant peptides can 

typically be defined as peptides that are inconsequential to the question being asked. Of 

course, defining the set of relevant peptides should be done before looking at the data, just 

as in hypothesis testing we should formulate the null and alternative hypotheses prior to 

performing the test.

For example, a common class of irrelevant peptides is human contaminants, typically 

keratin, which can be artificially introduced into a non-human sample during sample 

preparation. Human keratin contaminants are irrelevant because detecting these peptides 

does not affect the biological interpretation of the data. In this specific scenario, the peptide 

database will mostly consist of relevant peptides, since the list of contaminants is typically 

small. However, there are other scenarios where the proportion of relevant peptides in the 

protein database is small. One example is when proteomics is used to study the biology of 

Plasmodium falciparum, the causative agent of malaria. When P. falciparum is studied in a 
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laboratory, it must be cultured in a medium containing human red blood cells. Therefore, 

any P. falciparum sample will also contain human peptides. In this setting, the detection 

of human peptides is irrelevant since the goal of the experiment is to study the biology 

of P. falciparum. In practice, researchers search their experimental spectra against the 

concatenated human and P. falciparum proteomes. Since the human proteome is much 

larger than the P. falciparum proteome, the proportion of relevant peptides in the combined 

database is small.

The proportion of relevant peptides in the database can be even smaller. Generally this 

occurs when investigators are pursuing a focused biological hypothesis such as the effect of 

a drug on a single molecular pathway or the effect of a perturbation on a single organism in 

a microbial community. One concrete example that we consider in some detail here is the 

detection of the protein toxin ricin, RCA60. Detection of the ricin toxin is important because 

the possession, transfer, or use of this toxin is federally regulated throughout most of the 

world. The challenge for law enforcement is that the castor plant and the seeds of the castor 

plant, where ricin is expressed, are not regulated. In fact, there are many legitimate reasons 

to possess and transfer the plant and seeds. For example, the castor plant is a common 

ornamental plant, and castor seeds are used in the production of castor oil. As a result, 

prosecutors must be able to directly detect the ricin toxin. All other proteins expressed in the 

castor plant are not useful for prosecution. This means that a single protein is relevant while 

the entire remaining proteome is irrelevant.

In such settings, where our interest lies in a small subset of relevant peptides, one needs 

to be particularly careful when applying TDC to control the FDR. Indeed, one intuitively 

appealing strategy involves controlling the FDR on PSMs from the full database search 

but only reporting the relevant PSM subset.3, 4 It has been previously argued that this 

strategy, which we call “search-then-select,” generally does not properly control the FDR 

because the relevant PSM score distribution does not necessarily match the irrelevant PSM 

score distribution.5, 6 For example, in the case where researchers are interested in post­

translationally modified peptides, the score distribution of irrelevant unmodified peptides 

can differ from relevant modified peptides.7, 8

Motivated by this problem, three different modifications to the standard TDC protocol have 

been proposed when controlling the FDR among a subset of relevant PSMs (Table 1 and 

Figure 1). One method is to simply search the spectra against the database consisting only 

of relevant peptides (“subset-search”).9, 10 A second method searches the spectra against 

relevant and irrelevant peptides but applies FDR control only to relevant PSMs (“group­

FDR”11) (also sometimes referred to as “separate FDR”5). Finally, in the third method, 

spectra are searched against all peptides but FDR is controlled with respect to only the set 

of relevant peptides using information from all PSMs.5, 8, 12 For this analysis, we chose 

the method from Sticker et al. (“all-sub”) as a representative example of this third type of 

method.12

Our interest in this problem was rekindled when analyzing data where the only relevant 

peptides were those of the ricin protein. This is an example where the relevant peptides 

comprise a very small subset of the peptides in the database. However, with this data we 
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also encountered a new phenomenon—“neighbor” peptides—that has not previously been 

explicitly taken into account in this context. A neighbor peptide is an irrelevant peptide 

that has a similar precursor mass and fragmentation (MS2) spectrum as a relevant peptide. 

As explained below, ignoring the existence of neighbor peptides can compromise an FDR 

controlling procedure. To understand the crux of the problem imagine that a relevant peptide 

is missing from the sample but a neighbor of it is present. When searching only against the 

relevant peptides, the spectrum generated by the present neighbor will offer a very good 

(false) match to the relevant peptide even though the latter is not present in the sample.

Our investigation of existing analysis procedures starts by evaluating their ability to control 

the FDR. Others have already pointed out that search-then-select fails to control the FDR.5-8 

Here we also demonstrate that all-sub can fail to properly control the FDR when the 

relevant peptides comprise a small subset of the peptides in the database. In contrast, our 

initial analysis indicated that group-FDR and subset-search do not fail this test. However, 

subsequent analysis shows that subset-search can fail when a sufficient number of neighbor 

peptides are thrown into the mix. Specifically, in the analysis of our ricin data, we observe 

cases of spectra, presumably generated by neighbors of ricin peptides, that offer a very good 

match to the corresponding ricin peptide, even though the latter may not be in the sample. 

These potentially incorrect PSMs cannot be accounted for by the target-decoy competition in 

subset-search, since this process does not account for the existence of peptides that are not 

relevant but are neighbors.

These experiments left us with group-FDR as the only procedure that appears to control 

the FDR for the general case of searching a small subset of relevant peptides. However, 

like search-then-select and all-sub, group-FDR suffers from the problem of searching the 

relevant spectra against a large irrelevant database, thereby compromising its power.10 This 

observation motivated our introduction of a new method, called “subset-neighbor search” 

(SNS), that tries to retain most of subset-search’s ability to limit the search to the relevant 

part of the database while fixing the latter’s failure to control the FDR by explicitly 

accounting for neighbor peptides (Table 1 and Figure 1).

Our analysis shows that SNS offers greater statistical power than group FDR, i.e., SNS 

typically delivers more discoveries than group FDR at a fixed FDR threshold. Given that 

none of the other methods offer robust FDR control, SNS is our recommended method when 

a small subset of the peptides in a sample is relevant.

2 Methods

Notation is summarized in Table 2.

2.1 Neighbor peptides

We say that two peptides are “neighbors” if their masses are similar and if they share 

sufficiently many singly-charged b- and y-ions. More formally, we say peptides p1 and p2 

are neighbors if (1) the difference in the associated peptide masses m1 and m2, specified in 

units of ppm, is less than a specified mass tolerance tm:
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∣ m1 − m2 ∣
1
2(m1 + m2)

106 ≤ tm,

and (2) the proportion of b- and y-ions shared by p1 and p2 is greater than a specified 

fraction ti:

2B12
B1 + B2

> ti,

where B1 (respectively, B2) is the number of possible singly-charged b- and y-ions that can 

be associated with peptide p1 (p2), and B12 is the number of shared such ions between 

the two peptides. Here, two (theoretical) ions are considered shared if their m/z values, 

discretized to bins of size 0.05 Da or 1.0005079 Da, fall in the same bin. We use a bin size 

of 0.05 Da for low-resolution MS2 data and a bin size of 1.0005079 Da for high-resolution 

MS2 data. In this work, we set tm equal to twice the precursor mass tolerance used in the 

associated database search, and we set ti = 0.25.

2.2 Decoy peptide generation

All of the methods we consider rely upon construction of a database of decoy peptides. 

In this work, we construct decoy peptides by first digesting proteins to peptides and then 

independently shuffling the amino acid sequence of each unique peptide, while ensuring that 

the N- and C-terminal amino acids remain in place. This approach ensures that the number 

of decoy peptides matches the number of target peptides. This procedure is implemented 

in the indexing step of the Tide search tool. As has been pointed out previously,13 the 

alternative approach based on shuffling protein sequences is invalid because the presence of 

homologous proteins yields an imbalance in the number of target and decoy peptides.

2.3 FDR control methods

We consider five methods for controlling the FDR (the first four of which have been 

previously published, Table 1 and Figure 1). Pseudocode descriptions of each algorithm can 

be found in the supplement.

Search-then-select—This method takes as input a set S of observed spectra, a database 

T of target peptides, a corresponding database D of decoy peptides, a database Tr ⊂ T
of relevant peptides, and a confidence threshold α. The spectra are searched against the 

concatenated target-decoy database T ∪ D, yielding an optimal PSM for each spectrum. The 

FDR for the set of PSMs is calculated using

FDR(s) ≔ min 1, D(s) + 1
T(s) , (1)

where T(s) is the number of target PSMs with score ≥ s and D(s) is the number of decoy 

PSMs with score ≥ s. Note that the min operation is used to prevent the estimated FDR from 
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exceeding 100%. In the algorithm, the set of confident discoveries A = A(α) is defined as all 

PSMs whose score is ≥ sα, where

sα ≔ min
s

FDR(s) ≤ α (2)

and α is the user defined FDR threshold (typically 1%). Thus far, the procedure corresponds 

to the standard target-decoy competition protocol for FDR control.1, 2 In the search-then­

select protocol, the subset of target peptides in A that do not involve a relevant peptide are 

filtered out, leaving only target PSMs involving peptides of interest. This final set of PSMs 

is designated as the set R of accepted PSMs.

subset-search—The subset-search method9, 10 is similar to the standard target-decoy 

competition protocol, except that it operates only on the set of relevant peptides Tr. The 

procedure takes as input the observed spectra S, a set of relevant target peptides Tr, the set 

of corresponding decoy peptides Dr, and the significance threshold α. The FDR is estimated 

using (1), and the discovery list A is determined using the score cutoff sα from (2).

Group-FDR—In the group-FDR method11 (also known as separate FDR5), the inputs 

include observed spectra S, a relevant target database Tr, a relevant decoy database Dr, an 

irrelevant target database Ti, an irrelevant decoy database Di, and a threshold α . In this 

search, neighbor peptides (Tn) are absorbed into the irrelevant peptide set (Ti); therefore 

Tn = ∅. A database search is conducted against a concatenated database consisting of all 

targets and decoys T ∪ D (which is the same as Tr ∪ Ti ∪ Dr ∪ Di). After the search, PSMs 

that involve irrelevant peptides or their associated decoys are filtered out. The FDR is then 

estimated on the remaining set of PSMs using (1), and the discovery list is determined using 

the score cutoff sα defined by (2).

All-sub—The all-sub method12 is conceptually similar to group-FDR except for a variation 

in how the FDR is estimated. In particular, the input to all-sub is the same as for group-FDR. 

Spectra are searched against the concatenated target-decoy database T ∪ D, but instead of 

using (1), the FDR is estimated using

FDR(s) = min 1, Dr( − ∞) + 1
Tr( − ∞)

D(s)Tr( − ∞)
D( − ∞)Tr(s) , (3)

where Tr(s) is the number of relevant target PSMs with scores ≥ s, Tr (−∞) is the total 

number of relevant target PSMs, Dr (−∞) is the total number of relevant decoy PSMs, and 

D(−∞) is the total number of decoy PSMs.

Subset-neighbor search (SNS)—As its name suggests, SNS is the only method 

presented here that explicitly accounts for neighbors. SNS is the same algorithm as group 

FDR except that neighbor peptides play the role of irrelevant peptides. Specifically, the 

spectra are searched against a database of relevant and neighbor peptides Tr ∪ Tn ∪ Dr ∪ Dn. 

Following the search, PSMs that involve neighbor peptides or their associated decoys are 
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removed from consideration, and the list of discoveries is determined from (1) and (2), as 

described above, using threshold α.

2.4 Datasets

To evaluate the various FDR control methods, we use five tandem mass spectrometry 

datasets (Table 3, Supplemental Table S1-S4), which have been deposited in the PRIDE 

Archive (http://www.ebi.ac.uk/pride/archive) with the dataset identifier PXD022778.

UPS1/Yeast—This dataset consists of six mass spectrometry runs. Three runs came from 

a yeast whole cell lysate, and the remaining three runs came from the Universal Proteomics 

Standard Set 1 (UPS1, Sigma-Aldritch). The resulting spectra were then merged to create 

three in silico mixtures.

To prepare the yeast sample, yeast strain BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) 

(Dharmacon) was cultured in YEPD to mid-log phase, harvested, and lysed with 8M urea 

buffer solution and bead beating (7 cycles of 4 minutes beating with 1 min rest on ice). 

The resulting cell lysate was reduced, alkylated, and digested for 16 hours. Next, the 

peptide digest was desalted using a mixed-mode (MCX) method, dried down overnight via 

speedvac, and brought up with synthetic iRT peptide standards (Pierce Peptide Retention 

Time Calibration Mixture) to 1μg/μl total proteome. A bicinchoninic acid assay (Pierce BCA 

Protein Assay Kit) was used to determine total protein content.

To prepare the UPS1 sample, the Universal Proteomics Standard Set 1 (Thermo Scientific) 

was reduced, alkylated, and digested for 16 hours in the same manner as the yeast sample.

For both prepared samples, peptides were separated with a Waters NanoAcquity UPLC and 

emitted into a Orbitrap Fusion Lumos (Thermo Scientific, San Jose, California). Pulled tip 

columns were created from 75 μm inner diameter fused silica capillary (New Objectives, 

Woburn, MA) in-house using a laser pulling device and packed with 3 μm ReproSil-Pur C18 

beads (Dr. Maisch GmbH, Ammerbuch, Germany) to 30 cm. Trap columns were created 

from 150 μm inner diameter fused silica capillary fritted with Kasil on one end and packed 

with the same C18 beads to 3 cm. Solvent A was 0.1% formic acid in water and solvent 

B was 0.1% formic acid in 98% acetonitrile. For each injection, 3 μl (approximately 1 μg 

total protein on column) was loaded and eluted using a 90-minute gradient from 5 to 35% B, 

followed by a 40 minute wash. Data were acquired using data-dependent acquisition (DDA).

To acquire DDA data, the Orbitrap Fusion Lumos was set to positive mode in a top-20 

configuration. Precursor spectra (400–1600 m/z) were collected at 60,000 resolution to hit 

an AGC target of 3 × 106. The maximum inject time was set to 100 ms. Fragment spectra 

were collected at 15000 resolution to hit an AGC target of 105 with a maximum inject time 

of 25 ms. The isolation width was set to 1.6 m/z with a normalized collision energy of 27. 

Only precursors charged between +2 and +4 that achieved a minimum AGC of 5 × 103 were 

acquired. Dynamic exclusion was set to “auto” and to exclude all isotopes in a cluster. Both 

the UPS1 peptides and the yeast peptides were injected into the mass spectrometer three 

times (Table S1).
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UPS1/Yeast—A second UPS1/yeast dataset was used for a power analysis, and the data 

for this dataset was downloaded from PRIDE (project number PXD001819).14 In this study, 

UPS1 proteins were spiked into a yeast cell lysate at nine different concentrations: 50 

amol/μg, 125 amol/μg, 250 amol/μg, 500 amol/μg, 2.5 fmol/μg, 5 fmol/μg, 12.5 fmol/μg, 25 

fmol/μg, 50 fmol/μg. Three technical replicates were generated for each of the nine samples. 

Runs corresponding to UPS1 spike-in concentrations of ≤2.5 fmol/μg were removed from 

consideration because these runs had zero confident UPS1 peptide detections at 1% FDR. 

This resulted in 12 usable runs for our analysis.

The yeast lysate was created in an 8M urea/0.1 M ammonium bicarbonate buffer at a protein 

concentration of 8 μg/μL. UPS1 proteins were spiked into 20 μg of the yeast lysate to create 

nine different concentrations of UPS1. Following the spike-in step, the sample was reduced 

and alkylated. Digestion was done overnight using trypsin in a 1M urea buffer. Following 

the digestion step, each sample was desalted and analyzed in triplicate on a nanoRS 

UHPLC system (Dionex, Amsterdam, The Netherlands) coupled to an LTQ-Orbitrap Velos 

mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) in top 20 data-dependent 

acquisition mode with dynamic exclusion set to 60 seconds.

Two μL of each sample were loaded into a C-18 column (75 μm IDx15 cm, in-house packed 

with C-18 Reprosil) where solvent A consists of 5% acetonitrile and 0.2% formic acid and 

solvent B consists of 80% acetonitrile and 0.2% formic acid. The flow rate was 300 nL/min 

flow rate. For the first 75 minutes of the gradient the percentage of solvent B increased from 

5% to 25%. During the next 30 minutes, solvent B increased to 50% and finally during the 

last 10 minutes solvent B increased to 100%. MS1 scans were acquired in the Orbitrap on 

the 300–2000 m/z range with the resolution set to 60,000.

Ricin—Data for this dataset was downloaded from PRIDE (project ID PXD007933). 

In this study, castor seeds from various castor plant cultivars were collected for sample 

processing.15 Crude castor seed extracts were prepared from castor seeds via five different 

methods, designated M0 through M4. Method M0 involves mashing the seed to a semi­

uniform consistency. M1 first removes the seed coat by soaking the seeds in sodium 

hydroxide, then mashes the peeled seeds. M2 takes the product from M1 and washes it with 

acetone. M3 and M4 involve a protein precipitation step where either magnesium sulfate or 

acetone, respectively, is used. Following preparation of the crude castor seed extracts, the 

extracts were inactivated by heating to 100 C for 1 hour.

The crude castor seed extracts were placed in a buffer (PBS from 10x concentrate, Fluka, 

containing 11.9 mM phosphates, 137 mM sodium chloride, 2.7 mM potassium chloride, 

pH 7.4, to which 0.01% Tween-20 was added) and then centrifuged for 10 minutes at 4°C 

and 16,000 g. Following centrifugation, the resulting aqueous layer was incubated with urea 

and 500 mM dithiothreitol (DTT) for 60 minutes at 37°C. Then, 400 mM iodoacetamide 

(IAA) was added and then incubated in the dark at 37°C for 60 m to alkylate cysteine thiol 

groups. Once alkylated, samples were diluted using ammonium bicarbonate buffer to which 

calcium choloride was added. Samples were digested overnight at 30°C using trypsin. After 

digestion, samples were acidified and desalted by solid phase extraction.
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A Waters NanoAcquity dual pump LC system (Waters, Milford, Massachusetts) was used to 

separate peptides on the column. Peptides were separated on a fused silica capillary column 

which consisted of a trapping column (4 cm x 150 μm inner diameter) and an analytical 

column (70 cm x 75 μm inner diameter, 360 μm outer diameter). Peptides were eluted at a 

rate of 300 nL/min for 150 m using a nonlinear gradient. A Q Exactive Plus or Q Exactive 

HF mass spectrometer (Thermo Scientific, San Jose, California) was used to collect the 

data. Both MS and MS/MS spectra was collected at high resolution. Specifically, the Q 

Exactive Plus precursor spectra were acquired at 35,000 resolution (mass resolving power) 

for precursor spectra and MS/MS spectra at 17,500 resolution, while on the Q Exactive HF, 

the resolution settings were 60,000 for precursor spectra and 15,000 for MS/MS spectra.

The ricin dataset consists of 54 different runs of castor seed extracts, corresponding to 

multiple replicates for each of the five sample preparation protocols, and are summarized in 

Supplemental Table S2.

Human—A subset of 12 human mass spectrometry runs from PRIDE project PXD011189 

were downloaded. This study developed a new sample preparation protocol, sample 

preparation by easy extraction and digestion (SPEED),16 and compared it to three 

previously developed methods of filter-aided sample preparation (FASP), single-pot solid­

phase-enhanced sample preparation (SP3), and urea-based in-solution digestion (Urea-ISD). 

To generate biomass HeLA cells (ATCC CCL-2) were grown in DMEM media at 37 °C and 

supplemented with 10% FCS and 2 mm l-Glutamine. After sample collection, cells were 

washed with PBS and then pelleted and stored at −80 °C until the lysis step.

In the SPEED method, samples were resuspended in trifluoroacetic acid (TFA) and then 

incubated at room temperature for 2 minutes. After the samples were neutralized using 

a solution of 2 M TribaseNext and TFA, Tris(2-carboxyethyl)phosphine (TCEP) and 2­

Chloroacetamide (CAA) was added. After the TCEP and CAA was added the samples were 

incubated for 5 min at 95 °C. Following the incubation step, a trypsin digestion step was 

conducted for 20 hour at 37 °C. Finally, the peptide mixture was acidified and desalted.

In FASP,17 samples were suspended in a solution of 4% SDS, 100 mm Tris/HCl, and 100 

mm DTT, incubated at 95 °C for 5 min, and then sonicated at 4 °C to induce lysis. Following 

the lysis step, samples were processed using a Microcon-30kDa Centrifugal Filter Units 

(Merck). With this unit the sample underwent several rounds of centrifugation in a solution 

of 8 M urea and 0.1 M Tris-HCl. During one round of centrifugation the peptide were 

alkylated using IAA. Following all rounds of centrifugation, the filter device was rinsed and 

desalted. The filtrate were digested for 20 h at 37 °C using trypsin at a protein/enzyme ratio 

of 50:1.

In the SP3 method,18 cells were lysed in a solution of 1% SDS, 1x complete Protease 

Inhibitor Mixture (Roche, Basel, Switzerland), and 50 mm HEPES buffer. During the lysis 

step the samples were incubated at 95 °C for 5 min and further sonicated for 300 seconds 

at 4 °C. Following the lysis step samples were reduced and alkylated using DTT and IAA, 

respectively. Then, 2 μL of paramagnetic beads was added to the mixture. After the beads 

were immobilized by a magnetic rack for two minutes, they were washed and resuspended 
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in a trypsin solution and digestion was carried out for 20 h at 37 °C. Peptides were eluted off 

the beads using a 2% dimethyl sulfoxide in water.

In the urea-ISD method, cells were lysed by suspending the sample in a pH 8 solution of 8 m 

urea, 50 mm Tris-HCl, and 5 mm DTT. Then, it was sonicated for 10 min at 4 °C. Following 

the lysis step, the samples were incubated for 1 h at 37 °C and then centrifuged for 5 min. 

Samples were alkylated for 30 min at room temperature in the dark using IAA. Proteins 

were digested using trpysin for 20 hours at 37 °C in a urea solution with 50 mm Tris-HCl.

Once all the samples had been prepared they were all analyzed on a EASY-nanoLC 1200 

(Thermo Fisher Scientific) coupled online to a Q Exactive Plus mass spectrometer (Thermo 

Fisher Scientific). One mu g of sample was injected into a 50 cm Acclai PepMap column 

(Thermo Fisher Scientific) using a linear 180 min gradient of 3 to 28% acetonitrile in 

0.1% formic acid at a 200 nL/min flow rate. The Q Exactive Plus was operated in a top 

10 data-dependent acquisition mode with a dynamic exclusion window of 30 seconds and 

collected scans in the m/z range of 300–1650. MS1 scans were acquired with a resolution of 

70,000 and fragment scans were recorded with a resolution of 17,500.

For all datasets, files in .ms2 format19 were generated from the Thermo RAW file vendor 

format using Proteowizard version 3.0.20

ISB18—The ISB18 data was generated from a mixture of 18 known proteins.21 This 

dataset was downloaded from the website of the Institute for Systems Biology (https://

regis-web.systemsbiology.net/PublicDatasets/). Specifically, we used runs 2–11, which were 

generated from mixture 7 of the ISB18 mixture and collected by a Thermo Scientific 

Orbitrap instrument.

2.5 Database search

For each database search, two protein databases were employed, one designated “relevant” 

and one “irrelevant” (Table 4). The databases for the castor plant (which contains the 

ricin protein), yeast strain ATCC 204508, and human were downloaded from Uniprot 

(https://www.uniprot.org/) in March 2018, May 2019, and January 2019, respectively. 

Protein sequences for the UPS1 proteins were downloaded from the Sigma Aldrich 

website (https://www.sigmaaldrich.com) in December 2018. The UPS1 and yeast sequences 

were concatenated into a single protein database. Each protein database was digested to 

peptides in silico using the tide-index tool in Crux version 3.2, allowing up to one missed 

cleavage, up to three methionine oxidations, and with clipped N-terminal methionines.22, 23 

For the UPS1/yeast database we considered UPS1 peptides to be relevant and yeast 

peptides irrelevant. For the ISB18 data we considered the ISB18 proteins and Haemophilus 
influenzae proteome to be relevant and the Nicotiana tabacum proteome to be irrelevant. 

For the castor plant database we considered the ricin protein relevant and all other castor 

proteins irrelevant. Finally, for the human database we considered a single randomly 

chosen detectable human protein as relevant and all other human proteins irrelevant. This 

process was repeated five times for the human database (Uniprot ID: P18206, Q9Y490, 

P07900, P08238, and P10809). For the UPS1/yeast and human database, peptides found in 

both relevant and irrelevant proteins were removed from the analysis. On the other hand, 
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castor plant peptides found in both relevant (ricin) and irrelevant (non-ricin) proteins were 

considered relevant. A different decoy database was generated for each run, yielding 54 

decoy castor plant databases, three decoy UPS1/yeast databases for the concatenated runs, 

10 ISB18 databases, 12 decoy UPS1/yeast databases for the previously published runs, and 

60 decoy human databases.

Database searches were conducted using Tide with the combined p-value score function24 

against a concatenated target-decoy database. The precursor mass tolerances, estimated by 

Param-Medic,25 were found to be 31 ppm for the concatenated UPS1/yeast runs, 80 ppm 

for the castor plant runs, 63 ppm for the previously published UPS1/yeast runs, and 38 

ppm for the human runs. The precursor mass tolerance was set to 50 ppm for the ISB18 

runs as there was not enough data to accurately estimate the precursor mass tolerance. All 

Tide parameters were set to their default values, except an isotope error of 1 was allowed 

and the “top-match” parameter (i.e., number of reported PSMs per spectrum) was set to 

10,000. In addition, the fragment tolerance (“–fragment-tolerance”) for the ISB18 data 

was set to 1.0005079. A post-processing script (Supplemental File 1) implemented each 

FDR estimation method. Once the list of PSMs was finalized, the Crux assign-confidence 

command was used to estimate FDR for all methods except for all-sub. Each PSM is 

assigned a q-value where the value is the minimum FDR at which the PSM is confidently 

detected. For all-sub, we created our own Python implementation of this method to estimate 

all-sub q-values (Supplemental File 2).

2.6 Evaluating the validity of FDR control methods

To gauge whether each of the considered methods properly controls the FDR we tested 

whether the empirical mean of the false discovery proportion (FDP) is significantly different 

than the FDR threshold. The idea is that since the FDR is defined as the expectation of the 

FDP, controlling the FDR at level α implies that the empirical mean of the FDP, averaged 

across multiple independent runs, should converge to a number ≤ α. In particular, that 

empirical mean should not exceed α in a statistically significant manner.

Here we computed the empirical mean of the FDP by randomly dividing our data into ten, 

roughly equal parts, and we used a heuristic explained below to reliably approximate the 

FDP in each of the ten runs and hence its mean over the same ten runs.

We then performed a one-sided t-test asking whether the observed mean of the FDP is 

significantly larger than α. If the answer was positive then we had a reason to doubt 

the validity of the proposed FDR-controlling method. By the same token, an insignificant 

deviation does not prove the validity of the method, but it does lend some confidence in it.

To simulate multiple independent runs we randomly split a UPS1 and yeast run into 10 equal 

parts. After splitting, each UPS1 part was matched to a yeast part to create 10 sub-runs. Each 

of these sub-runs was used as input to a database search, as previously described, with each 

database search using a different decoy database.
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Following the database search, and designating UPS1 peptides as relevant and yeast peptides 

as irrelevant, we applied to the resulting set of PSMs the selection procedures of subset­

search, all-sub, group-FDR, and SNS at a 5% FDR threshold.

The FDP in the FDR controlled set of PSMs was estimated by dividing the number of 

demonstrably incorrect PSMs (i.e., the number of times a yeast spectrum matched to a UPS1 

peptide—additional detail can be found below) by the total number of discoveries. The FDP 

values from the ten sub-runs were used as input to the one-sided t-test. This process was 

repeated for the other two UPS1/yeast runs, yielding 30 sub-runs and three p-values.

3 Results

3.1 All-sub can fail to control FDR when the subset of interest is small

First we investigated whether subset-search, all-sub, and group-FDR each properly control 

FDR when the subset of interest is small. Note that we only test three methods because 

search-then-select has been previously shown to improperly control the FDR.5-8

To test these methods, we first estimated the FDP within an FDR-controlled set of PSMs. 

To do so, we computationally mixed together an irrelevant yeast run with a relevant UPS1 

run. As a result, any yeast spectrum that is matched with a UPS1 peptide is demonstrably 

incorrect. This allows us to give a lower bound on the FDP. It should be noted that in this 

real data we do not precisely know the FDP; however, we designed our experiment so that 

in practice we believe our lower bound (i.e., estimated FDP) is fairly close to the actual, 

unknown one. Specifically, due to the large difference in size between the irrelevant yeast 

and relevant UPS1 database, we expect most incorrect PSMs that occur by chance would 

involve yeast peptides. After the FDP has been estimated, we performed a t-test to determine 

whether the mean of the FDP is significantly larger than the FDR threshold α. A mean 

FDP that is significantly larger than the FDR indicates that the corresponding FDR control 

method is probably invalid.

Our analysis suggests that all-sub fails to properly control the FDR (Table 5). Using the all­

sub method, we calculated p-values of 0.0012944, 0.0008953, and 0.0024908 for the three 

different concatenated UPS1/yeast datasets. These p-values suggest that all-sub improperly 

controls the FDR because they are smaller than the Bonferroni corrected threshold of 0.004, 

where the uncorrected p-value threshold is 0.05 and n = 12.

Note that the above argument cannot be used against the remaining methods as their 

corresponding p-values are all above the Bonferroni corrected threshold. This of course does 

not prove that these three methods correctly control the FDR; however, in the absence of 

neighbors one can argue that all three of these methods satisfy the conditions that guarantee 

FDR control by TDC.26 Specifically, when we use TDC to control the FDR we make two 

implicit assumptions. The first is that each incorrect PSM is equally likely to be a target win 

or a decoy win, and the second is that this occurs independently of all other incorrect PSMs, 

as well as of the score of the PSM. The justification of the first assumption is that, in the 

absence of neighbors, for an incorrect match the target database looks essentially the same 

as the randomly generated (or reversed) decoy database. The second assumption is believed 
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to hold thanks to the dynamic exclusion mechanism. Moreover, as long as no spectra were 

generated by neighbors, the same rationale would apply if, when doing the FDR analysis, we 

focus only on a subset of the database as in group-FDR, SNS and subset-search. In practice 

of course spectra due to neighbors can be present in the dataset, and while group-FDR and 

SNS implicitly or explicitly account for those, subset-search does not, leading us to the next 

section.

3.2 Subset-search can fail to control the FDR in the presence of neighbors

Although our previous analysis indicates that subset-search properly handles a small subset 

of interest, we found that the method can struggle to control the FDR in the presence of 

neighbor peptides. The issue is that, since subset-search does not search the spectra against 

the irrelevant peptides, a spectrum generated by an irrelevant neighbor peptide will likely 

receive a high score against the corresponding relevant peptide. Considering all high scoring 

incorrect PSMs that are due to the presence of irrelevant neighbor peptides in the database, 

it is clear that these PSMs are more likely to be target wins (the spectra matching the 

closely resembling relevant peptide) than decoy wins (an unrelated random peptide). Hence, 

our assumption that each incorrect PSM is equally likely to be a target or a decoy win is 

violated. As a result, these incorrect target PSMs are more likely to be accepted as correct 

PSMs by target-decoy competition.

To give a concrete example, consider the theoretical MS2 spectrum of relevant ricin peptide 

“VGLPINQR” and irrelevant castor plant peptide “RIPLANGR” (Figure 2). These two 

peptides have a mass difference of approximately 12 ppm and have 69.56% of MS2 peaks 

in common. The PSM between the experimental scan (top row Figure 2) and the relevant 

peptide yields a combined p-value score of 1.25 × 10−4, which is larger (i.e., worse) than 

the combined p-value score, 1.13 × 10−4, of the PSM between the scan and the neighbor 

peptide. Hence, if the target database does not contain the neighbor peptides, then the 

database search would match this experimental scan with the relevant peptide even though it 

has an even better match with a neighbor peptide.

To test our hypothesis that subset-search may be problematic in the presence of peptide 

neighbors, we investigated the confident set of PSMs, in each run, identified by subset­

search at 1% FDR. For each such scan we asked whether that scan would have scored more 

highly if neighbor peptides had been present in the database. We repeated this process for 

each of the 54 different castor seed runs. We discovered that anywhere from 5 to 78 scans, 

in each set of confidently detected PSMs, switched their best scoring target from a relevant 

peptide to a neighbor peptide (Figure 3A). These scans comprise anywhere from 4.1% to 

15.5% of the number of confidently identified scans (Figure 3B). Since the proportion of 

incorrect PSMs, due to lack of neighbor peptides in the database, is much larger than the 

FDR threshold of 1% FDR, this experiment suggests that indeed subset fails to control the 

FDR in this scenario.

3.3 SNS accounts for neighbor peptides and offers more power than group-FDR

Our analysis so far suggests that, among existing methods, group-FDR is the only method 

that appears to control the FDR when the relevant database is much smaller than the 
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irrelevant database. However, group-FDR can suffer from low statistical power due to a 

high multiple testing hypothesis burden. This is because, in group-FDR, relevant spectra are 

searched against the entire database, which includes a large set of irrelevant peptides.10

For example, consider the ricin dataset. Looking at the difference in the median number 

of PSMs detected by subset-search and group-FDR at various FDR thresholds between 

0–10% suggests that subset-search outperforms group-FDR across the entire q-value range 

of 0-10% (Figure 4). (We chose to use the median instead of the mean because we expect 

a different concentration of the relevant protein in each run, thereby changing the expected 

number of relevant PSMs.) This observation motivated us to develop a new FDR control 

method that would share much of the power advantage of subset-search while explicitly 

accounting for neighbors while aiming to control the FDR. Our method, called “subset­

neighbor search” (SNS), is similar to group-FDR except that irrelevant, non-neighbor 

peptides are excluded from the database. Thus, the non-relevant portion of the SNS database 

contains only the neighbor peptides, whereas in the case of group-FDR it includes neighbor 

and irrelevant peptides. We hypothesized that SNS should, in general, offer more discoveries 

than group-FDR because spectra are not searched against irrelevant peptides, resulting in a 

lower multiple testing hypothesis burden.

To test this in practice, we compared the performance of SNS and group-FDR on three 

different datasets: ricin, non-concatenated yeast/UPS1, and human. These three datasets 

provide several examples of cases where the relevant portion of the database is a tiny portion 

of the overall database. The ricin example provides a real world example of a situation 

where an investigator is interested in a tiny subset of the possible database (where the 

relevant subset is on the order of 10−5 the size of the overall database). We use the yeast/

UPS1 dataset as an example where the relevant portion is larger but still a small subset of 

the overall database (on the order of 10−3). Finally, we use the five iterations of the human 

database to show additional evidence (on the order of 10−4–10−5).

Empirically, we found that SNS indeed generally outperforms group-FDR across the 

three datasets (Figure 5). In the ricin dataset, SNS outperforms group-FDR across the 

entire FDR range of 0–10%. At a 1% FDR threshold, SNS outperforms group-FDR by 

a median difference of 36.5 PSMs (Figure 5A). Looking at percent differences, SNS 

outperforms group-FDR by a median percent difference of 22.5% (Figure 5C). Comparing 

the performance of SNS and group-FDR in the yeast/UPS1 dataset (Figure 5B and E), 

these two methods have comparable performance for small q-values (≤ 2.5%). However, 

for larger q-values (≥ 2.5%), SNS outperforms group-FDR. Specifically, looking at a 5% 

q-value threshold, SNS outperforms outperforms group-FDR by a median of 29 PSMs 

(4.3%). Finally, the five different iterations of the human dataset generally follow the trends 

previously described (Figure 5D and F). At low q-values, SNS and group-FDR have similar 

power. Specifically at 1% FDR, SNS and group-FDR have similar performance in four 

out of the five iterations. As the q-value threshold increases, SNS steadily outperforms 

group-FDR. At a 5% q-value threshold SNS improves upon group-FDR by 3.5 (4.5%), 9.5 

(5.8%), 8 (11.73%), 4 (4.7%), and 25 PSMs (17.5%).
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3.4 An entrapment study provides evidence of SNS controlling the FDR in the presence 
of neighbors

To provide experimental evidence to support our intuitive argument that SNS controls 

the FDR in the presence of neighbors, we modified a previously proposed “entrapment” 

protocol.27 In this type of analysis, spectra are generated from a small number of known 

proteins and then searched against a database containing the known proteins augmented with 

a large number of additional sequences, typically the proteome of an unrelated species.

In our setting, we have the added distinction between relevant and irrelevant peptides. 

As a result, the database is augmented with two sets of sequences. The first set contains 

relevant entrapment sequences while the second set contains irrelevant peptides. During the 

construction of the database, we ensured that neighbor peptides exist between the sample 

sequences and the entrapment sequences as well as the sample sequences and irrelevant 

sequences. Because the sample composition is known, spectra that match to entrapment 

sequences are incorrect. At the same time, all matches to the small number of generating 

peptides are deemed to be correct. In this way, the empirical FDP of a set of PSMs can be 

compared to the FDR threshold.

Here we searched spectra generated from ISB18 peptides against a database that contained 

sequences from the ISB18, H. influenzae, and N. tabacum proteomes. We considered ISB18 

and H. influenzae peptides to be relevant, and we considered N. tabacum to be irrelevant. 

The database contains 1760 ISB18 peptides, 119,276 entrapment (H. influenzae) peptides, 

and 4,108,414 irrelevant (N. tabacum) peptides. The set of entrapment sequences contained 

1,136 neighbor peptides with respect to the ISB18 peptides, and the irrelevant sequences 

contained 29,422 neighbor peptides with respect to the ISB18 peptides. After the database 

search we estimated the FDR, at various thresholds from 0–10%, using the SNS procedure. 

The FDP in the FDR controlled set of PSMs was calculated by dividing the number of H. 
influenzae PSMs by the total number of discoveries. This process was conducted for each of 

the 10 runs found in the ISB18 dataset.

We discovered that the mean of the 10 FDPs was largely smaller than the q-value threshold 

(Figure 6). Specifically, the average empirical FDP was smaller than the q-value threshold 

for almost the entire plotted range from 0–10%. The only exception was for very small q­

values (< 0.7%), where the average FDP occasionally deviated above the q-value threshold. 

We note that even when the average FDP was larger than the q-value threshold, the deviation 

was smaller than one standard error above the q-value and hence consistent with random 

fluctuations. Specifically, SNS controls the FDR (i.e., the expectation of the FDP), not the 

FDP, hence it is expected that some runs will have a FDP greater than the q-value threshold. 

Overall, this result suggests that SNS is able to control the FDR in the presence of neighbor 

peptides.

4 Discussion

In this paper we focused on scenarios where scientists may only be interested in, say, a 

single protein, a single type of post-translational modification, a single pathway, or a single 

organism in a microbial community. It was previously recognized that in such settings, 
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variants of the standard TDC are needed to ensure proper FDR control, especially as the 

common approach of search-then-select fails to control the FDR.

Our analysis suggests that all-sub also fails to properly control the FDR when the relevant 

subset of peptides is small. Although a small relevant set of peptides is not a problem for 

subset-search on its own, we show that it does become so when the dataset contains a 

significant number of spectra that were generated by neighbor peptides.

Conceptually, the most natural source of neighbor peptides is from homologous sequences 

within and between proteomes. However, neighbor peptides are a more insidious problem 

than homology because two peptides with seemingly very different sequences can have 

very similar MS2 spectra. For example, although the peptide sequences in Figure 2 look 

different from each other, they have remarkably similar precursor masses and theoretical 

fragmentation spectra. Thus, neighbor peptides are a potential problem even in the absence 

of homology. In light of this observation, we feel it is too risky to recommend using 

subset-search hoping that the neighbors pose an insignificant problem.

This reasoning leaves us with group-FDR as the only established tool that appears to control 

the FDR in our context. That said, group-FDR (like search-then-select and all-sub) sacrifices 

power by searching all the spectra, including the ones generated by the relevant subset of 

peptides, against a database that includes a large number of irrelevant peptides. This loss of 

power was the motivation for introducing subset-search to begin with, and so our novel SNS 

manages to avoid most of this power loss while addressing the neighbor problem.

The detrimental effect of neighbor peptides on FDR estimation was previously discussed 

in the context of modifications.28 Here we demonstrated and addressed this effect in the 

context of subset search. We believe that the existence of neighbor peptides is also likely 

to have a large effect on the results of multi-pass searches.29-32 In these procedures, spectra 

are searched against a series of peptide databases. Such a setup can be problematic because 

peptides present in different databases can be neighbors of each other. As a result, spectra 

could incorrectly match well with a peptide found in the initial database search when in fact 

the best match would be found in subsequent searches. Future work needs to be done to 

quantify and address the neighbor peptides effect in the context of multi-pass search.

In practical terms, although SNS was designed specifically to address the problem of 

neighbors in a subset search, there is no reason that it cannot be used more widely. Indeed, 

we believe that whenever one can compile a list of irrelevant neighbors, SNS can and should 

be used instead of TDC irrespective of the size of the relevant set. The only word of caution 

here is that, consistent with our previous recommendations,33 our analysis here relies on a 

calibrated score such as combined p-value.

Finally, our goal in this paper is not to try to change the standard the field has settled on over 

the last 15 years or so, namely, that of controlling the FDR using TDC. Rather, we aim to 

show that some previously published variants of TDC fail to control the FDR in this setup 

of searching a subset, and to offer more robust alternatives. Indeed, group-FDR and our new 

SNS rely on the same rationale that justifies using TDC to begin with, albeit restricted to 

a subset of the original database. This rationale can fail if some incorrect PSMs are more 
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likely to be target than decoy wins, which is precisely the scenario where subset-search fails: 

neighbor-generated spectra are more likely to yield a high-scoring match to a target than to 

a decoy PSM. Both group-FDR and SNS address this problem by implicitly, respectively 

explicitly, offering those neighbor-generated spectra even better matches — ones that are 

external to both the relevant target database and its decoy.

It is important to keep in mind that, especially when dealing with a small set of discoveries, 

controlling the FDR, as SNS and group-FDR aim to achieve, does not imply control of 

the FDP: the FDR is the expected value of the FDP so for any given sample the latter 

can be significantly higher than the selected FDR-controlling threshold (e.g.,34). Ideally we 

would like to control the FDP and there are some promising new developments in the theory 

and practice of controlling the FDP.35, 36 However, these new techniques are yet to reach 

the wider scientific community and we expect their introduction would face significant 

headwind because controlling the FDP inevitably leads to smaller sets of discoveries 

compared with controlling the FDR.
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Figure 1: Graphical overview of methods.
“Keep relevant” means that any PSM that involves a relevant peptide is kept while every 

other PSM is removed. “Keep irrelevant” means any PSM that involves an irrelevant peptide 

is kept while every other PSM is removed. Neighbor peptides are defined and explicitly 

considered separate from irrelevant peptides only in “subset-neighbor search” (SNS). The 

difference between C and E is the input into the “score + keep relevant” box. The input to 

E are neighbor and relevant peptides. The input to C are irrelevant peptides, which includes 

neighbor peptides, and relevant peptides.
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Figure 2: Example of a neighbor peptide
This figure plots an experimental spectrum with a precursor charge of two (top) along 

with the best scoring neighbor peptide (middle) and the best scoring relevant peptide 

(bottom). Peptide “VGLPINQR” is a relevant ricin peptide (Uniprot ID: B9T8T0) and 

peptide “RIPLANGR” is an irrelevant castor plant peptide (Uniprot ID: B9T289). The 

mass difference between the two peptides is approximately 12 ppm with the mass of 

“VGLPINQR” being 895.5239 Da and the mass of “RIPLANGR” being 895.5352 Da. 

These two peptides have ~70% of their MS2 peaks in common. Dotted lines connect MS2 

peaks in the same 0.05 Da bin. The combined p-value score (lower is better) between the 

experimental scan with the relevant peptide is 1.25 × 10−4, whereas the combined p-value 

score between the scan and the neighbor peptide is 1.13 × 10−4.
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Figure 3: Magnitude of the neighbor peptide problem
This plot shows how subset-search does not properly control the FDR in the presence of 

many neighbors. We took the set of confidently detected PSMs, as detected by subset-search 

at 1% FDR. From this set of confident PSMs we determined the number of scans that would 

have scored better to a neighbor peptide if that peptide had been present in the database. 

This process was repeated for 54 different castor runs. (A) Each point is the number of scans 

in a run that would have matched to a neighbor peptide if neighbor peptides were searched 

as a function of the number of confident PSMs. (B) A histogram of the values from (A), 

where the x-axis is divided by the y-axis to obtain the proportion of scans that switch to 

neighbors. Note there are only 44 points because 10 runs had zero confident PSMs at 1% 

FDR.
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Figure 4: Comparison of subset-search and group-FDR.
This figure compares the performance of subset-search against group-FDR in the ricin 

dataset with respect to (A) the number of PSMs and (B) the proportional increase in number 

of PSMs. For each mass spectrometry run, we determine the difference in the number of 

PSMs detected between subset-search and group-FDR at various FDR thresholds. After 

collating these values across all runs, we plot the median value and 5/95 percentiles over 

54 runs. The vertical dashed line is at the conventional 1% FDR threshold. Note that the 

plotted values in B are undefined for some q-values near 0 where neither subset-search nor 

group-FDR detects any PSMs.
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Figure 5: Comparison of SNS and group-FDR.
This plot compares the relative performance of SNS against group-FDR for the ricin (A 

and D), UPS1/yeast (B and E), and human dataset (C and F). For each mass spectrometry 

run, we determine the difference in the number of PSMs (A–C) detected between SNS 

and group-FDR at various q-value thresholds. In addition, we calculate the corresponding 

proportional increase (D–F). For F, we assigned a value of 0.5 when SNS detects any 

number of PSMs while group-FDR detects 0 PSMs and −0.5 when group FDR-detects any 

number of PSMs while SNS detects 0 PSMs. The vertical dashed line is at the conventional 

1% FDR threshold. Note the plotted values in D–F are undefined for some q-values near 0, 

where neither SNS nor group-FDR detects any PSMs. For the human data (C and F), we 

only plot the median lines, where each line represents a different relevant protein.
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Figure 6: Entrapment analysis of ISB18 data.
This figure plots the empirical FDP, over 10 runs, as a function of the q-value. This figure 

shows that the mean FDP is generally below the q-value threshold. The dashed black line is 

the y = x line.
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Table 1:
Summary of methods.

We represent irrelevant peptides with an ‘I’, neighbor peptides with an ‘N’, and relevant peptides with an ‘R’. 

If a database consists of multiple groups of peptides, then a ‘+’ is used. Therefore, a database consisting of 

both relevant and neighbor peptides would be represented as ‘R+N’. Group-FDR is with respect to R for the 

“Database to Search” step.

search-then-select subset-search all-sub group-FDR SNS

Consider neighbor peptides? ✓

Database to search R+I+N R R+I+N R+I+N R+N

Apply group-FDR? variation ✓ ✓
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Table 2:
Variables and their definitions.

Note that there is no overlap between the relevant and irrelevant peptides. Thus, T = Tr ∪ Ti and Tr ∩ Ti = ∅. 

In addition, if neighbor peptides are not defined, then they are considered to be irrelevant. However, if 

neighbor peptides are defined, then they are considered distinct from irrelevant peptides.

Variable Definition

S set of all observed spectra

T target database of all peptides

D decoy database of all peptides

Tr target database of relevant peptides

Dr decoy database of relevant peptides

Ti target database of irrelevant peptides

Di decoy database of irrelevant peptides

Tn target database of neighbor peptides

Dn decoy database of neighbor peptides

α user defined FDR threshold

α′ user defined filtering FDR threshold

T(s) number of target PSMs with score better than s

D(s) number of decoy PSMs with score better than s

Tr(s) number of relevant target PSMs with score better than s

D(−∞) total number of decoy PSMs

Tr(−∞) total number of relevant target PSMs

Dr(−∞) total number of relevant decoy PSMs

P set of peptides that result from a database search

M set of scores that result from a database search

R set of accepted PSMs

pi a peptide

mi precursor mass associated with peptide pi

Bi number of b- and y-ions associated with peptide pi

Bi,j number of shared b- and y-ions between peptides pi and pj

tm mass tolerance to define neighbor peptides

ti shared ion fraction tolerance to define neighbor peptides

J Proteome Res. Author manuscript; available in PMC 2022 August 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lin et al. Page 28

Table 3:
UPS1 and yeast data.

The table list the number of scans found in each UPS1 and yeast run. In the database search, the relevant 

file on the left was concatenated to the irrelevant file on the right. Note that all file names start with 

“UWPRLumos_20190515_DP_DDA_”.

relevant file scans irrelevant file scans

UPS_1_22.ms2 10552 yeast_1_45.ms2 71631

UPS_2_23.ms2 10178 yeast_2_46.ms2 71611

UPS_3_24.ms2 9794 yeast_3_47.ms2 71931
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Table 4:
Databases used in database searches.

For the UPS1/yeast database, ISB18 database, and the five iterations of the human database, peptides in 

common between the relevant and irrelevant database were removed from analysis. Any relevant ricin peptide 

also found in the non-ricin castor plant proteome was considered to be relevant. The number of irrelevant 

peptides includes the set of neighbor peptides. The peptide counts above are for the target databases, but by 

construction these counts are nearly identical in the corresponding decoy databases.

relevant database peptides irrelevant database peptides # neighbor peptides

UPS1 2,552 yeast 611,861 3,459

ricin 80 non-ricin castor plant 2,340,370 155

ISB18 + H. influenzae 120,379 N. tabacum 4,108,414 768,373

human protein P18206 364 all other human proteins 2,653,948 1,863

human protein Q9Y490 506 all other human proteins 2,653,757 2,418

human protein P07900 102 all other human proteins 2,654,127 358

human protein P08238 90 all other human proteins 2,654,130 182

human protein P10809 136 all other human proteins 2,654,122 521
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Table 5:
Assessing FDR control.

Each p-value comes from a single t-test measuring whether the mean of the estimated FDP over the 10 sub­

runs is significantly larger than the selected 5% FDR threshold. Each column uses a different computationally 

concatenated UPS1 and yeast run, and each row refers to a different FDR estimation procedure. Boldface 

values are significant at a Bonferroni corrected threshold of 0.004 (0.05/12). The analysis suggests that all-sub 

fails to control FDR.

FDR control method p-value 1 p-value 2 p-value 3

subset-search 0.25695 0.02642 0.20952

all-sub 0.0012944 0.0008953 0.0024908

group-FDR 0.05458 0.04435 0.05003

subset-neighbor search 0.59906 0.04705 0.56590
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