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We utilized the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) in vivo to understand
how the interaction of the glucocorticoid receptor (GR) with a nucleosome-assembled promoter allows access
of factors required for the transition from a repressed promoter to a derepressed, transcriptionally competent
promoter. A mutation (C644G) in the ligand binding domain (LBD) of the mouse GR has provided information
regarding the steps required in the derepression/activation process and in the functional significance of the two
major transcriptional activation domains, AF1 and AF2. The mutant GR activates transcription from a
transiently transfected promoter that has a disordered nucleosomal structure, though significantly less well
than the wild-type GR. With an integrated, replicated promoter, which is assembled in an ordered nucleosomal
array, the mutant GR does not activate transcription, and it fails to induce chromatin remodeling of the MMTV
LTR promoter, as indicated by nuclease accessibility assays. Together, these findings support a two-step model
for the transition of a nucleosome-assembled, repressed promoter to its transcriptionally active, derepressed
form. In addition, we find that the C-terminal GR mutation is dominant over the transcription activation
function of the N-terminal GR activation domain. These findings suggest that the primary activation function
of the C-terminal activation domain is different from the function of the N-terminal activation domain and that
it is required for derepression of the chromatin-repressed MMTV promoter.

Two questions are central to understanding how the initia-
tion of transcription is regulated. The first is how proteins
associated with the transcription initiation complex gain access
to promoters assembled in complex nucleoprotein structures
termed chromatin. The second is, what interactions among
those proteins and promoter-specific transcription factors are
necessary to coordinate the multiple functions needed to ini-
tiate gene activation. The regulatory role of chromatin remod-
eling in gene regulation is clear, but the mechanisms that are
relevant in vivo are not (40, 58, 67).

Chromatin derepression and subsequent transcription initi-
ation can be functionally separated, but how a transcriptional
activator, such as the glucocorticoid receptor (GR), mediates
these activities remains an open question. For the GR to ac-
tivate transcription in vivo from the mouse mammary tumor
virus (MMTV) long terminal repeat (LTR), the repressive
effects of the chromatin, in which glucocorticoid response el-
ements (GREs) are found, must be overcome (3, 61, 62, 80).
The GR has thus provided a useful model to uncover mecha-
nisms underlying chromatin-regulated gene expression. On the
MMTV LTR, GR binding induces an open chromatin confor-
mation that allows access of proteins to the promoter (13, 43).
Direct or indirect protein interactions must then be made to
bring the GR activation domain(s) and associated proteins into
proximity with the basal transcription complex to effect tran-
scription initiation.

A bimodal, or two-step, mechanism for transcriptional acti-
vation has been described for chromatin-assembled promoters

including the MMTV LTR (5), the Pho5 activator (68), Cha1
in yeast (51), and the myogenin promoter (27), among others.
In this model, the first step is chromatin remodeling, which
allows subsequent protein-protein interactions necessary to
bring enhancer-bound factors into contact with the basal tran-
scription complex at the TATA box. Archer et al. (5) showed
that GR-mediated transactivation on the MMTV LTR is bi-
modal, when they found that the transcription factor NF-1 is
unable to bind to a closed or chromatin-assembled MMTV
LTR, but that it binds constitutively to an MMTV LTR in an
open chromatin conformation. Additionally, they found that
even when NF-1 is constitutively bound to the open MMTV
LTR, transcription is initiated only after the GR is activated by
the addition of hormone. Thus, when the MMTV LTR is
found in a closed (repressed) chromatin conformation, the first
step in activation is hormone-dependent chromatin remodel-
ing, mediated by the GR. After the chromatin is opened, or
derepressed, and accessible to factors such as NF-1, there must
be a second step in which contacts are presumably made be-
tween GR and/or GR-associated proteins and the basal tran-
scription machinery to allow transcriptional initiation. This
indicates that two functionally different activities are required
for an activated initiation complex. How a transcriptional ac-
tivator mediates these two mechanistically different functions
has not been elucidated.

The GR is a member of the steroid nuclear receptor family
that includes the progesterone, androgen, mineralocorticoid,
and estrogen receptors, which in turn are part of the super-
family of nuclear receptors with the thyroid hormone receptor,
the retinoic acid receptor, the vitamin D receptor, and orphan
receptors (70). Nuclear receptors share homologies in their
domain structure that include two transcription activation do-
mains (AF1 and AF2), a DNA binding domain, and a ligand
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binding domain (LBD) (Fig. 1A) (17, 28, 36, 45). Steroid
receptors have a third activation domain designated tau2 (GR)
or AF2a (estrogen receptor) at the N-terminal end of the LBD
(49, 53).

The AF1 transactivation domain is located in the N-terminal
region of GR and has been shown by mutational analysis to
contain critical residues for GR-mediated transcriptional acti-
vation (reference 1 and references therein; 35, 48). The AF2
domain is located in the C terminus of GR and is contained
within the LBD. In contrast to the ligand-independent trans-
activation mediated by the AF1 domain, transactivation by the
AF2 domain is ligand dependent (31, 74). The liganded and
unliganded crystal structures of the LBD of a number of other
members of the nuclear receptor superfamily, but not GR,
have been resolved, and the structure among the different
receptors is highly conserved (for reviews, see references 50
and 78). There is a correlation between residues in the LBD/
AF2 domain that disrupt transactivation when mutagenized
and those that undergo a conformational change upon ligand
binding. These data support the idea that conformational
changes induced by ligand binding are involved in the gener-
ation of a transcriptionally active conformation of the AF2
domain (8, 60, 63, 69, 73, 75).

We show that the mouse GR, with a point mutation at

cysteine 644 in the LBD, can activate transcription in vivo from
a transiently transfected MMTV-luciferase reporter that does
not have an ordered nucleosomal array, but not as effectively as
the wild-type GR (wtGR). The mutant GR cannot activate
transcription from a stably replicating reporter assembled in an
ordered nucleosomal array and exhibits dominant negative
repression on transcriptional activation mediated by the wtGR.
The repression is the result of a closed (repressed) chromatin
conformation, as indicated by a decrease in accessibility of a
DNA hypersensitive site on the inactive promoter. Because
this GR, with a single mutation, is functionally impaired in
both chromatin remodeling and transcriptional initiation, the
data provide a functional link between these two mechanisti-
cally separate events. We also find that the C-terminal GR
mutation in the LBD is dominant over the transcription acti-
vation function of the N-terminal GR activation domain. This
result suggests that the primary activation function of the C-
terminal activation domain is different from the function of the
N-terminal activation domain.

MATERIALS AND METHODS

Cell lines and plasmids. The two cell lines used are designated 1471.1 and
3134. 1471.1 cells have been described previously (2, 10) and contain multiple
copies of the stably replicating MMTV-chloramphenicol acetyl transferase
(CAT) reporter. The 3134 cell line contains multiple copies of stably replicating
MMTV-Ras reporter. Both cell lines were derived from the mouse adenocarci-
noma line C127. Cells were maintained in Dulbecco modified Eagle medium
(DMEM) with 10% fetal calf serum. The medium was replaced with DMEM
with 10% 23 charcoal-stripped calf serum 18 to 24 h prior to transfection.

The mutant C644G was made by site-directed mutagenesis (41) of the mouse
GR in plasmid pSV2wRec (17) as specified by the manufacturer (TaKaRa
Biochemical). The oligonucleotide used for mutagenesis was 1916GAATGACT
CTACCCGGCATGTATGACCAA1944. The mutagenized base is in boldface,
and numbers indicate base numbers. The mutant GR, C644G, was amplified by
PCR with a 59 KpnI restriction site and a 39 SmaI site and subcloned into the
KpnI/SmaI-cut vector, pCI-nH6HA. pCI-nH6HA was derived from the Promega
pCI plasmid as described previously (64). Plasmid pCI-nH6HA-C644G was fully
sequenced from the 59 to 39 junctions of the GR and the vector plasmid. pCI-
nH6HA-Mouse wtGR was made by replacing the EheI/NsiI fragment that con-
tains the C644G mutation with the wild-type fragment. Other plasmids used have
been described previously; they are pLTRluc (full-length MMTV LTR driving
the luciferase gene) (46), pCMVIL2R (cytomegalovirus promoter driving the
interleukin-2 receptor [IL-2R] gene) (29), and pCI-nH6HA-C656G (the rat GR
with the homologous mutation to C644G at C656G) (64) (Fig. 1A).

The mouse and rat GR chimeric plasmids were made by cutting pCI-nH6HA-
C644G with KpnI, ApaI, and NotI and pCI-nH6HA-C656G with PvuII, ApaI, and
NotI. The common ApaI site in proline 319 in the rat GR and proline 307 in the
mouse GR was used to ligate the N-terminal and C-terminal fragments. The
mouse-rat chimera was made with the pCI-nH6HA-C644G vector cut at KpnI/
NotI and ligated to the mouse KpnI/ApaI and rat ApaI/NotI fragments. The
rat-mouse chimera was made with the pCI-nH6HA-C656G vector cut with PvuII/
NotI ligated to the PvuII/ApaI rat fragment and the ApaI/NotI mouse fragment.

Transfections and MACS. Cells were transfected with 5 mg of pCMVIL2
receptor plasmid, 10 mg of pLTRluc, and from 0 to 15 mg of pCI-nH6HA-C644G,
pCI-nH6HA-C656G, or pCI-nH6HA Mouse wtGR plasmid DNA by electropo-
ration with a BTX600 electroporator (BTX, Inc., San Diego, Calif.). Briefly, cells
were trypsinized from flasks, rinsed in phosphate-buffered saline (PBS), resus-
pended at 2 3 107 cells in 300 ml of Dulbecco’s PBS, and chilled for 5 to 15 min
on ice. Electroporation was at 960-mF capacitance, 129-ohm resistance, and 240
to 280 V in chilled cuvettes. After electroporation, cells were plated in DMEM
with 1 to 10% 23 charcoal-stripped serum. After 15 to 20 h of recovery, cells
were treated and harvested. Magnetic affinity cell sorting (MACS) (29) was used
to separate transfected from nontransfected cells. Goat anti-mouse immunoglob-
ulin G-coated magnetic beads (Dynal Inc., Lake Success, N.Y.) were incubated
overnight with IL-2R monoclonal antibody (Upstate Biotechnology, Lake Placid,
N.Y.). Beads were rinsed and diluted in medium S (4 mM EGTA, chondroitin
sulfate [100 mg/ml], 0.1% gelatin, 10 mM HEPES [pH 8.0], 1 mM MgCl2, 1 mM
MgSO4, nonfat dry milk [8 mg/ml], bovine serum albumin and [100 mg/ml] in
PBS without Ca21 or Mg21 at a ratio of 15 ml of beads at 50 mg/ml to 1 ml of
medium S. Cells were incubated for 15 min at 37°C with the IL-2R-coated beads
in medium S and then placed between magnetic plates to separate those express-
ing IL-2R from those that were not. Sorted cells were resuspended in 0.25 M Tris
(pH 7.5), lysed by three cycles of freeze-thaw, and assayed for CAT or luciferase
activity.

CAT, luciferase, and protein analysis. Cell lysates were analyzed for CAT
activity by the thin-layer chromatography method (32). Five micrograms of total

FIG. 1. (A) Domain structure of steroid nuclear receptors. The hatched box
represents the amino-terminal activation domain (AF1), and the darker hatched
box represents the core activation domain. The checked box indicates the DNA
binding domain (DBD), and the shaded box represents the carboxy-terminal
LBD. The asterisk indicates the approximate location of the C644G mutation.
The two regions in the C-terminal domain that have transcription activation
potential are indicated by t2 and tC or AF2. Numbers indicate amino acid
numbers in the mouse GR. The amino acid sequence surrounding the C644G
mutation is also shown in comparison with the homologous sequence in the rat
GR. Some of the residues that differ in the two sequences are in boldface. H6 and
H7 represent the predicted boundaries of those a helices in the LBD based on
crystal structures of other members of the nuclear receptor family. (B) Hormone
titration curve of C644G versus wtGR. Cos-7 cells were transfected with 5 mg of
either pCI-nH6HA-C644G or pCI-nH6HA-wtGR. Approximately 16 h following
transfection, the cells were treated with the indicated amount of Dex for 6 h.
Cells were harvested and assayed for luciferase activity. The number of receptors
per cell was calculated by whole-cell binding of [3H]TA (see Materials and
Methods). There were threefold more C644G receptors per cell than wtGRs.
The data have been normalized for this difference. Note the break in the vertical
scale where lower values are expanded relative to upper values.
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protein was assayed for 30 min at 37°C with [14C]chloramphenicol. Visualization
of the acetylated products was done with a Molecular Dynamics PhosphorImager
and the ImageQuant analysis program. Luciferase assays were carried out as
previously described (46), using a Berthold Microlumat LB 96V luminometer.
The reaction mix was 20 mM glycyl glycine (pH 7.5)–12 mM MgSO4–4 mM
ATP–0.2 mM luciferin. Protein analysis was done by the Bradford method with
reagent from Bio-Rad.

Nuclease hypersensitivity assays. Nuclei were isolated from magnetically
sorted cells, and 100 mg of nuclei was subjected to nuclease digestion with SacI
(10 U/mg) in 50 mM NaCl–50 mM Tris (pH 8.0)–1 mM MgCl2–1 mM b-mer-
captoethanol–2.5% glycerol for 15 min at 30°C. The reaction was terminated,
and genomic DNA was extracted in 5 volumes of 10 mM Tris (pH 7.5)–10 mM
EDTA–0.5% sodium dodecyl sulfate (SDS)–proteinase K (100 mg/ml) overnight
at 37°C. DNA was purified by phenol-chloroform-isoamyl alcohol extraction and
digested to completion with DpnII at 5 U of DNA/mg. Linear amplification of the
digested fragments was carried out by PCR primer extension with a 32P-end-
labeled primer to MMTV bases 11 to 127 to allow visualization of the SacI and
DpnII fragments (see Fig. 5A) that were electrophoretically separated on 8%
denaturing polyacrylamide gels. Hormone-induced SacI cleavage was calculated
as the amount of cleavage in the SacI band divided by the total cleavage in both
DpnII and SacI bands. PhosphorImager analysis was quantified by ImageQuant
(Molecular Dynamics).

Electrophoretic mobility shift assays (EMSAs). 1471.1 cells were transfected
with 5 mg of C644G DNA and 5 mg of IL-2R DNA as described above. Following
recovery in DMEM–1% 23 charcoal-stripped calf serum, cells were treated with
1 nM dexamethasone (Dex) for 30 to 40 min and then sorted by MACS into
transfected and nontransfected populations. Nuclear extracts were prepared
from the transfected and the nontransfected cells. Miniextracts were made by the
method of Lee et al. (44), in which cells are lysed in buffer A (10 mM HEPES
[pH 7.9], 1.5 mM MgCl2, 10 mM KCl, 0.5 mM dithiothreitol [DTT]). Nuclei were
isolated and extracted in buffer C (20 mM HEPES [pH 7.9], 25% glycerol, 0.42
M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.5 mM phenylmethylsulfonyl fluoride
0.5 mM DTT). Dialysis was against buffer D (20 mM HEPES [pH 7.9], 20%
glycerol, 0.1 M KCl, 0.5 mM phenylmethylsulfonyl fluoride, 0.5 mM DTT, 5 mM
MgCl2), and extracts were flash frozen. Protein was measured by Bradford assay
(Bio-Rad).

The EMSA reaction mixture included 10 mg of nuclear extract incubated in
buffer D with 30 to 60 fmol of 32P-end-labeled probe, either wtGRE (59-GATC
CGGTacaATCtgtTCTA-39) (20) or mutant (59-GATCCGGTcacATCgtgTCTA-
39) (lowercase letters indicate mutagenized bases), and 0.2 mg of poly(dI-dC) z
poly(dI-dC) as nonspecific competitor in a 20-ml total reaction. A 30-min incu-
bation at room temperature was followed by separation of shifted bands on a 5%
acrylamide–0.53 Tris-borate-EDTA gel at 4°C. Gels were dried and analyzed by
PhosphorImager analysis (Molecular Dynamics).

S1 nuclease analysis. 3134 cells were transfected by electroporation and sorted
as described above. Following treatment with hormone, cells were lysed in 0.2 M
Tris-HCl (pH 8.0)–140 mM NaCl–2 mM MgCl2–0.5% NP-40, and nuclei were
pelleted. Cellular supernatant was extracted in STE (0.2% SDS, 5 mM Tris [pH
8.5], 2 mM EDTA) and phenol-chloroform-isoamyl alcohol. Radiolabeled probe
was prepared by PCR primer extension from linearized pMTVbglobin or pT7-
Actin-F as described by Smith et al. (64). Ten micrograms of total RNA plus
labeled probe was hybridized at 42°C overnight. After treatment with 100 U of
S1 nuclease (Gibco/BRL) for 1 h at room temperature, products were separated
on an 8% denaturing polyacrylamide gel and visualized by PhosphorImager
analysis. Quantitation was by ImageQuant (Molecular Dynamics).

Whole-cell hormone binding assay. The average number of receptors per cell
was determined by using a whole-cell hormone binding assay (14). Transfected
cells were harvested and sorted by MACS, and a portion was counted; 1 3 104

to 4 3 104 cells were used in each assay. Cells were incubated with 50 nM
[3H]triamcinalone acetonide (TA) (specific activity, 44.3 Ci/mmol) alone or with
5 mM unlabeled TA in a volume of 275 ml of 25 mM HEPES (pH 7.15)–PBS for
30 min at 37°C. Cells were rinsed twice in PBS, lysed with 2% SDS, and counted
in Hydrofluor (National Diagnostics, Atlanta, Ga.). The average number of
receptors per cell was determined by calculating the number of molecules of
[3H]TA incorporated and dividing by the number of cells assayed. To calculate
the number of mutant receptors per cell, the number of receptors in untrans-
fected cells (endogenous receptors) was subtracted from the number of receptors
in the pCI-nH6HA-C644G-transfected cells.

Experiments for receptor-hormone binding data for Scatchard analysis and
nonlinear regression analysis were done essentially as described above (14)
except that cells were incubated with [3H]TA for 1 h at 37°C in 10% 23 stripped
serum–DMEM plus 25 mM HEPES (pH 7.15). Nonsaturable bound hormone
was measured after a parallel incubation with a saturating concentration of
unlabeled TA plus labeled TA. The nonsaturable value was subtracted from the
amount of bound TA at each concentration of [3H]TA measured. A range of
concentrations of hormone from 0.01, to 100 nM [3H]TA was used in each assay,
and the data were analyzed by a two-binding-site analysis because all cells used
in the analyses except EDR3 liver cells have some endogenous wild-type receptor
(12). Cells used for analysis were Cos-7, EDR3, and 1471.1 cells, all transfected
with either C644G DNA or wtGR in the same vector as the C644G mutant DNA.
Following incubation and initial spin of cells, 20 ml of supernatant was saved for
measurement of unbound hormone. All washes of cells were done immediately

following the 1-h incubation with room temperature PBS. After two successive
washes, the cells were lysed with 2% SDS and counted as described above.
Binding data were analyzed to determine Kd by the GraphPad Prism program
(San Diego, Calif.) using nonlinear regression analysis.

RESULTS

C644G binds hormone with higher affinity than the wtGR. A
point mutation was made in the LBD of the mouse GR that is
homologous to a mutation in the rat GR designated C656G,
described by Chakraborti et al. (9). (Fig. 1A). The mouse
mutation is at cysteine 644, and the change is to glycine
(C644G). The rat mutation increases steroid binding affinity to
the extent that the receptor can be activated by a .6-fold-
lower concentration of Dex than is required to activate the
wtGR. This allows transcriptional activation by the mutant to
be distinguished from activation by an endogenous wtGR when
introduced into cells in culture. To compare induction of
C644G to that of wtGR, we transfected either pCI-nH6HA-
C644G or pCI-nH6HA-Mouse wtGR into Cos-7 cells that have
a nonfunctional GR, along with the pLTRluc reporter plasmid,
a fusion of the MMTV LTR and the structural gene for lucif-
erase. We found that at 1 nM Dex, activation of C644G recep-
tors was maximal (Fig. 1B). In contrast, at 1 nM Dex, activation
of the mouse wtGR was only 15 to 20% of the maximum
reached at 100 nM Dex. This confirmed that with 1 nM Dex,
the mutant mouse GR can be maximally activated whereas the
wtGR is activated only to 15 to 20% of maximum.

To determine hormone binding affinity of C644G versus
wtGR, we did whole-cell hormone binding assays and deter-
mined Kds by nonlinear regression analysis on transfected
Cos-7, EDR3, and 1471.1 cells. Analysis of wtGR was also
done on untransfected 1471.1 cells. Cells were incubated with
[3H]TA for 1 h at 37°C. The calculated Kd for C644G is 0.68
nM 6 0.32 (standard deviation) (n 5 5), and that for endog-
enous wild-type receptor is 2.7 nM 6 0.61 (standard deviation)
(n 5 7). The independent experiments (n 5 5 and 7) included
data from analyses in all three cell lines. The fourfold differ-
ence in these values is in reasonable agreement with results of
Chakraborti et al. (9), taking into account that those analyses
were done with [3H]Dex rather than [3H]TA and were done by
cytosol assay rather than by whole-cell assay. They reported a
Kd of 0.55 nM 6 0.16 for the C656G rat mutant and 4.73 nM 6
2.04 for the rat wtGR.

Transactivation from a nonphased nucleosomal promoter
by C644G. To compare transcriptional activation by C644G
from a promoter assembled into a regularly phased nucleoso-
mal array to one with a disordered nucleosomal array, we used
the mouse adenocarcinoma-derived cell line 1471.1. The cells
have endogenous wtGR and stably maintain multiple copies of
the reporter MMTV-CAT, a fusion of the MMTV LTR and
the CAT gene. In these cells, the MMTV LTR driving the
CAT reporter is assembled in an ordered array of nonran-
domly positioned nucleosomes and is repressed, or closed, in
the absence of hormone (24, 61). When the GR is activated by
hormone, it binds to the GREs found in the B nucleosome of
the MMTV LTR (see Fig. 5A). A structural transition in the
chromatin allows access of Oct-1, NF-1, and basal transcription
factors to the promoter (13, 25, 43, 59). In contrast, the tran-
siently transfected template, pLTRluc, is nonreplicating, lacks
an ordered nucleosomal array, and has a constitutively open
conformation, as was shown by the binding of NF-1 and Oct-1
to their sites in the absence of hormone (5, 43). When the
hormone-activated GR binds to the pLTRluc reporter, no ob-
vious structural transition in the template occurs, but basal
transcription factors are recruited to the promoter, which re-
sults in transcriptional activation (5). Thus, activation of the
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two reporters can be compared in the same cell, to distinguish
between requirements for transcription that are part of the
chromatin remodeling process from those that are not.

The 1471.1 cells were transfected with pCI-nH6HA-C644G,
the pLTRluc reporter, and an IL-2R expression plasmid.
IL-2R is expressed on the surface of transfected cells, allowing
MACS of the cells with beads coated with anti-IL-2R antibody
(29). This method enabled us to isolate an enriched population
of cells expressing C644G and the transiently expressed pL-
TRluc reporter. At 12 to 16 h following transfection, the cells
were induced with 0, 1, or 100 nM Dex for 4 h. Cells were then
sorted, and the transfected cells were lysed and assayed for
luciferase and CAT activity. As shown in Fig. 2A, there was an
increase in reporter activity from the pLTRluc reporter with
both 1 nM (about 5-fold) and 100 nM (about 20-fold) Dex. At
1 nM Dex, C644G receptors are maximally activated and en-
dogenous wtGR is activated to 15 to 20% of maximum (Fig.
1B). This results in a four- to fivefold induction over Luc
activity when no mutant receptor is present (Fig. 2A; compare
1 nM at 0 mg of C644G with 2.5 mg of C644G). At 100 nM Dex,
both the wild-type and mutant receptors are maximally acti-
vated (Fig. 1B). C644G is able to activate transcription from
the disordered nucleosomal reporter, pLTR Luc, but less well
than the endogenous wtGR (Fig. 2A; compare 1 and 100 nM
Dex at any amount of C644G transfected).

C644G cannot activate transcription and is a dominant neg-
ative repressor of transcription by wtGR on a phased nucleo-
somal promoter. In striking contrast to the results for the
luciferase reporter, there was very little activation with 1 nM
Dex (Fig. 2B) with or without C644G DNA when we assayed
for CAT activity. The small amount of activation (less than
twofold) is probably due to the low activation of the endoge-
nous wtGR in these cells (Fig. 1B and 5B). In addition, at 100
nM Dex there was an 8- to 10-fold activation of CAT activity
when no C644G was present. As increasing amounts of C644G
DNA were added to the cells, we observed a decrease in
activation by the endogenous GR that had not been seen with
the luciferase reporter at 2.5 and 5 mg of transfected DNA
(compare Fig. 2A and B at 100 nM Dex). We do not detect the
dominant negative effect on CAT activity at 1 nM Dex. We
attribute this to the low levels of CAT activity from the 15 to
20% of maximum wtGR activity at 1 nM Dex and an insensi-
tivity of the assay at this low level of expression. We believe
that if the assay were more sensitive, we would be able to see
a dominant negative effect on the wtGR by C644G at 1 nM
Dex as we can in S1 analysis of reporter mRNA (Fig. 3) and in
nuclease hypersensitivity assays to be described (see Fig. 5B
and C).

S1 nuclease analysis of RNA from the stably integrated
MMTV-Ras reporter in 3134 cells. S1 nuclease analysis was

FIG. 2. (A) Titration of the C644G receptor. 1471.1 cells were transfected
with the indicated amount of C644G plasmid DNA along with 10 mg of pLTRluc
and 5 mg of pCMV-IL2R DNA. Twelve to sixteen hours posttransfection, the
cells were treated with 0, 1, or 100 nM Dex for 4 h. Cells were magnetically
sorted, and lysates were analyzed for luciferase and CAT activity. Data are
expressed as fold induction over basal activity at 0 nM Dex. At 1 nM Dex, only
C644G is more active than wtGR; at 100 nM Dex, both C644G and the endog-
enous GR are activated. Fold induction was calculated by dividing activity at
either 1 or 100 nM Dex by the activity in cells treated with vehicle (ethanol) only
(0 nM Dex). Error bars represent standard error of the mean with n 5 12 to 16.
(B) The lysates used for panel A were assayed for CAT activity; 5 mg of total
protein was used in the CAT assays, and reaction mixtures were incubated for 30
min at 37°C. Thin-layer chromatography was used to separate the acetylated
forms of chloramphenicol, and PhosphorImager analysis was used for quantita-
tion (ImageQuant; Molecular Dynamics). Fold induction is activity over basal
induction from cells treated with vehicle (ethanol) only.

FIG. 3. (A) S1 analysis of 3134 cells. An 8% denaturing polyacrylamide gel
was used to analyze mRNA in 3134 cells following treatment with Dex. Cells
were transfected with either 0 (vehicle), 2.5 (not shown), or 5 mg of C644G DNA
as indicated and treated with 0, 1, or 100 nM Dex as for Fig. 2. Two radiolabeled
probes were used for mRNA protection, MMTV-Ras (stably integrated re-
porter) and actin F (control). (B) Quantitation of the gel in panel A by Phos-
phorImager analysis and ImageQuant. The zero Dex value was used as the
baseline for each amount of C644G transfected. All values were normalized for
loading differences based on the actin band.
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done on a stably integrated MMTV-Ras reporter gene in 3134
cells. Cells were transfected with 0, 2.5, or 5 mg of C644G and
treated with 0, 1, or 100 nM Dex for 4 h. There is very little Ras
RNA present at either 0 or 1 nM Dex and about a 50%
decrease in RNA when C644G is expressed in the cells treated
with 100 nM Dex (compare 0 and 5 mg of C644G at 100 nM
Dex in Fig. 3A and B). These data demonstrate the same
dominant negative effect observed in 1471.1 cells (Fig. 2B).

Together, these data demonstrate the inability of C644G to
activate transcription from a chromatin-assembled promoter;
furthermore, when coexpressed with the endogenous wtGR, it
acts as a dominant negative repressor of transactivation from
the endogenous wtGR.

wtGR can complement the dominant negative effect of
C644G. Complementation of the dominant negative pheno-
type of C644G with the addition of wtGR demonstrates that
the phenotype is not due to squelching of basal transcription
factors that would result in a general decrease in transcription
(Fig. 4A). 1471.1 cells were transfected with C644G alone, the
mouse wtGR alone, or C644G and wtGR together. Cells were
treated with 0 or 100 nM Dex for 4 h and harvested, and CAT
activity was assayed. The dominant negative effect of C644G
inhibits CAT activity to about 50% of that seen when no
mutant is present (compare 0 and 2.5 mg of C644G). When 2.5
mg of C644G and 0.5 mg of wtGR DNA are cotransfected into

the cells, transcription of the CAT reporter gene is restored to
almost the same level as when only the endogenous GR or the
wtGR is present. In this experiment, the wtGR was introduced
into the cells on a plasmid as was C644G. The number of
receptors expressed when 0.5 mg of wtGR DNA was trans-
fected into the cells is approximately equal to the number of
endogenous receptors (Fig. 4B).

To determine how many receptors were expressed when
pCI-nH6HA-C644G DNA was transfected into 1471.1 cells,
cells were transfected and magnetically sorted, and whole-cell
hormone binding assays were done. Endogenous receptors
were measured in the unsorted cells (cells not bound to mag-
netic beads) in each experiment. As shown in Fig. 4B, the
number of endogenous receptors in the 1471.1 cells is approx-
imately 5 3 104/cell. This value was measured in all C644G
transfections shown. Receptor number shown is the number of
C644G receptors at each concentration of C644G DNA trans-
fected minus the endogenous receptor number. At 1 mg of
C644G DNA transfected, the average number of mutant re-
ceptors per cell is 105, at 2.5 mg the average number is about
1.5 3 105, and at 5 mg the average number is about 3 3 105.
Therefore, at 1 mg of C644G DNA transfected, there is a ratio
of 1:1.5 of endogenous to mutant receptor, at 2.5 mg there is a
1:3 ratio, and at 5 mg there is a 1:6 ratio. Parallel determina-
tions were done in 3134 cells, and the receptor expression
levels were the same as in 1471.1 cells. These data confirm that
C644G was being expressed in the cells and at levels greater
than endogenous GR. This suggests that there should be
enough mutant receptor available to activate the reporters
MMTV-Luc, MMTV-CAT, and MMTV-Ras.

C644G is unable to remodel chromatin. Our observation
that the C644G receptor can activate transcription from the
transiently expressed (pLTRluc) but not the nucleosome-as-
sembled (MMTV-CAT) template led us to investigate whether
C644G is defective in mediating chromatin access. An endo-
nuclease (SacI) cleavage site is present in the stably replicating
MMTV-CAT reporter within the cluster of the three GREs in
the B nucleosome region of the promoter (Fig. 5A). Access of
SacI to this cleavage site increases 10 to 20% upon addition of
Dex and is therefore an indicator of a GR-induced structural
transition in chromatin (25) at the MMTV LTR.

The cell line 3134 was transfected with increasing amounts
of C644G DNA and induced for 1 h with 0, 1, or 100 nM Dex.
One hour was chosen because in a time course of SacI cleavage
in Dex-induced cells, the amount of cleavage was optimal at 1 h
and decreased after that, even in the continued presence of
hormone (4). Like 1471.1 cells, 3134 cells are derived from
C127 mouse mammary adenocarcinoma cells but carry a stably
integrated MMTV-Ras reporter instead of MMTV-CAT. This
cell line was used because the magnitude of the change in SacI
cleavage is greater than in 1471.1 cells upon activation of
wtGR, and thus any modulations caused by the expression of
C644G would be more apparent (our data and reference 25).
SacI experiments were also done with 1471.1 cells, and the
results paralleled the results from the 3134 cells (data not
shown).

Maximum change in percent SacI cleavage between 0 and
100 nM Dex by the endogenous wtGR, when no C644G DNA
was present in the cells, was about 15% (Fig. 5B and C). The
15% value represents the increase in cleavage at 100 nM Dex
over basal cleavage at 0 nM Dex. This amount of cleavage by
the endogenous GR is consistent with results reported by Fra-
goso et al. (25), in which cell line 3134 was extensively char-
acterized for cleavage by various restriction enzymes with sites
in the hypersensitive region of MMTV-LTR. The change in
percent cleavage of the chromatin templates decreased at 100

FIG. 4. (A) Complementation of C644G by wtGR. 1471.1 cells were not
transfected (0) or transfected with 2.5 mg of pCI-nH6HA-C644G DNA (C644G)
alone or with 2.5 mg of C644G plus 0.5 mg of pCI-nH6HA-wtGR (WtGR) or 1
mg of wtGR alone, as indicated, as well as 5 mg pCMV-IL2R DNA. Cells were
treated with vehicle (ethanol) or 100 nM Dex for 4 h, magnetically sorted, lysed,
and assayed for CAT activity. Data are expressed as percent CAT activity above
or below the sample with endogenous GR alone (no transfected DNA) at 100
nM Dex (solid bar). Error bars represent standard errors of the means with three
to six points per treatment. (B) Whole-cell binding assays to determine the
number of receptors per cell. 1471.1 cells were transfected with the indicated
amount of pCI-nH6HA-C644G DNA and 5 mg of pCMV-IL2R DNA and al-
lowed to recover 16 to 20 h. Cells were harvested, sorted, and assayed as
described in Methods and Materials. In each whole-cell binding assay, the num-
ber of receptors in untransfected cells (endogenous receptors) was subtracted
from the number of receptors in the C644G-transfected cells. Error bars repre-
sent standard errors of the means (n 5 5 to 8).
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nM Dex as increasing amounts of C644G DNA were expressed
in the cells to about 9 and 7% when cells were transfected with
2.5 and 5 mg of C644G DNA (Fig. 5C). The changes in SacI
cleavage when C644G is expressed represent a 50% drop in
template accessibility compared to the amount of cleavage
when no C644G is expressed. This result is comparable to the
decrease in CAT activity in 1471.1 cells (Fig. 2B) and the
decrease in Ras RNA levels in 3134 cells when increasing
amounts of C644G are added to cells (Fig. 3). Thus, the dom-
inant negative effect of C644G can be accounted for by de-
creased accessibility to the chromatin-assembled promoter. A
decrease in accessibility can also be detected in this assay at 1
nM Dex upon addition of C644G (Fig. 5B and C), indicating
that the cleavage at 1 nM Dex, when no C644G is transfected,
is probably due to the 15 to 20% of endogenous GR activity at
1 nM Dex (Fig. 1B).

We also examined whether C644G could mediate a struc-
tural change in the chromatin at 1 nM Dex. Cells transfected
with C644G were treated for 1 h with 1 nM Dex. Data in Fig.
5C show that the change in percent SacI cleavage at 1 nM Dex
when no C644G DNA was added to the cells was about 4%,
which is three- to fourfold-lower than that seen with full in-
duction at 100 nM Dex with no C644G present. At 1 nM Dex,
when the cells were transfected with 2.5 or 5 mg of pCI-
nH6HA-C644G, there was no increase in SacI cleavage but
rather a decrease reflecting the dominant negative effect ob-
served at 100 nM Dex (Fig. 5B, 3, 2B, and 5C). We therefore

conclude that C644G alone is unable to induce a structural
transition when the GRE is in a repressed chromatin-assem-
bled context and that is the reason for the lack of transcrip-
tional activity (CAT activity and Ras mRNA) seen at 1 nM Dex
(Fig. 2B and 3).

C644G is able to bind to the GRE in EMSAs. The GR binds
to a GRE as a monomer and a dimer that can be detected in
gel shift assays (15, 19, 71). To ascertain that C644G can bind
to a GRE, we did EMSAs with nuclear extracts prepared from
1471.1 cells. Cells were transfected with 5 mg of C644G and 5
mg of IL-2R and allowed to recover overnight. Cells were
incubated with 1 nM Dex for 40 min and then sorted as de-
scribed above. Mini-nuclear extracts were made (44) from
magnetically selected (transfected) cells and from the nonse-
lected (nontransfected) cells. The cytosolic fraction from each
extraction was also saved and dialyzed against buffer D as was
the nuclear extract.

EMSAs were performed on the extracts as shown in Fig. 6.
We treated transfected 1471.1 cells with 1 nM Dex prior to
preparing nuclear extracts to specifically move C644G into the
nucleus and minimize the amount of wtGR in the nucleus.
Shifts were done with a radiolabeled consensus GRE (20), and
10 mg of nuclear extract was used in all reactions. Lane 3 in Fig.
6A shows a dimer/monomer pattern in nontransfected cell
nuclear extracts. Lane 2 shows a large increase in the dimer
band when nuclear extracts are made from cells transfected
with C644G. The increase in the dimer band is the result of the

FIG. 5. (A) Representation of the B nucleosome region of the MMTV LTR. The oligonucleotide used for PCR primer extension is indicated and extends from bases
11 to 127 of the MMTV coding region. The SacI and DpnII sites are indicated at 2105 (SacI) and 2113 (DpnII), as are the four GREs and the NF-1 and OTF binding
sites. Numbers indicate base pairs of DNA with 11 as the transcription start site. (B) Nuclease hypersensitivity assays to evaluate whether chromatin was accessible
with increasing amounts of C644G transfected into the cells. SacI digests were done on nuclei treated for 1 h with Dex and isolated from 3134 cells transfected with
the indicated amount of C644G DNA and 5 mg of pCMV-IL2R DNA to allow magnetic sorting. Aliquots of nuclei containing 100 mg of DNA were subjected to
digestion with the restriction enzyme SacI (10 U/mg) for 15 min at 30°C. Genomic DNA was isolated and digested to completion with 5 U of DpnII/mg of DNA. PCR
primer extension reactions were run with the radiolabeled primer described above. Reaction products were resolved on 8% denaturing polyacrylamide gels with the
SacI band migrating at 132 bp and the DpnII band migrating at 140 bp. (C) Gel analysis with the PhosphorImager program ImageQuant (Molecular Dynamics).
Fractional SacI cleavage was calculated as the ratio of the amount of SacI digestion product to the total amount of digestion products (SacI plus DpnII). The change
in percent SacI cleavage was calculated by subtracting the fractional cleavage observed in the absence of Dex from that in the presence of Dex. The standard errors
of the means represent data from three separate experiments per treatment.
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increased number of transfected C644G GRs in the cells which
shifts the binding equilibrium to the dimer complex. It has
been shown previously that at low concentrations of GR, the
monomeric band predominates in shift assays, but as the con-
centration of receptor increases, the dimer form also increases
(15, 19, 71). We show this in Fig. 6B, in which we doubled the
amount of GR in the shift by doubling the amount of lysate
added to the shift (compare lanes 1 and 2, with 10 and 20 mg
of nuclear extract). Quantitation of the shifted dimer form, as
a percentage of the total amount of probe loaded, was twofold
higher with 20 mg of extract than with 10 mg of extract. One

would expect less GR in the nucleus and therefore little of the
dimer form in untransfected cells treated with 1 nM Dex. At 1
nM Dex, very little of the endogenous GR would be activated,
and so it should remain in the cytoplasmic compartment of the
cell. This is what is seen when lanes 2 and 3 in Fig. 6A are
compared. In lane 4, the shift is with 10 mg of cytosolic extract
from the transfected cells treated with 1 nM Dex. More of the
dimer form is seen than in the untransfected cells, presumably
because both endogenous GR and some C644G are left in the
cytoplasm in these cells.

From these data, we can conclude that in 10 mg of trans-

FIG. 6. (A) C644G can bind to a GRE by EMSA. Lane 1, free GRE (probe) (described in Methods and Materials) end labeled with 32P; lane 2, 10 mg of nuclear
extract from C644G-transfected cells treated with 1 nM Dex; lane 3, 10 mg of nuclear extract from nontransfected cells treated with 1 nM Dex; lane 4, 10 mg of cytosolic
extract from transfected cells treated with 1 nM Dex. Arrows indicate shifted bands corresponding to the GR monomer (lower) and dimer (upper). (B) As more
receptor is added to shifts, the dimerized form of the GR becomes the predominant band. In lane 1, 10 mg of nuclear extract from nontransfected 1471.1 cells treated
with 1 nM Dex was incubated with the radiolabeled GRE; in lane 2, 20 mg of the same nuclear extract was incubated with the labeled GRE. (C) Competition for binding
with unlabeled GRE with nuclear extracts from C644G-transfected 1471.1 cells. In lanes 1 to 4, no competitor to 20-fold excess unlabeled GRE was incubated with
10 mg nuclear extract from C644G-transfected cells treated with 1 nM Dex and 32P-labeled GRE; lane 5 shows a shift with radiolabeled mutant (Mut) GRE and the
same nuclear extract used in the competitions. The inset shows the amount of competition at the indicated molar excess of unlabeled GRE in each lane of the gels
shown in panels C and D. (D) Binding competition as for panel C except that nuclear extracts were prepared from untransfected 1471.1 cells. Quantitation in the
untransfected cells was of the dimerized band.
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fected (C644G) nuclear extract, there are more receptors in
the extract that can bind to the GRE, and so we see more of
the dimer form shifted than with 10 mg of nuclear extract from
untransfected cells. Extracts in Fig. 6B were prepared on a
different day than extracts in Fig. 6A, and there is slightly more
of the dimer form in 10 mg of extract in Fig. 6B. At 1 nM Dex
there is enough endogenous GR in the nucleus to activate the
luciferase and CAT reporters at very low levels (Fig. 2), and
there is some variation from experiment to experiment in the
amount of endogenous GR that is found in the nucleus.

To demonstrate that wtGR and C644G have similar inter-
actions with the GRE, we did EMSA competitions using 5- to
20-fold molar excess unlabeled GRE to compare nuclear ex-
tracts from 1471.1 cells transfected with C644G (Fig. 6C) and
untransfected 1471.1 cells (Fig. 6D). The untransfected cells
have endogenous GR alone. Extracts were prepared from
transfected 1471.1 cells as described for Fig. 6A except that
transfections were done with 10 mg of C644G DNA rather than
5 mg. Each shift reaction had 58 fmol of 32P-labeled GRE and
the indicated amount of unlabeled competitor GRE added as
well as 10 mg of nuclear extract. As shown in Fig. 6C and D, a
5-fold molar excess of unlabeled GRE produces a similar and
significant competition of both the endogenous wtGR and the
C644G GR (compare lanes 1 and 2). At 10- and 20-fold molar
excess GRE, there is almost complete competition for binding
with the labeled probe. The monomer and dimer forms of the
GR-GRE complex are distinct in the untransfected cells but
not in the transfected cells. We attribute this to the high levels
of GR in the transfected cells in this experiment, consistent
with data in Fig. 6A, lane 2. DNA binding characteristics of
wtGR and C644G GR for the GRE were essentially the same
(graph in Fig. 6) in the EMSA competitions.

We also show that both C644G GR and endogenous GR
bind specifically to the GRE. There is no shift when 32P-
labeled mutant GRE is used to shift the same nuclear extract
used in the transfected cell competitions (Fig. 6C; compare
lane 5 with lane 1). The EMSA data provide evidence that the
chromatin remodeling defect of C644G is not due to a defect
in DNA binding.

The LBD mutation is dominant over the N-terminal trans-
activation domain. We were surprised by the inability of
C644G to remodel chromatin and activate transcription, be-
cause the homologous mutation in the rat GR, C656G,
changes the receptor’s affinity for steroid but does not affect its
ability to activate transcription and remodel chromatin (64).
The two receptors are 95% homologous, and we wondered
whether the mutation in the mouse LBD would have the same
phenotype in the context of the N-terminal portion of the rat
GR. We therefore made two chimeras, one a rat-mouse GR, in
which the entire carboxy-terminal portion of the rat GR, in-
cluding the DNA binding domain to the stop codon, was re-
placed with the mouse C644G-containing carboxy terminus
(Fig. 7A). We also made a mouse-rat GR, in which the entire
carboxy-terminal portion of the mouse GR was replaced with
the rat C656G-containing carboxy terminus (Fig. 7B). We
transfected 1471.1 cells with increasing amounts of chimeric
DNA, as was previously done with C644G DNA, and assayed
for luciferase and CAT activity. The results from a represen-
tative CAT assay (Fig. 7A) demonstrate that the mouse mu-
tation, in the context of the rat N terminus, confers the dom-
inant negative phenotype of C644G on the receptor at 100 nM
Dex, and no CAT activity was seen with 1 nM Dex. The rat
mutation, C656G, in the context of the mouse N terminus
confers the phenotype of C656G, in which there is activation of
transcription with both 1 and 100 nM Dex (Fig. 7B and refer-
ence 64). Both chimeras activated the pLTRluc reporter at 1

and 100 nM Dex, consistent with previous results with C644G
and C656G (Fig. 2A reference 64), in which there was activa-
tion of the reporter at both 1 and 100 nM Dex with both
chimeras (data not shown). Background CAT activity levels
vary from experiment to experiment and increase as more
DNA is transfected. The main observation, that there is as
much activity at 1 nM Dex as at 100 nM Dex with the mouse-
rat chimera but essentially no activity above background with
the rat-mouse chimera at 1 nM Dex, is very consistent. There
is also no indication of a dominant negative effect at 100 nM
with the mouse-rat chimera as there is with the rat-mouse
chimera.

These results show that the mutation in the carboxy-terminal
portion of the mouse GR is responsible for the transcriptional
defect seen in the intact C644G receptor. Furthermore, they
suggest that AF1 and AF2 provide two separable functions for

FIG. 7. (A) 1471.1 cells were transfected with 0, 1, 2.5, or 5 mg of the
rat-mouse chimera that carries the C-terminal mutation C644G indicated by an
asterisk. The cells were induced with 0, 1, or 100 nM Dex for 4 h, sorted, and
lysed; 5 mg of total protein was used to measure CAT activity. Assay mixtures
were incubated for 30 min at 37°C. Thin-layer chromatography was used to
separate the acetylated forms of chloramphenicol, and PhosphorImager analysis
(ImageQuant; Molecular Dynamics) was used for quantitation. Solid bars, cells
treated with vehicle only; hatched bars, cells treated with 1 nM Dex; cross-
hatched bars, cells treated with 100 nM Dex. (B) 1471.1 cells were transfected
with the mouse-rat chimera that carries the C656G mutation in the rat C-
terminal domain, treated, and assayed as described above.
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transcriptional activation and that AF2 function is essential for
chromatin derepression and may be necessary for AF1 to have
functional activity on a chromatin-assembled promoter.

DISCUSSION

C644G is defective in two distinct events necessary for
transactivation. In the bimodal model for transcriptional acti-
vation from a chromatin-assembled promoter, the repressive
effects of chromatin must first be overcome by chromatin re-
modeling. After chromatin is remodeled, contacts between the
basal transcription complex at the TATA box and the promot-
er-specific activator must be made. At the MMTV LTR both of
these steps are hormone dependent (5), which indicates that an
activated hormone receptor is essential for both steps. Our
data support this model and furthermore provide in vivo evi-
dence that the two steps are functionally linked either through
a single protein-protein interaction or through multiple pro-
tein-protein interactions that are mediated by and dependent
on the GR.

C644G is defective in two mechanistically distinct events
leading to transactivation. The first is in chromatin remodeling,
as shown by the failure of C644G to induce a SacI cleavage at
1 nM Dex (Fig. 5B and C) and by the decrease in accessibility
to the MMTV LTR as increasing amounts of C644G DNA are
transfected into cells treated with 100 nM Dex (dominant
negative effect) (Fig. 5B and C). As more C644G is expressed
in the cells, fewer promoters are remodeled, which suggests
that as more of the dimerized mutant is bound to the GRE, the
endogenous wtGR is outcompeted for binding and remodel-
ing. The data also indicate that C644G is a less effective tran-
scriptional activator than is the endogenous wtGR on a pro-
moter that is not in an ordered nucleosomal array. Figure 2A
shows that there is a 15- to 20-fold increase in transactivation
when the endogenous GR and C644G are both activated by
100 nM Dex, but at 1 nM Dex, when C644G is maximally
activated, there is only a 4- to 5-fold increase in transactivation
over the 1.5-fold induction by wtGR at 1 nM Dex. Thus,
C644G has two defects: (i) an inability to remodel chromatin
and (ii) an impaired ability to act as an effective transcriptional
activator on an open promoter and provide a functional link
between chromatin remodeling and transcription initiation.

What interactions might account for the C644G phenotype?
The obvious link between chromatin remodeling and the acti-
vation of transcription is through the contacts between the
large chromatin remodeling complexes and the RNA polymer-
ase II holoenzyme positioned at the TATA box (76). Tran-
scription factors, such as ligand-activated nuclear receptors,
target specific promoters for activation and provide a nucle-
ation site for protein interactions with coactivator proteins that
are often found in large chromatin remodeling complexes.
Transcription factors also provide sites for interaction with the
basal transcription machinery through multiprotein complexes
(for a review, see reference 6). It is likely that multiple protein-
protein interactions are required to bring the GR and its as-
sociated proteins into proximity with the basal transcription
complex. If C644G interacts ineffectively with one protein, it
could affect subsequent protein-protein interactions. There are
many possible interactions between transcription factors, tran-
scription factor-associated chromatin remodeling factors, and
RNA polymerase II-associated factors, but it remains to be
determined which of those interactions are functionally rele-
vant in vivo (for reviews see references 39 and 67).

The inability of C644G to remodel chromatin, in addition to
its weak transactivation potential, suggests that it may not
interact well with one or more of the coactivators or with the

basal transcription machinery. The GR can promote the es-
tablishment of an open chromatin conformation in vivo, and it
associates with large protein complexes that contain coactiva-
tors such as p300/CBP, SRC-1, and GRIP-1, in addition to
SWI/SNF/BRG1 (references 27 and 57 and references there-
in). Histone acetylase/deacetylase activity is associated with
coactivators (38, 54, 66), chromatin remodeling, and subse-
quent gene activation 7, 42, 72; reviewed in references 33, 39,
and 77). The coactivators themselves may interact directly with
the basal complex and/or they may make an essential contact
with other proteins that can then interact with the basal ma-
chinery, thus bridging the gap between the promoter-specific
transcriptional activator and the basal transcription complex
(52). Whether C644G is able to interact with known coactiva-
tors or as yet unidentified factors is now being investigated.

Interactions of coactivators with the GR and with other
nuclear receptors are largely mediated by the LBD in which
the AF2 domain resides and the interactions are ligand depen-
dent (22, 30). From the resolved crystal structures of other
nuclear receptor family members, the LBD consists of 12 a
helices as well as four b strands (73, 78). The AF2 activation
domain core is found in helix 12 (78) and is essential for
transactivation (16). Specific residues in the LBD in helices 3,
4, 5, and 12 (11, 22) have been identified as sites for interac-
tions with coactivators such as SRC-1 (55) and GRIP-1 (37)
among others, which indicates that one role of the LBD is the
recruitment of factors that are involved in chromatin remod-
eling. The mutation C644G or the homologous residue in
other members of the family falls between helices 6 and 7 (Fig.
1A) in all of the LBDs crystallized to date. This region of the
LBD has not been defined by any other mutations as an im-
portant site for interactions with any of the known coactivators,
but it is deep in the LBD pocket where direct contact is made
with ligand (9, 65). An amino acid change at this site could
have structural consequences that affect protein interactions
with the LBD. It is interesting that in the ligand-bound state,
helix 3 lies under helix 6 (30) and helices 3, 4, 5, and 12 make
a hydrophobic groove in the thyroid hormone receptor b LBD
through which contact with coactivators is made (18). Al-
though the GR LBD has not been crystallized, based on the
high degree of structural homology in the LBDs found among
the various receptors and the demonstrated association of co-
activators with the LBD of GR, it is likely that the predicted
structures apply to the GR as well as to other members of the
nuclear receptor family.

Different phenotypes of the mutation in the mouse GR ver-
sus the rat GR. It is curious that unlike C644G, the analogous
mutation in the highly homologous rat GR can remodel chro-
matin and activate transcription. The primary differences in
the immediate area of the C644G and C656G mutations are in
two residues that flank the mutant site (Fig. 1A). In the rat GR
they are serines 653 and 669; at the homologous positions in
the mouse GR, they are threonines 641 and 657. Either serine
or threonine is conserved at the homologous position to mouse
T641 in GRs from all species sequenced thus far (except Xe-
nopus), but at the position homologous to T657 in the mouse
GR there is a serine in the GR in other species. We do not
know whether these residues contribute to the very different
phenotypes that we observe between the rat and the mouse
GR LBD mutants. Serine and threonine both have aliphatic
hydroxyl side groups, but threonine has a methyl group that
serine does not have, which could affect local hydrogen bond-
ing or van der Waals interactions with associated proteins.
Crystal structures of the LBDs of the estrogen and progester-
one receptors with agonist and antagonists bound demonstrate
that conformational changes have profound effects on the po-
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tential interactions between amino acids in the LBD with as-
sociated proteins (50, 63, 69). The basis for the differences that
we see between the mouse and rat GR is now being investigated.

Different roles for the C-terminal and N-terminal activation
domains of GR? The AF1 and AF2 domains in the GR are
functionally different since AF1 is constitutively active and the
activity of the AF2 domain is ligand dependent (31 and refer-
ences therein). This raises the question as to whether the roles
that they play in transcriptional activation in vivo are also
different. MyoD, a transcriptional factor in the myogenic fam-
ily of basic helix-loop-helix transcription factors, has a tran-
scription activation domain that is independent of another
domain that mediates chromatin remodeling (27). Pho4, a
transcriptional activator that is activated in response to high
phosphate levels in yeast, also requires a chromatin transition
to activate transcription, but in this case both remodeling and
activation are mediated by a single activation domain (21, 47).
Together the data suggest that activation domains can carry
out multiple functions, and when more than one activation
domain is present in a transcription factor, the role of each
may be different.

Our experiments with GR chimeras suggest that the AF1
and AF2 domains of GR have different functional roles in
transcriptional activation at the MMTV LTR. The C644G mu-
tation in all likelihood affects the local conformation of the
LBD within which the AF2 domain is found, leaving the AF1
domain functionally intact. We know that many coactivator
interactions with steroid receptors are mediated through the
LBD and/or AF2 domain and that the coactivators have func-
tional activity that is associated with chromatin remodeling.
Our data suggests that in vivo, a functional role of AF2 is the
recruitment of chromatin remodeling factors that may also act
as bridging and/or stabilizing factors with the basal transcrip-
tion complex positioned at the TATA box. C644G may be
unable to recruit or make functionally effective contacts with
proteins that then make contact with the basal complex or that
stabilize interactions between the GR and the basal complex. It
is also possible that C644G is unable to maintain an effectively
open chromatin conformation to allow factors such as NF1 to
load onto the promoter.

Several studies have shown that various cofactors including
Ada2 (1) (34), the SWI-SNF complex (79), and the coactivator
SRC-1 (56) can interact with either or both AF1 and AF2 in
vitro. We also know that AF1 makes contacts with the basal
complex through TFIID and/or TBP in vitro (23) that may
stabilize interactions between proteins at the GRE with those
at the TATA box. Which of these interactions occur or have a
functional role at promoters in repressed chromatin in vivo is
not known. It is possible that there is functional redundancy
between AF1 and AF2, or that both are required for stable and
functional interactions with coactivators or chromatin remod-
eling complexes. Our expectation is that C644G will be a useful
tool in elucidating and defining some of the required interac-
tions of proteins for chromatin derepression and subsequent
transcriptional activation in vivo from the MMTV LTR in
mammalian cells.
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56. Oñate, S. A., V. Boonyaratanakornkit, T. E. Spencer, S. Y. Tsai, M.-J. Tsai,
D. P. Edwards, and B. W. O’Malley. 1998. The steroid receptor coactivator-1
contains multiple receptor interacting and activation domains that cooper-
atively enhance the activation function 1 (AF1) and AF2 domains of steroid
receptors. J. Biol. Chem. 273:12101–12108.
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Glucorticoid receptor-glucocorticoid response element binding stimulates
nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17:895–
905.

58. Owens-Hughes, T., and J. L. Workman. 1994. Experimental analysis of
chromatin function in transcriptional control. Crit. Rev. Eukaryotic Gene
Expr. 4:403–441.

59. Pennie, W. D., G. L. Hager, and C. L. Smith. 1995. Nucleoprotein structure
influences the response of the mouse mammary tumor virus promoter to
activation of the cyclic AMP signalling pathway. Mol. Cell. Biol. 15:2125–
2134.

60. Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer,
and D. Moras. 1995. Crystal structure of the RAR-y ligand-binding domain
bound to all-trans retinoic acid. Nature 378:681–689.

61. Richard-Foy, H., and G. Hager. 1987. Sequence-specific positioning of nu-
cleosomes over the steroid-inducible MMTV promoter. EMBO J. 6:2321–
2328.

62. Rigaud, G., J. Roux, R. Pictet, and T. Grange. 1991. In vivo footprinting of
rat TAT gene: dynamic interplay between the glucocorticoid receptor and a
liver-specific factor. Cell 67:977–986.

63. Shiau, A. K., D. Barstad, P. Loria, L. Cheng, P. J. Kushner, D. A. Agard, and
G. L. Greene. 1998. The structural basis of estrogen receptor/coactivator
recognition and the antagonism of this interaction by tamoxifen. Cell 95:
927–937.

64. Smith, C. L., H. Htun, R. G. Wolford, and G. L. Hager. 1997. Differential
activity of progesterone and glucocorticoid receptors on mouse mammary
tumor virus templates differing in chromatin structure. J. Biol. Chem. 272:
14227–14235.

65. Smith, L. I., J. E. Bodwell, D. B. Mendel, T. Ciardelli, W. G. North, and A.
Munck. 1988. Identification of cysteine-644 as the covalent site of attach-
ment of dexamethasone 21-mesylate to murine glucocorticoid receptors in
WEHI-7 cells. Biochemistry 27:3747–3753.

66. Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen,
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