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Abstract
Background
Negative pressure wound therapy (NPWT) has been shown to promote the healing of acute and chronic
wounds. In our previous study, we demonstrated that a near-circumferential NPWT dressing provided “lift-
off” on an in-vitro extremity model resulting in decreased pressure. We hypothesized that this decrease in
pressure may increase perfusion distal to the NPWT dressing by increasing lymphatic drainage and venous
flow.

Methods
In this study, we tested if a near-circumferential NPWT dressing caused any appreciable skin movement
around the dressing. We then used a thermal imaging camera to test if there was an increase in perfusion to
the foot when a near-circumferential NPWT dressing was placed around the lower leg and tested at various
negative pressures. Finally, we wanted to see if an artificial “lift-off” mechanism would lead to an increase
in perfusion.

Results
The skin was noted to stretch between the short ends of the NPWT dressing, consistent with our previously
described “lift-off” mechanism. However, there was no correlation between negative pressure and perfusion
to the foot in the other experiments.

Conclusion
This study demonstrated that a near-circumferential NPWT dressing may not have any appreciable effects
on perfusion when applied on a healthy patient, however, future studies are needed to determine if similar
results would be seen on a traumatized or otherwise compromised extremity.
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Introduction
In 1997, Morykwas et al found that blood flow increased fourfold when applying 125mmHg of sub-
atmospheric pressure to a wound in a pig model via negative pressure wound therapy (NPWT) [1]. These
promising results pioneered the field of NPWT, and today, NPWT is often used to stabilize the wound
environment, stimulate the growth of new tissue, and potentially assist in infection prevention and removal
of bacterial debris [2-4].

Numerous studies have demonstrated an increase in perfusion directly under or around negative pressure
wound therapy (NPWT) dressings. Timmers et al found that cutaneous blood flow, measured with laser
doppler probes, increased perfusion at pressures as low as -300mmHg under the NPWT dressing [5].
Muenchow et al used laser spectrometry on the thighs of healthy patients and found that there was
increased blood flow, capillary venous oxygen saturation, blood flow velocity, and hemoglobin levels directly
under the NPWT dressing [6]. Other studies have measured blood flow around the wound edges and have
shown increased microvascular blood flow at 2.5cm away from the wound edge, but decreased flow at 0.5cm
from the wound edge, and no changes seen as far as 5cm away. It is theorized that the traction on
surrounding tissues leads to a pulling force on the wound edge which dilates blood vessels and increases
perfusion [7-11].
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Although there is an abundance of literature demonstrating an increase in perfusion with NPWT, several
studies have questioned their validity. Kairinos et al questioned the validity of laser doppler in predicting
perfusion, rather than just measuring blood velocity. Since velocity increases as the vessels narrow, a higher
velocity detected by laser doppler may not necessarily equate to increased tissue perfusion. Recent studies
using other measurement methods including a laser doppler and Stryker SPY ELITEÒ thermal imaging
system (Stryker, Kalamazoo, USA) have demonstrated either no change or a decrease in perfusion [12-17].
One study showed that the level of negative pressure can affect perfusion as well. Ichioka et al placed an
NPWT dressing on an animal model and saw increased flow in microvasculature at -125mmHg but
decreased flow at -500mmHg [10]. Overall, the literature is quite conflicting regarding the effect of NPWT on
perfusion both deep to and around the NPWT dressing.

In this study, we followed up on our previous report where we demonstrated that a near-circumferential
dressing which encircles about 2/3rds of the extremity led to decreased pressure in an extremity analogue
and provided a “lift-off” force in vitro. This “lift-off” force is thought to occur as the NPWT dressing
decreases in length and stretches the portion of the extremity that is not covered by the dressing. This leads
to an increase in volume and a decrease in the pressure of the extremity. We hypothesized that these forces
may be able to dilate vessels and increase perfusion in an extremity. We also hypothesized that this may
improve venous return and lymphatic drainage thereby decreasing edema distal to the NPWT dressing [18].
Here, we aimed to determine if the “lift-off” mechanism we found in our previous study would have any
clinical significance when applied in vivo. First, we tested if the NPWT dressing caused any appreciable skin
movement around the dressing. Second, we used a thermal imaging camera to test if there was an increase
in perfusion to the foot when a near-circumferential NPWT dressing was placed around the lower leg and
tested at various negative pressures. Finally, we tested if an artificial “lift-off” mechanism could lead to an
increase in perfusion.

Materials And Methods
This study consisted of two experiments that were performed on one of the authors of this study. This study
did not require Institutional Review Board approval. Both experiments used a Prevena™ Plus Customizable
Dressing by 3M + KCI (3M, Saint Paul, USA) which was applied per the manufacturer guidelines with the
exception of not utilizing the sealing strips on the short edges of the dressing. These were omitted since, in
our experience, they are not needed to maintain a proper seal and are very rarely used in our institution. The
dressing was applied 2/3rds of the way around the extremity in each experiment since this was found to lead
to the greatest decrease in pressure when tested on our previously published in-vitro study [18].

In the first experiment, the NPWT dressing was applied 2/3rds of the way around the thigh leaving the
remaining third uncovered. Care was taken to ensure that the remaining third was not covered by any
adhesive drapes. The thigh was chosen for this experiment because it offered the greatest surface area for a
near-circumferential NPWT dressing. This was thought to provide the best chance of noting any changes in
skin motion after the dressing was under negative pressure. Several dots were marked along the thigh with a
permanent marker to serve as a grid by which we could measure skin motion (Figures 1-2). An iPhone X
(Apple Inc, Cupertino, USA) was mounted to a tripod to record a video of the thigh as negative pressure was
applied to the dressing. A handheld brake line vacuum pump was used to generate a wide range of negative
pressures (0 to -380mmHg) that exceed the range of the manufacturer’s negative pressure system (-75 to -
250mmHg). The negative pressure gauge on the brake line pump was included in the video so images could
be captured from the video at varying negative pressures for further analysis. The distance between the dots
on the thigh around the NPWT dressing was analyzed from these images with ImageJ (National Institutes of
Health, Bethesda, USA) at negative pressures ranging from 0 to -380mmHg. The video was recorded lateral to
the thigh as well as anterior to the thigh to measure the skin changes from different angles.
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FIGURE 1: The NPWT dressing was applied to the thigh in a near-
circumferential fashion.
This image was taken anterior to the thigh so the distance between the markers on the anterior thigh could
be measured. The brake line vacuum pump gauge was included in these images so the negative pressure
could be monitored throughout this experiment.

NPWT: negative pressure wound therapy

FIGURE 2: This image was taken lateral to the thigh so the distance
between the markers on the lateral thigh could be measured..
ciNPWT: closed incisional negative pressure wound therapy

In the second experiment, the NPWT dressing was applied around the distal lower leg just proximal to the
ankle (Figure 3). The contralateral leg had no NPWT dressing as a control. The distal lower leg was chosen
for this experiment because the temperature of the foot can vary significantly under different conditions and
can be easily monitored with a thermal imaging camera. If our hypothesis that a near-circumferential NPWT
dressing can improve perfusion distal to the dressing was true, we would expect to see an increase in the
temperature of the foot as negative pressure was applied to the dressing. Both feet were secured in a custom
platform so the feet would not move throughout the course of this experiment (Figure 3). A Seek Thermal
CompactPRO (Seek Thermal Inc., Santa Barbara, USA) for iOS was used with an iPhone X mounted to a
tripod to record thermal images of both feet throughout the experiment. The thermal images were taken in
greyscale with white representing the highest temperatures and black representing the lowest temperatures
(Figure 4). A thermal image was taken every two minutes as the dressing underwent 20-minute cycles of
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negative pressure being off, on, off, and on. This experiment was performed at -25mmHg, -125mmHg, and -
250mmHg on the same subject with the left leg dressed in the NPWT dressing and the right leg acting as a
control.

FIGURE 3: This custom jig held the feet in place to eliminate any motion
artifact during the experiment. The NPWT dressing was applied to the
left lower leg, proximal to the ankle.
NPWT: negative pressure wound therapy
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FIGURE 4: Thermal image was taken in greyscale using the Seek
Thermal CompactPRO with white representing the highest temperatures
and black representing the lowest temperatures. The NPWT dressing is
on the left lower leg.
NPWT: negative pressure wound therapy

To maximize any potential effect of the “lift-off” from the dressing, a third experiment was performed. The
dressing used for this experiment was modified by securing string to five locations around the dressing. The
string went through a frame which encircled the lower leg at the level of the dressing and were then tied in
loops outside of the frame. Five 85g lead weights could then be hooked onto these loops to provide a “lift-
off” force to the dressing. These weights were used instead of negative pressure for the final experiment
(Figure 5). ImageJ was used to analyze the thermal images. First, the images were converted from a greyscale
image to a black and white image by utilizing the threshold function on ImageJ (Figure 6). A threshold value
was determined by selecting what appeared to be the warmest overall thermal image and increasing the
threshold value until the amount of white in the process image plateaued. This ensured that the greatest
potential change would be observed when comparing the coolest and the warmest thermal images. All the
images underwent the same threshold changes by using a macro batch process. Next, the images were
cropped in a batch process to include only the feet and reduce the potential of any extraneous thermal
signals in the environment. The number of white pixels within each foot was determined by using a macro
batch process to select a rectangular area around the foot to be analyzed and then counting the number of
white pixels with the analyze particle function. This was repeated for both feet and the data was copied from
ImageJ into Microsoft Excel (Microsoft Corporation, Redmond, USA) for analysis. The exposure of the
thermal camera was kept constant throughout the experiments.
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FIGURE 5: Five 85g lead weights were hooked onto loops of string that
were tied onto the NPWT dressing. This provided a “lift-off” force to the
dressing. Weights were used instead of negative pressure for the final
experiment.
NPWT: negative pressure wound therapy
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FIGURE 6: The thermal images were converted to a black and white
photo utilizing the threshold function on ImageJ. The black and white
pixels could then be counted to quantify the temperature of each foot.

A paired t-test was used to determine whether the temperature of the left foot with NPWT on was
significantly different from the temperature with NPWT off. If there was a significant difference (p<0.05), the
p-value was calculated for the right foot during the same time period. If the difference was significant for the
left and not for the right, the change in temperature could be attributed to the NPWT. If the difference
during the time period was significant for both the left and right, the change was unlikely to be attributed to
the NPWT. If the two time periods being compared did not have the same number of data points, the excess
data points were omitted from the t-test calculation in order to run a paired t-test for all calculations.

Results
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The first experiment demonstrated a notable change in the distance between the markers between the ends
of the near-circumferential dressing (anteroposterior [AP] measurement). This distance increased as suction
increased. This finding coincides with our previous study [18]. There was minimal change in the distance
between the rest of the markers (Figures 7 and 8).

FIGURE 7: This figure demonstrates the change in the distance at the
lateral aspect of the thigh at various negative pressures.

FIGURE 8: This figure demonstrates the change in the distance at the
anterior aspect of the thigh at various negative pressures.

In the second and third experiments, there were significant changes in the temperature of the feet when the
negative pressure was on or off, but these changes were mirrored by similar changes seen in the control foot.
This suggests that the changes were due to acclimation of both feet or other external factors rather than an
effect of the NPWT dressing (Figures 9-12 and Tables 1-4).
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FIGURE 9: This figure demonstrates the change in percent white as a
measurement of temperature as NPWT cycles on and off at -25mmHg. A
and C: NPWT off, B and D: NPWT on.
NPWT: negative pressure wound therapy

FIGURE 10: This figure demonstrates the change in percent white as a
measurement of temperature as NPWT cycles on and off at -125mmHg.
A and C: NPWT off, B and D: NPWT on
NPWT: negative pressure wound therapy
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FIGURE 11: This figure demonstrates the change in percent white as a
measurement of temperature as NPWT cycles on and off at -250mmHg.
A and C: NPWT off, B and D: NPWT on.
NPWT: negative pressure wound therapy

FIGURE 12: This figure demonstrates the change in percent white as a
measurement of temperature as weights are on or off. A and C: weights
off, B and D: weights on.
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 Left Foot Average (with
NPWT)

Left Foot Standard
Deviation

Right Foot Average (no
NPWT)

Right Foot Standard
Deviation

Data
Set

P-
value

1-10 vac off
(A) 40.710 0.525 42.292 0.877 Left

Foot  

11-20 vac
on (B) 40.398 0.477 40.402 0.450 A to B 0.068

21-30 vac
off (C) 40.227 0.259 39.199 0.801 B to C 0.213

31-41 vac
on (D) 38.735 0.834 37.733 1.452 C to D <0.001

     Right
Foot  

     A to B <0.001

     B to C <0.001

     C to D 0.005

TABLE 1: Average percent white (-25mmHg)
NPWT: negative pressure wound therapy

 Left Foot Average (with
NPWT)

Left Foot Standard
Deviation

Right Foot Average (no
NPWT)

Right Foot Standard
Deviation

Data
Set

P-
value

1-12 vac off
(A) 32.384 11.935 40.619 8.841 Left

Foot  

13-22 vac
on (B) 61.615 0.973 62.888 0.633 A to B <0.001

23-32 vac
off (C) 63.980 0.676 64.781 0.461 B to C <0.001

33-43 vac
on (D) 64.791 0.309 65.408 0.238 C to D 0.005

     Right
Foot  

     A to B <0.001

     B to C <0.001

     C to D <0.001

TABLE 2: Average percent white (-125mmHg)
NPWT: negative pressure wound therapy
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 Left  Foot Average
(with NPWT)

Left Foot Standard
Deviation

Right Foot Average (no
NPWT)

Right Foot Standard
Deviation

Data
set

P-
value

1-9 vac off
(A) 51.606 0.234 42.551 1.063 Left

Foot  

10-19 vac
on (B) 51.025 0.426 39.052 0.829 A to B 0.025

20-29 vac
off (C) 49.444 0.695 38.211 1.149 B to C <0.001

30-40 vac
on (D) 49.741 0.422 33.801 1.668 C to D 0.367

     Right
Foot  

     A to B <0.001

     B to C 0.001

     C to D <0.001

TABLE 3: Average percent white (-250mmHg)
NPWT: negative pressure wound therapy

 Left Foot Average (with
NPWT)

Left Foot Standard
Deviation

Right Foot Average (No
NPWT)

Right Foot Standard
Deviation

Data
Set

P-
value

1-6 vac off
(A) 46.812 10.869 15.974 2.158 Left

Foot  

7-17 vac on
(B) 74.205 2.315 41.970 13.729 A to B 0.004

18-27 vac
off (C) 75.381 4.337 62.910 8.405 B to C 0.559

28-37 vac
on (D) 74.229 2.933 66.113 1.519 C to D 0.616

     Right
Foot  

     A to B 0.022

     B to C <0.001

     C to D 0.326

TABLE 4: Average percent white (with weights)
NPWT: negative pressure wound therapy

Discussion
Current literature regarding the effect of NPWT on perfusion is mixed. One recent study by Ma et al showed
that NPWT can preferentially enhance blood flow in a rat model [19]. Another study by Chen et al showed
that NPWT may increase capillary caliber and blood volume by stimulating angiogenesis [11]. Some studies
have suggested that a combination of microdeformation and macrodeformation can lead to an increase in
pro-angiogenic growth factors promoting wound healing and recovery [20-22]. However, the
macrodeformation due to the compressive forces of a circumferential NPWT has led to concern on whether
this compression may negatively impact perfusion [23]. This was shown in a study by Shon et al which
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demonstrated decreased oxygenation saturation (SpO2) of the foot with an NPWT dressing [24]. On the
other hand, a study by Aljomah et al in 2020 showed that a circumferential NPWT dressing around the upper
arm did not decrease SpO2 in human subjects [25]. These opposing reports led to the conception of this
study.

In the first experiment, the skin was noted to stretch in the open area between the short ends of the near-
circumferential NPWT dressing. This coincides with our previous finding which demonstrated a “lift-off”
force with a near-circumferential NPWT dressing. There were minimal changes to the skin around the other
edges of the NPWT dressing suggesting that most of the “lift-off” force occurs as the dressing shrinks along
its length rather than its width. 

In the second and third experiments, the temperature of both feet varied significantly but these changes in
temperature were equally variant in conditions both with and without the NPWT dressing, suggesting that
the NPWT had no effect on the temperature of the foot. Initially, a decrease in temperature was seen as a
result of immobilization of the feet in an air-conditioned room. The subsequent increase in temperature was
likely due to thermoregulation of the feet to the cold.

The results from the second and third experiments of this study can be interpreted in several ways. First, the
lack of any significant changes in perfusion with a near-circumferential NPWT dressing may be due to a
clinically insignificant change in the pressure of the extremity. Although decreased pressure was seen in the
extremity analogue from our previous study, this effect may be dampened on a human extremity [18]. In
particular, the distal lower leg may be suboptimal for showing this effect since this area has minimal
compliant tissues such as fat and muscle and is mostly comprised of less compliant tissues like tendons. A
more optimal area to test whether or not a near-circumferential NPWT dressing can change the pressure of
an extremity would be around the thigh since it has the greatest surface area for contacting the NPWT
dressing and has the most compliance. The reason why the distal lower leg was chosen for the second and
third experiments, however, was because the temperature of the foot varies drastically, and we hypothesized
that it would be the most sensitive to thermal imaging studies. Second, the lack of significant changes in the
thermal images may not be due to a lack of changes in perfusion, but rather an inability of the thermal
camera used in this study to detect such changes. Although the thermal camera used for this study was one
of the best consumer-level thermal cameras, more advanced systems such as Stryker’s SPY-ELITE thermal
imaging system (Stryker, Kalamazoo, USA) may have been able to detect changes that our camera could not.
Third, the subject used for this study was a healthy adult male with no trauma or comorbidities. If a similar
protocol had been used on a subject with a compromised lower extremity, results may have varied
significantly either in favor of or against the use of NPWT dressings to increase perfusion.

The decision to use thermal imaging to measure perfusion was based on initial trial and error where we first
used SpO2, transcutaneous partial pressure of oxygen (tcpO2), a temperature probe, and a laser vein finder
to measure the perfusion of the foot under the same protocol as experiment two. However, we found no
significant changes in SpO2, tcpO2, or temperature throughout the study. The laser vein finder proved to be
an ineffective measurement for perfusion as the refresh rate of the laser projector led to shutter artifacts on
the camera. Given that laser doppler validity has come into question and thermal imaging techniques have
been previously used to assess perfusion, we thought thermal imaging would provide the most accurate and
reliable measure of foot perfusion [12].

There are several limitations of this study. It was performed on only one healthy patient with no trauma or
significant past medical history. Also, in experiment two, we saw an initial decline in the temperature of the
foot at -125mmHg, which was thought to have been due to the prolonged immobilization period, causing
the feet to get cold, followed by a compensatory increase in temperature as the body thermoregulated. The
room temperature varied from 73°F for the -125mmHg trial to 69°F at the -25mmHg and -250mmHg trials.
Thus, to limit this experimental variable, it would have been optimal to test these pressure differences under
the exact same temperature conditions. Finally, we only tested a near-circumferential NPWT dressing since
this was found to have the greatest effect on decreasing extremity pressure in our previous study [18]. To be
more thorough, a fully-circumferential NPWT dressing could have been tested in this study as well. 

To our knowledge, this was the first study examining skin contraction or stretching around a near-
circumferential NPWT dressing on a human subject. It is also the first study to utilize thermal imaging in
conjunction with a near circumferential NPWT dressing. The methods for this study had several strengths as
well. The 20-minute cycles of negative pressure used in the second experiment were based on several studies
which have shown that acclimatization typically occurs within this time interval [7,13-14, 25]. All image
processing was done in a batch format so the same settings were applied to all of the images. Motion was
controlled for with a tripod and custom foot mount (Figure 3). Finally, to determine if the lift-off force
generated from the NPWT dressing was not strong enough to lead to detectable changes in foot perfusion,
weights were added to the dressing in the third experiment to maximize this potential lift-off force and
improve the odds of noting any changes in foot temperature. 

Future studies are needed to further assess the effect of a near-circumferential NPWT dressing on extremity
perfusion. To truly compare perfusion with and without a near-circumferential NPWT dressing, animal
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models could be utilized to create identical pathology and controls. Higher fidelity thermal cameras could be
utilized but angiography would likely offer the most sensitive measurement of perfusion [26]. This
methodology could also be repeated on multiple patients with various co-morbidities but it is difficult to
have a valid control in these situations.

Conclusions
Based on our findings, there appears to be a “lift-off” mechanism that may theoretically increase perfusion
created by a near-circumferential NPWT dressing, but this study was unable to detect any changes in
perfusion attributable to the NPWT dressing. This study has shown that for a healthy human subject, a near-
circumferential NPWT dressing likely has no detrimental effect on perfusion when placed around the lower
leg, however, we cannot definitively say how this dressing would affect a compromised extremity. Future
studies are necessary to fully elucidate the effects of a near-circumferential NPWT dressing on extremity
perfusion.
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