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Organelles are one of the smallest structural units that influ-
ence the functional, morphological and biochemical char-
acteristics of different cell types. Chemical analysis of 

individual organelles is challenging due to their attoliter volumes, 
the wide dynamic range of analyte concentrations and the need 
for sophisticated isolation procedures, thereby limiting our under-
standing of their chemical heterogeneity. Mass spectrometry (MS) 
imaging has begun being used for both cellular and some subcellular 
analyses in discovery-based studies1–3 but is limited in throughput 
and spatial resolution for organelle measurements. Alternatively, 
both cells4–6 and organelles7 of interest can be isolated and placed on 
a glass slide for subsequent MS measurement. Though we used this 
approach to assay the peptides within individual organelles7, it was 
limited in throughput and difficult to automate due to the manual 
positioning of each individual organelle before measurement.

A recent enhancement to single-cell measurement8 involves 
scattering the cells of interest onto a microscope slide, determin-
ing their locations via fluorescence microscopy and then targeting 
selected locations with matrix-assisted laser desorption/ionization 
(MALDI) MS, allowing tens of thousands of cells to be assayed. 
Here we adapted the single-cell approach to single organelles, 
which required three enhancements: (1) improved object targeting 
approaches, (2) optimized analyte detection using high-resolution 
MS and (3) unsupervised data analysis workflows to character-
ize organelle heterogeneity. These advances allowed us to use 
MALDI Fourier-transform ion cyclotron resonance MS for the 
high-throughput simultaneous detection of both peptide and lipid 
species in 0.5- to 2-μm-diameter dense-core vesicles (DCVs) and 
electron lucent vesicles (LVs) isolated from the exocrine atrial gland 
(AG) (Fig. 1a–f) and red hemiduct of Aplysia californica, respec-
tively. By developing single-organelle sampling techniques that can 
be conducted in a high-throughput manner, we observed subtypes 
of DCVs defined by their overlapping but distinct peptide content. 
We also identified a peptide prohormone not previously known to 

localize within DCVs9–11, as well as large differences in the contents 
between the DCVs and LVs. Our method revealed post-translational 
proteolytic processing of AGPB1 (XP_012945142.1), AGPA1 
(XP_012945143.1) and AGPA2 (XP_012945134.1) prohormones, 
with peptide structures validated by liquid chromatography–tan-
dem mass spectrometry (LC–MS/MS). Additionally, a novel pro-
hormone, AG Peptide D, was characterized (Supplementary Figs. 1  
and 2 and Supplementary Table 1). Importantly, our workflow is 
extendable to multiple imaging modalities such as scanning elec-
tron microscopy (Supplementary Fig. 3) and instrumentation that 
uses a piezo linear stage and camera, providing an avenue for the 
analysis of targets that are smaller than the wavelength of light.

Results
Image-guided MALDI MS approach. To adapt single-cell 
approaches to objects that are tenfold smaller in diameter than cells 
measured previously, we created a method to enhance identifica-
tion of micrometer-sized object locations while improving analyte 
detectability by minimizing the number of interfering chemicals 
that could reduce the ionization efficiency of our analytes of inter-
est. Traditionally, single-cell targeting requires chemical labeling to 
mark objects of interest, but introduction of exogenous chemicals 
during single-organelle sample preparation is problematic due to 
the 1,000-fold less material present. Paraformaldehyde fixation is 
a hallmark step in most staining protocols, but paraformaldehyde 
fixation crosslinks DNA and peptides/proteins, rendering them 
poorly ionizable and undetectable by MS. By measuring the pixel 
properties produced by DCVs under brightfield conditions, we 
compiled sequences of image algorithms (Supplementary Fig. 4)  
that selectively identify the pixels produced by DCVs versus the 
background (Fig. 1b–d), allowing identification of the spatial loca-
tions of individual DCVs without the need for chemical labeling. 
The axial resolution of light microscopy limits this approach to the 
analysis of vesicles that are approximately 500 nm in diameter or 
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larger. However, nonoptical approaches such as scanning electron 
microscopy can be applied, providing a resolution down to 10 nm, 
allowing targeting of nanometer-sized objects (Supplementary 

Fig. 3). A three-step approach was developed for isolation of a 
representative number of vesicles without loss of chemical detail, 
which is critical for the high-throughput preparation of organelle 
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Fig. 1 | High-throughput workflow for label-free single-DCV targeting and MS analysis. a, Schematic of MALDI MS workflow for high-throughput 
single-DCV measurements. b, Brightfield image of DCVs distributed on a glass slide. c, Identification of primary objects (DCVs) using image-processing 
software. d, Masked image output of identified DCVs. The colored spots represent primary objects (DCVs) recognized as ‘foreground’ and are marked 
with a maximal pixel intensity value. Anything not identified as an object is treated as ‘background’ and is set to a zero-pixel intensity value. e, Brightfield 
image of mechanically induced DCV release from the AG. f, DCVs plated on a glass slide for relative DCV density estimation using brightfield microscopy. 
Each slide held DCVs from three animals (biological replicates) and a total of three slides (technical replicates) were prepared, where 598 DCVs were 
measured. g, Mass spectra demonstrating the coverage of AG peptides detected in single-DCV measurements. h, AGPA1 (XP_012945143.1) and AGPB1 
(XP_012945142.1) prohormone sequences with corresponding MALDI MS-detected peptides italicized and font colored to match the annotated spectra in 
g. AG peptide assignments were validated using LC–MS/MS and performed on AG extracts (n = 3). The peptides detected by LC–MS/MS are underlined in 
black. a.u., arbitrary units.
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Fig. 2 | Chemical heterogeneity of DCV populations: unsupervised data analysis, simultaneous acquisition of analyte classes and detection of 
novel Peptide D. a, Deterministic CX was used to select 200 mass spectral features to improve data interpretation. CX decomposition was applied 
for feature selection where the best low-rank approximation was provided through singular value decomposition with a rank parameter k = 150, which 
was determined by the reconstruction errors with different rank parameters. Rank k = 150 has a reconstruction error less than 25% of the original 
dataset. b, ‘Statistical leverage scores’ for all spectral features were computed and plotted against the m/z axis. Multiple detected AG peptides can 
be seen with high leverage scores and are annotated with blue triangles. The ‘Statistical leverage score’ for each feature indicates its influence on the 
best low-rank fit of the data matrix. Selecting the top 200 features ensured that CX decomposition closely approximated the best low-rank fit of the 
original data matrix while removing uninformative information. c, Results of k-means clustering of the dataset containing 200 selected features with 
the highest statistical leverage score. d, Violin plots visualizing a subset of the selected features and their relative distribution in each cluster, with 
known AG peptides marked. e, Simultaneous detection of PC(18:1/16:0), PC(18:1e/16:0) and PC(18:1e/18:1) with their corresponding sodiated adducts 
annotated. f, The novel prohormone, Peptide D, was identified by MALDI MS mass-match assignment of Peptide D [63–75] and Peptide D [132–162]. 
SVD, singular value decomposition.
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samples. In this approach, a volatile, isosmotic-ammonium ace-
tate buffer was deposited onto an indium tin oxide (ITO)-coated 
glass slide, into which a small aliquot of artificial sea water (ASW) 
solution containing the vesicles was deposited. The vesicles were 
allowed to sediment and adhere to the glass surface before the 
solution was aspirated, leaving a large number of visually intact 
vesicles distributed across the slide. After identifying the vesicles 
on the slide using the described pipeline, an image mask of the 
identified objects was created. The image mask marks the vesicles 
with a maximal pixel intensity and forces the remaining pixels to a 
zero-pixel intensity, creating a binary image output (Fig. 1d). With 
the vesicles marked by clusters of maximal pixel intensity values, 
the binary image created from the masked image output can be 
used for identification of the spatial locations of vesicles on the 
slide for subsequent analysis via MALDI MS. A 200-μm-distance 
filter was applied to remove objects from the target list that are 
closer than 200 μm to each other, ensuring the 100-μm-diameter 
MALDI laser spot size did not overlap with multiple vesicles 
(Supplementary Fig. 5).

High-throughput DCV detection and characterization. A total of 
598 DCVs were analyzed and, after cross-refencing the single-DCV 
spectra with the LC–MS/MS data, over 50 mature full-length pep-
tides were assigned by peptide mass fingerprinting to eight known 
prohormones and one novel prohormone (Supplementary Table 2).  
As a result, the peptides AGPA2 [36–69], AGPB1 [85–118], 
AGPA1 [117–152], AGPA1 [156–173] (or identical peptide AGPB1 
[205–222]), N-terminal peptide AGPA1 [22–34] and the trun-
cated N-terminal peptide AGPB1 [71–81] lacking the C-terminal 
Thr-Asn7 were detected, resulting in 39% and 28% coverage of 
AGPA1 and AGPB1 prohormones (Fig. 1g,h), respectively. Lastly, 
by using an m/z range of 150–4,500, we were able to perform simul-
taneous detection of both peptide and lipid species in individual 
DCVs. Three phosphatidylcholine (PC) lipid species detected by 
mass-match assignment include: PC(18:1/16:0), PC(18:1e/16:0) 
and PC(18:1e/18:1), with respective assignment mass errors of 
−1.62 ± 0.65 ppm, −2.59 ± 0.06 ppm and −1.55 ± 0.21 ppm (Fig. 2e). 
The three detected lipids were previously identified in A. californica 
neurons using MALDI MS12.
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from analysis. A small number of spermatozoa (annotated) typically collected during red hemiduct LV sample preparation were used to demonstrate the 
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was performed on the initial dataset for visualization of LVs and DCVs using all mass spectral features. c, Confusion matrix of the prediction on the test data 
using a threefold validation. d, Representative LV mass spectrum (red) overlaid on a representative DCV mass spectrum (gray). Representative spectra 
were not preprocessed. A subset of mass spectral features determined important via SHAP are annotated in the LV mass spectrum. e, Mass spectral feature 
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Differential packaging of peptides from the same prohormone 
into different vesicles was shown in the bag cell neurons of A. cali-
fornica using immunogold staining approaches13, although this has 
not been demonstrated in other A. californica cell types. Here, we 
considered whether the different peptide complements may be 
from differential proteolytic processing of AGPB1, AGPA1 and 
AGPA2 prohormones. Therefore, CX decomposition, an unsuper-
vised statistical approach, was applied to select statistically impor-
tant features while removing redundant and uninformative ones for 
improved downstream data interpretation (Supplementary Figs. 6 
and 7). CX decomposition based on statistical leverage scores was 
used to select the top 200 features14 (Fig. 2a,b and Supplementary 
Fig. 8). Next, using the selected features, the DCVs were partitioned 
into three groups using the k-means clustering algorithm, for which 
the number of groups was determined by calculating the Within 
Cluster Sum of Squares (Fig. 2c). Significantly different features 
were obtained by performing a Wilcoxon rank-sum test for each 
individual cluster against the others (Supplementary Fig. 9). The 
violin plots (Fig. 2d) highlight selected mass spectral features and 
their distribution in the different DCV cluster types where known 
AG peptides are labeled. The N-terminal peptides, AGPB1 [71–81] 
and AGPA1 [22–34], and the novel Peptide D [63–75] (Fig. 2f), are 
shown to be defining features in Cluster 1 when compared with 
Cluster 2, whereas Cluster 3 demonstrates localization of multiple 
expected AG peptides from the prohormone C termini, includ-
ing AGPA1 [156–173], Peptide D [63–75], AGPB1 [85–118] and a 
peptide cluster belonging to Peptide D [132–162] (Supplementary  
Fig. 10). The data indicate that the N- and C-terminal peptides  
from these two prohormones are differentially packaged into a 
subset of DCVs, whereas the bioactive peptides that initiate the 
egg-laying process15, AGPA2 [36–69] and AGPB1 [85–118], are 
predominantly packaged into a separate subset of vesicles. An early 
pioneering study that quantified the amounts of AGPA1 [22–34], 
AGPA2 [36–69] and AGPB1 [85–118] in isolated intact granules 
from AG homogenates also suggested the possibility of packaging 
of AGPA1 [22–34] into a distinct class of secretory vesicle15. Perhaps 
this differential packaging of N-terminal products in the AG would 
be akin to what is also observed in the bag cell neurons where N- 
and C-terminal peptides are differentially packaged into two dis-
crete vesicle classes that are targeted to different cellular locations13.

Mass spectrometric characterization of LVs. To demonstrate 
the suitability of our method to assay a variety of organelles, we 
extended it to another morphologically distinct vesicle type, LVs, 
from the adjacent red hemiduct of A. californica. Simple modifi-
cation to the image-processing pipeline allows direct targeting of 
the LVs based on their different morphological characteristics 
(Fig. 3a). The LVs of the red hemiduct have a similar diameter of 
0.5 to 2 µm but vary dramatically in ultrastructure; the LVs contain 
a double membrane structure, with the inner membrane forming 
cristae-like structures that are analogous to those found within  
the mitochondrion9,16. In contrast, DCVs from the AG contain a 
single membrane and exhibit a solid dense-core compared with the 
more relatively fluid interior of the LVs from the red hemiduct9,16. 
Due to the nonpeptidergic content of the LVs and the clear dif-
ferences in ultrastructure between the LVs and DCVs, a machine 
learning model was trained for the differentiation between LVs and 
DCVs, focusing on the m/z range of 500–1,100. t-Distributed sto-
chastic neighborhood embedding (t-SNE) was initially applied using 
the mass spectral features to visualize the data in a low-dimensional 
space (Fig. 3b). Next, gradient boosting trees were trained with a 
threefold validation, obtaining an accuracy of 98.6 ± 0.78% for the 
classification between LVs and DCVs (Fig. 3c). The most important 
features for the classification between LVs and DCVs (Fig. 3d) were 
selected via Shapley additive explanations (SHAP) through a previ-
ously described method6, where a total of 97 features with nonzero 

mean SHAP values from the model output were selected, with 36 
features putatively identified by mass-match assignment (Fig. 3e).  
The model provided an improved classification performance 
through retraining on the selected features (Supplementary Fig. 11),  
displaying the differential lipid profiles between the two vesicle 
classes (Supplementary Figs. 12, 13 and 14). The data show the 
strong presence of multiple sterol lipid species to be of importance 
to their classification. The absence of sterol lipid species correlates 
with uniformly curved membranes17,18. Whereas when present  
in sufficient concentration, sterol lipid species will distribute  
asymmetrically in the lipid bilayer causing large, flat membrane 
regions that are separated by sharp curves in the membrane, cre-
ating negative membrane curvature. Interestingly, negative mem-
brane curvature would promote the formation of the cristae-like 
invaginations that can be observed in the LVs16,18.

Discussion
As the spatial resolution of MS advances from the single-cell level to 
include the single-organelle domain, new analytical approaches are 
being developed to unravel the complex microenvironments housed 
within single cells19–21. Capillary micro-sampling techniques coupled 
to electrospray ionization (ESI)–MS have been developed for the 
identification of peptides in individual cells and in some subcellular 
compartments of cells11,22. Though capillary micro-sampling ESI–MS 
techniques can identify peptides in subcellular compartments23,24, 
they require fine-tuning of the capillary position and controlling the 
volume extracted. These requirements are critical to single-organelle 
extraction and pose challenges to repeated sampling and through-
put due to potential contamination from the cellular membrane, 
cytoplasm and other subcellular organelles22. Alternatively, our 
image-guided MALDI MS approach provides direct single-organelle 
targeting using point-based image registration.

In conventional MS imaging, as spatial resolution increases, 
so does acquisition time. Therefore, to maintain the throughput 
required for characterizing large populations of individual organ-
elles, we are not imaging slides containing the vesicles. Instead, the 
organelles themselves are isolated and selectively targeted using the 
MALDI laser. Our high-throughput, label-free, single-organelle 
approach enables simultaneous characterization of both the pep-
tide and lipid contents of hundreds of intact 0.5- to 2-µm-diameter 
DCVs and LVs. Because our approach uses a combination of free-
ware and instrumentation that is commonly available to research-
ers, it is adaptable to many experimental designs, including other 
organelle types such as microvesicles, which can range from 100 nm 
up to 1 μm in diameter25.
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Methods
General. All chemicals were obtained from Sigma-Aldrich unless specified 
otherwise.

Vesicle isolation. A. californica (150–200 g) were obtained from the National 
Resource for Aplysia and kept in a 14 °C aquarium filled with Instant Ocean 
(Aquarium Systems). Animal euthanasia was performed in accordance with the 
AVMA Guidelines for the Euthanasia of Animals: 2020 Edition (Section S6.3.1.1 
Noninhaled agents for immersion). Animals were anesthetized using a 333 mM 
MgCl2 solution injected into the body cavity (50% volume/body).

For DCV isolation, the AG was isolated by manual dissection, and placed 
into a microcentrifuge tube containing 1 ml of ASW. Due to the holocrine release 
mechanism, DCV secretion from the AG was induced by gentle trituration 
with a polypropylene Pasteur pipette, releasing intact DCVs into the ASW 
solution. Next, 100 μl of 500 mM ammonium acetate solution was prespotted 
onto an ITO-unpolished float glass slide, Surface Resistivity = 70–100 Ω (Delta 
Technologies). Then, 50 μl of vesicle-containing ASW solution was pipetted into 
the 100 μl of ammonium acetate solution on the ITO-glass slide for a total volume 
of 150 μl. The resulting vesicle solution was then rinsed with 500 mM ammonium 
acetate with simultaneous aspiration of the solution, leaving DCVs seeded across 
the slide. All steps were visually monitored using an inverted microscope. Each 
slide held DCVs from three animals (biological replicates) and a total of three 
slides (technical replicates) were prepared. For LV isolation, the procedure used 
for the DCVs was repeated using red hemiduct tissue, with the other steps being 
the same as for the DCV isolation; 123 LVs were analyzed from the same three 
biological replicates used for the DCV isolation.

Vesicle imaging. Brightfield images were acquired on an Axio Imager M2 (Zeiss) 
equipped with an AxioCam ICc 5, a ×0.63 camera adapter and a transmitted light 
visible light-light emitting diode lamp. Images were acquired in mosaic mode 
using a ×10 objective with 30% tile overlap. The resulting tiles were stitched before 
exporting in TIFF-file format using ZEN 2.0 Pro edition (Zeiss) software.

Scanning electron microscopy images were acquired using an FEI Quanta FEG 
450 environmental scanning electron microscope (FEI). Images were acquired 
using an accelerating voltage of 10 kV, dwell time of 10 µs and working distance of 
6.6 mm.

Image-processing for vesicle recognition in microMS. We utilized biological 
image analysis software, including ImageJ26 and CellProfiler27, for vesicle 
pixel recognition on the brightfield microscopy image. Importantly, other 
image-processing software can be used for this process as well. CellProfiler pipeline 
modules were created to selectively mask the DCVs and LVs on the brightfield 
microscopy image to remove the background and retain just information on 
the vesicles of interest as the foreground. Masking the identified vesicles creates 
a binary image marking the pixel locations of vesicles on the glass slide. The 
microMS software was used to translate the pixel locations on microscopy images 
to physical coordinates of the mass spectrometer’s stage. A 200-µm-distance filter 
was then applied in microMS (removing vesicles located closer than 200 µm to each 
other from the target list). Alternatively, ImageJ was used as a simple thresholding 
strategy by measuring the difference between the vesicle (foreground) and 
background pixel intensity, which allows a threshold to be set, leaving only objects 
of interest for recognition in microMS.

Matrix application. Matrix deposition for MALDI MS analysis was 
performed using a glass sublimation apparatus (Wilmad-LabGlass) filled with 
2,5-dihydroxybenzoic acid as the MALDI matrix. The slide was attached to the 
cold-finger and vacuum was created using a rotary vane pump (Edwards Vacuum, 
model E2M30). The sublimation apparatus was placed on a sand bath preheated 
to 150 °C for 8 min. Matrix deposition was followed by recrystallization using 5% 
methanol. Recrystallization was performed using a 100 × 15-mm2 polystyrene Petri 
dish as a recrystallization chamber. The ITO-glass slide was attached to the top 
of the recrystallization chamber and a filter paper (Whatman Grade 1 Qualitative 
Filter Paper, Thermo Fisher Scientific) was wetted with 1 ml of 5% methanol. The 
chamber was sealed using tape and placed in an oven at 85 °C for 1.5 min. After 
removal of the recrystallization chamber from the oven, the slide was immediately 
removed from the recrystallization chamber and allowed to dry in a nitrogen 
chamber until analysis.

MALDI MS measurements. High-throughput single-DCV and single-LV 
analyses were performed on a SolariX XR 7T Fourier-transform ion cyclotron 
resonance mass spectrometer equipped with an APOLLO II dual MALDI/ESI 
source (Bruker) using an m/z range of 150–4,500. Data were acquired at 1 M 
giving a mass resolution of 107,000 at m/z 535 and 19,070 at m/z 3,922, yielding 
a transient length of 0.721 s. The instrument was operating in positive-mode 
using a Smartbeam-II UV laser (Bruker) set to ‘Ultra mode’, which yields a 
100-µm-diameter laser footprint. Each MALDI acquisition consisted of two 
accumulations comprised of 400 laser shots each, at a frequency of 1,000 Hz. DCV 
and LV stage coordinates and geometry files were generated using microMS as 
previously described8.

Data preprocessing. Data preprocessing was performed using Compass Data 
Analysis 4.4.2 (Bruker) and MATLAB 2018b (MathWorks). Internal calibration 
using the exact mass of AG peptides was performed using AGPB1 [71–81] 
(m/z 1,221.6878), AGPA1 [22–34] (m/z 1,396.7225), AGPA1 [156–173] (m/z 
1,908.8761), AGPA2 [33–69] (m/z 3,922.9478) and AGPB1 [85–118] (m/z 
4,031.0053). Peak picking and peak export for statistical analysis in MATLAB 
2018b were set to a signal-to-noise ratio of 5 with a relative intensity threshold 
of 0.01%. A nonuniform bin width was used for mass spectral alignment. For 
DCV data analysis, mass features were truncated at m/z 1,100 for downstream 
data analysis of only AG peptides. For LV and DCV vesicle classification, 
mass features in m/z 500–1,100 were selected for downstream data analysis. 
Internal calibration using AG peptides was not performed for the LV and 
DCV classification tasks. Using the target list provided by microMS, the pixel 
coordinates were used to find and crop the locations of individual vesicles  
across the original microscopy image. The corresponding mass spectra were 
matched with the appropriate vesicle for visual evaluation of corresponding 
single vesicles.

CX decomposition and statistical analysis. Unsupervised approaches such as 
principal component analysis (PCA) and, more generally, matrix decomposition or 
factorization, are valuable data analysis tools to enable field-specific interpretation 
of high-dimensional datasets. However, the interpretation is limited due to the 
complicated eigenspace obtained from PCA, deterring our further understanding 
of the feature space of the data matrix. CX matrix decomposition is designed to 
obtain a low-rank approximation of the data in terms of actual rows or columns14. 
Given an m × n data matrix A, the algorithm decomposes it into an m × c matrix C 
and a c × n matrix X, where C is expressed by c number of column vectors of the 
original data. The statistical leverage scores are used to rank and select the columns 
of C from A, which can be obtained by

lj =
k∑

i=1
v2ji

where lj is the leverage score for the jth column/feature, vi is the right singular 
vectors obtained by the singular value decomposition and k is the rank to be 
selected. X is then determined by minimizing the error:

min
X

||A − CX||F

The reconstruction error evaluation and the rank k selection are provided as 
Supplementary Fig. 8. Based on the evaluation, the top 200 features are selected 
to form the columns of the matrix C. k-means clustering, and the Wilcoxon 
rank-sum test, were performed using the Python-based open source package 
SCANPY28. The stacked violin plots, shown in Fig. 2d, of the normalized signal 
intensities represent the identified peak features across the three clusters, with the 
vesicle type (or cluster) assignments obtained by k-means clustering. The y axis 
is the root-mean-squared-normalized peak intensity and each violin contains the 
distribution of the normalized intensities of the corresponding features in the x axis.

Peptide sequencing by LC–MS/MS. Peptide extracts (n = 3) were obtained by 
manually grinding entire AG tissue in 500 μl of acidified methanol followed by 
evaporation and reconstitution of each extract in 0.1% formic acid. A nanoElute 
(Bruker) ultra-high-pressure nano-flow chromatography system was coupled to 
a trapped ion mobility–quadrupole time-of-flight mass spectrometer (timsTOF 
Pro, Bruker) with a CaptiveSpray nano-electrospray ion source (Bruker) equipped 
with an external column oven. Mobile phases A and B were water with 0.1% formic 
acid (v/v) and acetonitrile with 0.1% formic acid (v/v), respectively. Samples were 
loaded onto a precolumn peptide trap (Acclaim PepMap 100 C18, 1 × 5 mm2, 5-µm 
particle size, Thermo Fisher Scientific) using solvent A for off-line desalting. Next, 
the trap was placed in-line with the analytical column and peptide separation was 
performed at 40 °C with a uniform flow of 300 nl min−1 on a C18 ReproSil AQ 
column (Bruker FIFTEEN, P/N no. 1842621: 150 mm × 75 µm, 1.9-µm particle 
size, pore size 120 Å) equilibrated at 2% B. A linear gradient of solvent B was 
applied as follows: 2–10% within 5 min, 10–50% in the next 115 min, followed by a 
washing step at 95% B and re-equilibration, during which data collection was not 
performed. The mass spectrometer was operated in parallel accumulation–serial 
fragmentation (PASEF) mode for peptide sequencing. The mass range for the 
precursor ion was set to m/z 100–1,700, ion mobility 1/K0 range 0.6–1.6 V s cm−2. 
Fragmentation was performed with 10 PASEF scans, cycle time of 1.1 s, during 
which collision energy varied linearly between 20 and 59 eV depending on 
precursor 1/K0 value within the set range. Active dynamic exclusion of precursor 
ions was set to 0.4 min.

Peptide identification by bioinformatics. MS raw files were processed with 
PEAKS Online29 (Bioinformatics Solution) using the DeNovo, database (DB) and 
post-translational modification (PTM) protocols, sequentially. Peptide sequence 
tags obtained by the DeNovo process (80% average local confidence score cut-off) 
were searched against the Aplysia RefSeq database available from the NCBI 
(GCF_000002075.1). The protein database was filtered to include proteins up to 
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1,000 amino acids long. Search parameters for DB included: parent mass error 
tolerance 20.0 ppm, fragment mass error tolerance 0.03 Da, no enzyme, digest 
mode unspecific. Next, PTMs were identified by searching the data for amidation, 
acetylation (K) and acetylation N terminus, pyro-glutamylation from (Q) and 
(E), phosphorylation (STY) and half-disulfide bridge. The false discovery rate 
was determined by decoy fusion method and the threshold set to 1% for peptides. 
Proteins with −log10 P > 20 and at least one unique peptide are reported.

Vesicle classification through machine learning. We adapted a previously 
described machine learning strategy6 for vesicle type classification to differentiate 
between DCVs and LVs based on their lipid contents. Features in the m/z range 
of 500–1,100 were used for the classification task. Gradient boosting trees were 
trained with a threefold validation; in each fold of the model performance, the 
metrics were computed to obtain classification accuracies, confusion matrices 
and receiver operating characteristic curves (Supplementary Fig. 11). The most 
contributing features to the classification task were selected via SHAP, a game 
theory approach for model explanations, and were obtained through a Python 
implementation of SHAP. A total of 97 features with nonzero mean SHAP values 
from the output of trained models were selected and 36 were putatively annotated 
by searching against the LIPID MAPS30 database with a 7-ppm tolerance. Models 
were then retrained with the SHAP-selected features as well as the annotated 
features to verify the discriminative ability of those features. t-SNE using the cosine 
distance was used to visualize the lipid differences between DCVs and LVs in a 
low-dimensional space.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available via the Illinois 
Data Bank (https://doi.org/10.13012/B2IDB-5949772_V1).

Code availability
The code used in this study is available on GitHub (https://github.com/
richardxie1119/DCV_DA).
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