Skip to main content
. 2021 Jun 8;39(10):973–983. doi: 10.1007/s11604-021-01136-2

Table 2.

The performance of nine popular classifiers in test set

LR SVM DT RF AdaB GB XGB KNN SGD
AUC (95% CI) 0.68 (0.56, 0.75) 0.73 (0.61, 0.79) 0.59 (0.50, 0.69) 0.68 (0.55, 0.72) 0.63 (0.54, 0.71) 0.66 (0.58,0.76) 0.65 (0.59, 0.74) 0.65 (0.54,0.71) 0.6 (0.55.0.71)
ACC 0.53 0.54 0.47 0.5 0.51 0.5 0.47 0.5 0.43
SEN 0.51 0.52 0.46 0.46 0.46 0.48 0.45 0.47 0.43
SPE 0.52 0.75 0.73 0.74 0.73 0.73 0.72 0.73 0.71

LR logistic regression, SVM support vector machine, DT decision tree, RF random forest, AdaB AdaBoost, GB gradient boosting, XGB XG boost, KNN K-nearest neighbors, SGD stochastic gradient descent, ROC receiver-operating characteristic, AUC area under the curve, ACC accuracy, SEN sensitivity, SPE specificity